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ABSTRACT

The inventory management and production planning of
parts with irregular demand patterns are challenging
for manufacturing companies. These patterns often
occur in the strategically critical spare parts sector,
where the inventory and capital commitment costs are
high. For this reason, an accurate forecast can improve
service levels and ensure efficient stock keeping.
For this problem, time-series-based forecasting

methods are often used to predict future demands.
Furthermore, the research of recent years in terms
of stochastic forecasting also focused on Artificial
Intelligence (AI) methods, mainly Artificial Neural
Networks (ANN).
In contrast to previous studies, this paper compares

the prediction results of various ANN configurations
and classical forecasting methods for all of the
different demand categories according to Syntetos
et al. [1], which means that erratic, lumpy, smooth,
and intermittent demands are regarded separately.
This study compares eleven statistical forecasting
configurations with eight single hidden layer neural
network configurations.
Furthermore, the influence of the number of hidden

neurons on the prediction performance is investigated
with the learning algorithms Backpropagation (BP)
and Levenberg-Marquardt (LM) by evaluating them
separately, which has not been covered in the context
of all irregular demand categories yet. The study is
based on actual demand data from 29 spare parts of a
mechanical engineering company.
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1. INTRODUCTION

A demand forecast with minimum possible deviations
is required to efficiently design production, sales
planning, and warehousing. If no deterministic or
causal determination of demand for the future is
possible, demand data from the past often represent the
best data basis for part-specific forecasts. When facing
sudden spare part needs due to spontaneous failures,
this stochastic determination of requirements is usually
the best available option to balance high service and
inventory levels [2]. This is even more crucial since
spare parts are often urgent goods and need to be
delivered as soon as possible to eliminate malfunctions
and shutdowns in operations and production processes.
A wide range of statistical forecasting methods is

considered suitable for different application areas. A
moving average or first-order exponential smoothing is
often used for more constant demand patterns, which
are often found in primary products [2]. The forecast
deviations are generally very low in such constant
patterns, and good results can usually be achieved
with these methods, while the optimization potential
is low. As shown in the extensive review of Pinçe et
al. [3], it becomes more problematic when demand
patterns are irregular, as is often the case in the spare
parts sector. There, strongly fluctuating demand levels
and zero demand periods occur frequently, so that the
forecast deviations in general and the requirements for
an accurate forecast are considerably higher [4]. For this
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RQ3: What implications for theory and practice
can be drawn from the quantitative study and
which further research directions occur in
irregular demand forecasting with ANN?

The remainder of this paper is structured as follows:
Section 2 describes the research design and introduces
the field of spare parts management and the classical
demand forecasting methods. In Section 3, the
configuration of the applied ANN is explained. Section
4 continues with the quantitative analysis and compares
the prediction results with different forecasting
methods. In section 5, implications for theory, practice,
and further research directions are discussed. Section 6
concludes with a summary and limitations of the study.

2. METHODOLOGY AND
THEORETICAL FOUNDATIONS

2.1. Research design
The paper is grounded on the methodological approach
of Chen et al. [13], which consists of the following
three main steps: 1) data collection and analysis, 2)
forecasting method evaluation, and 3) derivation and
comparison of prediction results.
The dataset contains monthly demand values of 29

strategically relevant parts of the cooperating company
covering 42 periods. Afterwards, these parts are
assigned to the different demand categories according
to Syntetos et al. [1] by calculating the squared
coefficient of variation (CV2) and the average inter-
demand interval (ADI).
The authors applied different ANN configurations

within the second step and established statistical
forecasting methods for demand prediction for the
initial dataset. This is followed by the evaluation
stage of the forecasting methods, which consists of the
selection and adequate parameterization of the various
forecasting methods to be considered. The influence of
different ANN parameters was tested experimentally.
The varied parameters were applied in all combinations,
i.e., in the sense of a full factorial experiment.
The third step aims to obtain and compare the

forecasting results achieved across all methods.
Therefore, the prediction accuracy was evaluated for
the most common statistical benchmark forecasting
methods and the ANN configurations by applying a
relative error measurement method to conclude the
prediction performance and answer RQ1 and RQ2.

