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ABSTRACT

Network structure is one parameter that feeds into
airline business models. We analyze the networks of
58 European airlines including full service carriers,
low cost carriers, regional and charter airlines. Eight
network metrics are calculated to describe the various
aspects of network structure. A principal component
analysis is conducted and indicates two components in
the metrics. The components address network coverage
and service network. The airline networks are clustered
based on the identified components. Findings from the
analysis include that the resulting clusters based on
only network structure appear to be consistent groups
of airline business models. It indicates that only judging
from network structure allows to reason on airline
business models. In more detail, full service carriers
are structured in three subgroups differing in coverage
as well as in the operated services. At the same time,
low cost carriers, charter and regional airlines appear
as clusters in the analysis. A few airlines are identified
as outliers and investigating their business model
confirms this network observation.

KEYWORDS: metrics - graph theory - principal
component analysis - airline business model - network
structure
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1 INTRODUCTION

Airlines provide air transportation service to
passengers and cargo. To do so, they operate a fleet of
aircraft and make use of them to transport passengers
and cargo from one place to another. The underlying
route network is essential for the operations. The route
network is the entirety of flights offered by an airline.
Hence, it is the backbone of the operations. Given that
aircraft and fuel expenses constitute major costs for
airlines, route network decisions are tightly linked to
the cost of operations for an airline. At the same time,
the destinations, connecting services, flight frequencies
and travel time offered by an airline define the essential
product offered by the airline to its customers.

Airline business models explain the underlying
rationale on how an airline provides service to
its customers and airline network structure is an
established element of airline business models. One
common assumption is that Full Service Carriers
(FSC) tend to operate hub and spoke networks (HS)
whereas and Low Cost Carriers (LCC) operate point-
to-point networks (PP).

The structure of transportation networks has been
studied in recent years and advancements have been
made on describing various aspects of transportation
network structure quantitatively. For instance, Hu
and Zhu [1] describe maritime networks, Wang and
Cullinane [2] work on seaport centrality, Dobruszkes
[3] illustrates LCC network structures, and Mishra et al.
[4] suggest metrics for the connectivity of urban public
transport networks. Mattsson and Jenelius [5] review
research on transportation network vulnerability,
one of the typical application areas where network
structures need to be quantified.

Thus far, these two streams of research are not
yet well connected. That is, on the one hand there
are extensive metrics to account for transportation
network structure. On the other hand, airline networks
are described on a rather high level when it comes to
studying airline business models. Our work is positioned
at this interface. We aim to argue that a more detailed
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operationalization of airline network structure benefits
the description of airline business models. Thus, we
explore the research question in how far a quantitative
assessment of airline network structures supports the
clear description of airline business models. We focus
solely on exploring the information contained in the
airline network structure. In doing so, we contribute
findings to airline business model research regarding
the description of airline networks and wish to support
the development of more clear-cut models of airline
business models.

Our approach is novel for airline business model
analysis: We calculate established metrics of airline
network structure and apply a principal component
analysis in order to reduce the dimensions of the dataset.
This allows us to assess airline network structure from
multiple perspectives and account for the correlation
of the different metrics. When clustering the airlines
according to the network structures alone, similarities
between airlines already appear that relate well to
similarities in airline business.

The structure of the remainder is as follows: Section
2 provides the necessary theoretical background on
transportation network structure and airline business
models. Section 3 summarizes the analyzed dataset of
58 airlines and presents the metrics from graph theory
used. It further outlines the principal component
analysis we use to reduce the dimensionality in the
collected data and shows how we apply a cluster analysis
to detect airlines of similar network structure. Section
4 presents the interpretation of the factor loadings as
well as the findings from the cluster analysis. Section 5
discusses the findings and compares to prior research.
Section 6 concludes.

2. THEORETICAL BACKGROUND

Choosing a suitable network structure is a complex yet
important task for an airline and it is not surprising
that it has received attention in the literature. Early
contributions address the issue from the perspective
of changes in network structure as related to the
liberalization of aviation markets. The economic
literature was interested in understanding the formation
of HS in deregulated markets (see, for instance, Oum
et al. [6]). Pros and cons of HS as compared to PP
have been studied (see, e.g., [7], [8]). More recent
work results from the observation that FSC and LCC
do, among others, compete based on their network
structure (e.g., [9]). Obviously, competition not only
results from the network structure. Babi¢ and Kali¢
[10] argue that it is the interplay of network structure
and pricing policy that airlines compete on, whereas
Brueckner [11] and Brueckner and Flores-Fillol [12]
factor in average flight delay.

There is a wide spectrum of potential airline network
structures, extending far beyond the archetypes of HS
and PP [13]. Thus, describing them in more detail

is relevant. Airline network structures have been
quantified by graph theoretic metrics commonly
used in social network analysis. The seminal work by
Guimerd and Amaral [14] analyzes the worldwide air
transportation network and showed that it belongs to
the classes of scale-free and small world networks,
indicating an efficient connectivity. To do so, the authors
study (scaled) node degree and node betweenness
centrality. Similar approaches have been applied to
national networks, for instance by Guida and Maria
[15] for the Italian network (node degree and node
betweenness) and by Wang et al. [16] for the Chinese
network (average path length, clustering coefficient,
degree distribution, node degree, node closeness and
node betweenness). Alderighi et al. [17] provide a set of
metrics to study the structure of airline networks. This
set includes the Gini index and network betweenness
for spatial analysis. In their literature review, Lordan
et al. [18] highlight that the analysis of airline network
structure has received limited attention from airline
management research. Instead, research has rather
been conducted mainly from the complex network
point of view. Some examples of studies in airline
management research do exist, however. For instance,
Reggiani et al. [19] analyze the network of Lufthansa
as well as that of Star Alliance and convincingly
highlight the network impact of strategic choices made
by Lufthansa and Star Alliance. The authors make use
of a large set of metrics, including node degree, node
closeness, node betweenness, diameter, clustering
coefficient, Gini index, network betweenness, and
entropy function. Bowen [20] describes the cargo
networks of UPS and FedEx. He includes an analysis
of the network structures by studying the number of
nodes, the number of edges, the beta and the gamma
indices. Analyzing airline network structure is of
interest to various disciplines and certain graph theory
metrics have repeatedly