2.2. Characteristics and Classification of
Spare Part Demands

Many parts, especially in the spare parts sector, show
intermittent demand patterns [4]. Consequently, there
are frequent periods of zero demand, and positive
demands occur irregularly. Furthermore, in contrast to
the principally constant demand for primary products,
spare part demand per period is often characterized by

task, the method of Croston [5], the approximation of
Syntetos and Boylan [6], or bootstrapping methods [7]
are often used, which can usually achieve better results
with irregular demand characteristics. Petropoulos et al.
[8] investigated the effect of different input parameters
and evaluated the accuracy of other forecasting methods
for different demand types.
Apart from classical statistical forecasting methods,

Artificial Intelligence (AI) approaches, especially
Artificial Neural Networks (ANN), have shown great
potential in optimizing particularly lumpy demand
predictions in some studies [9]–[12]. The work of Pinçe
et al. [3] suggests that ANN are the most relevant AI
approaches for demand forecasting problems. Chen
et al. [13] compared different neural network types to
forecast critical spare part demands and found a moving
fuzzy-neuron network to be superior. Lolli et al. [14]
showed the excellent performance of the BP algorithm
compared with Extreme Learning Machines to predict
intermittent demand. Kourentzes [15] evaluated
the application of ANN to forecasting intermittent
demands regarding prediction accuracy and service
level improvements. Carmo and Rodrigues [16] noted
accuracy improvements with radial basis function
networks compared to Croston’s method. In other
studies, these superior results of ANN could not be
fully confirmed, as classical forecasting methods were
partially or generally better [17], [18]. Furthermore,
ANN calibration has been highlighted as a relevant
task for prediction accuracy [19].
This paper aims to provide a quantitative comparison

of classical demand prediction results and ANN
approaches applied to time-series data of the different
demand categories according to Syntetos et al. [1],
which has only been partially considered in the study
of Sahin et al. [17] at this point. In contrast to this
paper, our study regards all four spare part demand
patterns, while more classical forecasting methods
such as second-order exponential smoothing or moving
average are considered. In total, 19 configurations
are compared, composed of 11 classical forecasting
configurations and 8 ANN variants. To the best of the
author’s knowledge, the effect of different numbers of
applied neurons in the hidden layer of the ANN has not
yet been tested considering the forecasting performance
of the different irregular demand categories. This
approach is also motivated by the claim of hidden node
optimization, which is stated by Lolli et al. [14].
The evaluation is based on real datasets of 29 different

spare part demands of a medium-sized mechanical
engineering company. The following research questions
are considered:

RQ1: Which of the forecasting methods
considered shows the best forecasting
performance according to the demand categories
of Syntetos et al. [1]?
RQ2: Can ANN improve the forecasting
performance when applied to all demand
categories?



3Forecasting Irregular Demand Using Single Hidden Layer Neural Networks

Fig. 1: Demand categories for spare parts according to Syntetos et al. [1]

considerable fluctuations. Syntetos et al. [1] proposed
the categorization scheme shown in Figure 1 to
quantify these characteristics and make them generally
comparable. It includes the squared coefficient of
variation (CV2) to classify demand variation and the
average inter-demand interval (ADI), also referred
to as p, to quantify sporadicity. The more periods in
which zero demand occurs, the higher the average
inter-demand interval, and the more the demand
level fluctuates, the larger the coefficient of variation
becomes. Usually, one month is chosen as the unit for
a period [1].

2.3. Classical Statistical Forecasting Methods
Several statistical methods are used in practice for
time-series forecasting as they are easy to handle and
automate. Prevalent methods are linear regression and
moving average, whereas in the later the arithmetic
averaging of the demand values from the past is
conducted, whereby the period interval considered
slides one period into the future with the expiry of a
period [20]. Furthermore, 1st and 2nd order exponential
smoothing is used for constant and trend shaped
demand and apply, in contrast to the moving average,
an exponentially descending weighting of the data
points over time [21]–[23].
Apart from the more straightforward procedures

mentioned above, some methods are applied for
irregular demand forecasting. One of the most
frequently used calculation methods for this was
introduced by Croston in 1972 [5] and is based on first-
order exponential smoothing. As zero-demand periods
can often occur for spare parts, this approach follows the
basic idea of separately forecasting the demand and the
time of the demand. Syntetos and Boylan [6] modified
the method of Croston to increase the forecasting
performance as they stated a possible value distortion
when the smoothing parameter is greater than α>0.5.
Therefore, they modified the formula for calculating
the predicted demand. Another Croston modification
was proposed by Levén and Segerstedt, which aims for

a relatively simple approach and forecasts the demand
and its occurrence simultaneously [24].
Bootstrapping methods are also recommended for

forecasting irregular demand patterns [7]. Within
this method, which was first introduced in 1979 [25],
statistical features such as variance and mean of the
demand distribution are predicted by repeated random
sampling from available demand values. This method
calculates the expected demand for a period, sets this
as the mean value, and estimates the variance based
on previous forecast errors [26]. A comprehensive
overview and evaluation of bootstrapping methods can
be found in Hasni et al. [27], [28].
Table 1 presents the applied statistical forecasting

methods in this study.

3. CONFIGURATION OF THE APPLIED
ANN MODELS

ANNs consist of a linked set of neurons representing
mathematical processing units within which the input
values are often processed in a non-linear activation
function. The general architecture of an ANN consists
of an input and output layer and at least one hidden
layer with a varying number of neurons.
The ANN can derive a non-linear input-output

relationship, for which it only needs demand data from
the past for its training and testing process. Various
structures are possible, but the already successfully
implemented Multilayer-Perceptron (MLP) with feed-
forward character is used in this paper, which is an
ANN structure capable of solving non-linear regression
and classification problems [29]. As shown in Figure 2,
the feed-forward architecture implies that information
only moves in one direction, from the input to the output
layer. According to the examined literature, the ANN
architecture should be kept simple to avoid overfitting.
The use of around three hidden neurons has often been
successfully applied to similar forecasting problems [9],
[11], [14]. Based on these results, tests conducted in the

1: erratic
Syntetos-BoylanApproximation

2: lumpy
Syntetos-BoylanApproximation

3: smooth
Croston´s method

4: intermittent
Syntetos-BoylanApproximation

૛ࢂ࡯
ADI

ଶܸܥ = 0.49
(cut-off value)

(cut-off value)
ADI = 1.32
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software MATLAB showed overfitting effects at five
hidden neurons or more and the minimum validation
error was achieved at four hidden neurons or less.
Consequently, the authors decided to apply one to four
hidden neurons in this study.
Besides the ANN architecture, the applied learning

algorithm strongly influences forecasting success
[14]. Those algorithms automatically parameterize
the connection weights (W) between the neurons to
minimize an objective function with an overall error
measure [29], [30].
The objective function within the training and

testing process of an ANN in this study minimizes
the Mean Squared Error (MSE), following [31]–[34].
It was decided to use the two most commonly applied
learning algorithms. The Backpropagation learning

algorithm was one of the first methods to be adopted
for this purpose and is well established [29], [35], [36].
Furthermore, it has shown superior performance results
for forecasting problems [11], [14]. However, as this
algorithm is known for its higher calculation times,
the more efficient Levenberg-Marquardt algorithm
has been developed and also applied successfully to
forecasting problems [37]–[39].
Consequently, eight ANN configurations with MLP

architecture were applied to the forecasting task, using
the training algorithms of LM and BP with a varying
number of 1 to 4 neurons in the hidden layer.
In the literature, different split percentages between

64% and 82% training data and 18% to 36% validation
data are applied [10], [13], [17], [41], [42]. The best
results were found after testing different ratios based

Fig. 2: MLP architecture with one hidden layer and four hidden neurons (N), adapted from [40]

Input layer Hidden layer Output layer

N1,1

N1,2

N1,3

N1,4

N0,1

N0,2

N2,1

N2,2

Method Specification Smoothing
parameter α

Abbreviation

Moving average Latest 36 monthly data points - MA 3y
Moving average Latest 12 monthly data points - MA 1y
Linear Regression Method of least squares - Lin Reg
Exponential Smoothing First-order 0.05 ES1 0.05
Exponential Smoothing First-order 0.2 ES1 0.2
Exponential Smoothing Second-order 0.05 ES2 0.05
Exponential Smoothing Second-order 0.2 ES2 0.2
Croston’s Method 24 months for initialization 0.05 CR 0.05
Croston’s Method 24 months for initialization 0.2 CR 0.2
Syntetos-Boylan
Approximation 24 months for initialization 0.05 SBA 0.05

Syntetos-Boylan
Approximation 24 months for initialization 0.2 SBA 0.2

Table 1: Applied configurations of benchmark methods
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on the literature with 75% training data and 25%
validation data. Another critical factor is splitting the
data points into training and validation sets, which can
be done serially or randomly. The character of the data
division was chosen as serial to sustain possible serial
correlations in the dataset [43], [44]. A sigmoid function
was chosen as an activation function to ensure the
network’s non-linearity, realized through the function
fitnet, which is a pre-implemented function in the
MATLAB software [45].

4. DATA ANALYSIS

4.1. Characteristics of the quantitative study
All calculations are based on actual demand data
covering 42 months. Therefore, the data were split
into three serial blocks, as shown in Figure 3. The
first 27 months were used for ANN training, whereas
the following 9 months were applied for ANN testing
[10], [13]. Consequently, the data points of the first 36
months are used to calculate the forecast values with
all 19 applied methods, whereas negative predicted
values were excluded. The demands of the last six
months in the considered dataset were assumed to be
future and unknown values upon which the forecast
accuracies were subsequently measured over all applied
forecasting methods. This assumption was necessary
to consider a sufficiently long period to validate the
forecast results and thus maximize the expressiveness
of the study’s results.
A relative error measure is needed to compare

the forecasting quality across time series for every

prediction method. The error measure should also
be based on the absolute value of deviation to avoid
balancing positive and negative deviations. The error
measurement must also apply to intermittent demands
with frequent zero demand periods, i.e., no division
by zero may occur. For this reason, the frequently
used Mean Absolute Percentage Error (MAPE) [46]
does not apply to intermittent demands. Consequently,
according to Gilliland [47], the modified MAPE was
selected as the measure because it fulfills all criteria
listed above. According to Gutierrez et al. [9], it is
calculated as follows, where yො� represents the predicted
demand, y� the actual demand, e� the forecast error
of a period t, and n is the number of periods used for
forecast performance evaluation:

(1)

This formula is only applied if at least one positive
demand value in the period is under consideration. To
allow a detailed comparison, it was necessary to select
a sample from the industrial cooperation partner’s
product portfolio, consisting of >300 spare parts.
Based on an ABC analysis, the 24 most strategically
relevant objects were selected for forecasting. However,
only one intermittent and four erratic parts according
to Syntetos et al. [1] were included in this selection.
This motivated the authors to consider the four parts
with intermittent and one with an erratic pattern from
category B for a more evenly distributed dataset and
allow for more general conclusions of the results as
the product portfolio predominantly consists of smooth
demand patterns. The characteristics of all the 29
considered parts are listed in Table 2 below.

Fig. 3: Applied split of monthly data for ANN training, testing, and performance evaluation

27 months 6 months9 months

ANN training ANN testing Performance evaluation

MAPEmod=
∑ |et|௡
t=1∑ yt
n
t=1

=
∑ หyt-yොtหn
t=1∑ ytnt=1

Object number Mean demand
[parts per month]

CV2 ADI / p Demand category

1 36.17 0.12 1.00 3: smooth

2 33.92 0.04 1.00 3: smooth

3 47.83 0.12 1.00 3: smooth

4 12.00 0.22 1.00 3: smooth

5 14.00 0.20 1.00 3: smooth

6 6.50 0.20 1.09 3: smooth

Table 2: Spare parts sample characteristics
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4.2. Comparison of the Applied Forecasting
and ANN Methods

After determining the results of all described
established statistical methods and ANN parameter
combinations, the following overall results shown in
Table 3 are calculated for a forecasting horizon of 6
months. To improve the overview of the average MAPE
values, the values were ranked so that the method’s
configuration with the lowest average MAPE was
assigned to the first rank, the one with the highest to
the 19th rank, and so on. Identical MAPE values were
given the same rank, with the values shown in Table 3
being rounded to three decimal places.
Regarding the arithmetic mean value of all modified

MAPEs, the approximation of Syntetos and Boylan
(with α=0.2) has the lowest average deviation, followed
by Croston’s method (α=0.2), which falls 1.9 percentage
points behind. In third place is the moving average
(with a past horizon of 1 year). The best neural network

(LM1) only takes 12th place, with a difference of 10.1
percentage points compared to rank 1.
Since it was suspected that the high MAPE values

for some individual parts strongly distort the arithmetic
mean, the median was used as a further evaluation
criterion. This leads to very different results. First place
is now taken by the Croston method, followed by linear
regression with a gap of 2.9 percentage points. Almost
all of the results are very close when considering the
mean MAPE values over the whole dataset. The ANN
configurations perform comparatively poorly in almost
all averages, with the best result achieved by applying
BP1, which performs 6.5 percentage points worse
than the best benchmark method. Therefore, a general
application of these configurations to an entire parts
portfolio is not advisable.
By isolating the results according to the demand

categories of Syntetos et al. [1], the potential of ANN
can be highlighted for specific demand patterns. A

7 1.50 0.63 1.33 2: lumpy

8 26.33 0.18 1.00 3: smooth

9 10.67 0.10 1.00 3: smooth

10 1.25 2.04 2.00 2: lumpy

11 2.92 1.03 1.20 1: erratic

12 2.50 0.47 1.33 4: intermittent

13 30.08 0.15 1.00 3: smooth

14 1.33 1.91 2.00 2: lumpy

15 7.25 0.80 1.00 1: erratic

16 11.92 0.21 1.00 3: smooth

17 3.25 0.90 1.33 2: lumpy

18 8,00 0.75 1.33 2: lumpy

19 0.33 3.50 4.00 2: lumpy

20 3.83 0.85 1.20 1: erratic

21 2.00 1.29 1.50 2: lumpy

22 31.58 0.13 1.00 3: smooth

23 7.42 0.30 1.00 3: smooth

24 5.83 1.86 1.09 1: erratic

25 10.08 0.46 1.33 4: intermittent

26 5.89 0.84 1.06 1: erratic

27 5.06 0.47 1.33 4: intermittent

28 6.28 0.44 1.38 4: intermittent

29 8.08 0.39 1.44 4: intermittent



7Forecasting Irregular Demand Using Single Hidden Layer Neural Networks

recommendation of the particular forecasting method
is given in Figure 4. For erratic demands, the four best
MAPE values considering both mean and median
values are achieved by ANN configurations. The NN
LM4 achieves the best results at the MAPE mean
and the NN BP3 at the MAPE median. The second
best in terms of the mean is BP2, and in terms of the
median is LM4. This shows remarkable advantages in
forecasting erratic demands with ANN. It is also worth
noting that all configurations of Croston’s method and
the Syntetos-Boylan approximation perform relatively
poorly when applied to erratic demands.
However, the Croston method and Syntetos-Boylan

approximation can underpin their benchmark position
for lumpy demands. Only BP3 slightly outperforms the
benchmark methods in terms of the mean values by 2.4
percentage points. The remaining ANN configurations
show comparatively high MAPE values.
The MAPE mean for smooth demand curves

shows that the moving average with a 3-year past
horizon performs best. This is followed by first-order
exponential smoothing (0.05) and Croston’s method
(0.05). The best ANN configuration is the LM1, 2.3
percentage points behind the first place. Considering

the median, the ES1 (0.05) performs best, followed by
CR (0.05) and the SBA (0.05). The best neural network
(BP1) shows a MAPE value only 0.6 percentage points
higher than the best benchmark method. As expected
for the smooth demand category, the MAPE values are
considerably closer together. The NN BP4 achieved
the best result within the intermittent demand category
considering the mean MAPE values. This is followed
by LM4, which is only 0.5 percentage points behind.
The best statistical method is ES2 (0.2), being 14.9
percentage points worse than the benchmark. On the
other hand, some ANN configurations also show very
high deviations from the actual demand, and it has
to be noted that the posterior ranks considering the
intermittent demand are all located in the columns of
ANN configurations, which applies to both mean and
median values.
The number of applied neurons strongly influences

the forecast performance in every demand category
of this study. LM4 achieves the first rank within the
erratic demands, whereas LM3 performs worst in the
case of mean MAPE. Furthermore, some configurations
perform very poorly across all demand categories,
especially LM2 and LM3. Both ANN configurations

Fig. 4: Own categorization scheme for different demand patterns considering the arithmetic mean (top)
and median (bottom), based on Syntetos et al. [1]

1: erratic
Neural Network LM3

2: lumpy
1st Order Exponential Smoothing /
Croston / Syntetos-Boylan (0.05)

3: smooth
1st Order Exponential Smoothing

(α=0.05)

4: intermittent
1st Order Exponential Smoothing

(α=0.02)

૛ࢂ࡯
ADI

ଶܸܥ = 0.49
(cut-off value)

(cut-off value)
ADI = 1.32

1: erratic
Neural Network LM4

2: lumpy
Neural Network BP3

3: smooth
MovingAverage (3 years)

4: intermittent
Neural Network BP4

૛ࢂ࡯
ADI

ଶܸܥ = 0.49
(cut-off value)

(cut-off value)
ADI = 1.32
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achieve comparatively bad results and high MAPE
values. This leads to the fact that ANN configuration
and parameterization are crucial tasks. Furthermore,
the general application of a fixed number of neurons,
such as in [9]–[11], seems less than ideal and requires
testing and evaluation for forecasting optimization.

5. IMPLICATIONS FOR THEORY,
PRACTICE, AND FURTHER RESEARCH

This quantitative study shows that the specific
configurations of the ANN have a strong influence
on the achieved prediction performance. For instance,
the difference in prediction performance of LM3 and
LM4 is 300 percentage points when considering the
mean MAPE values of intermittent demands. The only
difference in both ANN is the number of neurons in the
hidden layer. While the general fluctuation of the ANN
outputs is hard to substantiate, this behavior appears
to be caused by a very different weighting of the latest
data points. Figure 5 exemplarily shows the disparate
behavior of BP2 and BP4 when applied to the data of
part number 20. The BP2 algorithm forecasts negative
values for periods 37-42, whereas the BP4 predicts
strongly growing demands compared to the periods of
training and testing (1-36). This pattern requires further
investigation. Another important aspect is a possible
under- and overfitting effect in the ANN configuration.
While the number of applied neurons was based on
previous studies and literature findings, the influence of
more than four neurons on the prediction performance
should also be examined in further studies.
Further research is required in ANN parameterization

and minimization of implementation effort in practice.
Also, combination possibilities with information
types other than past demand, such as installed base
information, should be explored with more intensity
to fully exploit the optimization potentials of ANN in

spare part demand forecasting. A comprehensive view
of the entire warehousing system could produce even
more meaningful results, especially concerning the
actual advantage in operational practice. This could
be achieved by evaluating service levels, inventory, and
shortage costs.
Strong fluctuations characterize irregular demands,

leading to very high and unexpected values in specific
periods due to internal (e.g. promotions) or external
(e.g. weather, disasters) aspects. The effect of outlier
elimination in this context on improving forecasting
performance and accuracy might be another aspect
worth investigating.
As a managerial implication, general forecasting is

recommended for companies of every size. Applying
statistical methods for this purpose is a conventional
approach and still shows a respectable performance.
However, ANNs can improve the prediction
performance, as shown in Section 4. Based on this
study’s results, a general application of an ANN to
the whole product portfolio without testing and
evaluation is not recommended. The presented ANN
configurations did show comparatively good results for
specific demand categories, especially for erratic and
intermittent. The BP3 and LM4 configurations could
improve the prediction performance substantially.
Hence, the authors suggest an approach that tests
the performance of statistical and ANN forecasting
methods based on historical data and uses the best
performing method for future demand prediction. This
is accompanied by the application of key performance
indicators to constantly monitor the accuracy of demand
predictions. In this study, the MAPEmod was inserted
to evaluate the prediction performance of the used
forecasting methods. Several other error measurement
methods, such as the Mean Absolute Error (MAE) or
Root Mean Squared Error (RMSE), are also frequently
applied for this task.
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Fig. 5: BP2 (top) and BP4 (bottom) model of part 20
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is particularly advisable because both demand pattern
and category can change over time and, thus, a rigid
and one-time choice of method can lead to a loss of
forecasting precision.
The results presented should be validated in a more

extensive study, as the sample size was, similarly to
Lolli et al. [14] and Gutierrez et al. [9], limited to 29
strategically relevant spare parts of the cooperating
company that showed an uneven distribution
considering the demand categories. Furthermore, the
number of applied ANN algorithms was limited as the
focus was on the most frequently used architecture and
learning algorithms. The obtained prediction results
from the ANN models showed high fluctuations in
some cases, limiting the generalizability of the study’s
findings.
Further research is required regarding the

parametrization of ANN for irregular demand
forecasting, which is especially true for the applied
number of neurons in the hidden layer. The effect
of partially high fluctuating prediction results of the
ANN requires further investigation. The presumption
is that the number of input data points is too small for
the ANN to calculate consistent output values. In this
study, every part was calculated separately without
considering any further input data than previous
demand data. A conceivable approach is to build a
model that simultaneously takes the whole product
portfolio as input data to exploit possible dependencies
between specific demands.
This study reveals strong optimization potential for

logistical processes regarding demand forecasting and
planning, which is crucial for ensuring a high service
level with an appropriate inventory level. Especially in
the spare parts sector, where failures and breakdowns
cause downtimes and urgent deliveries, an optimized
stock is essential to ensure a response to the market and
functioning logistical processes.
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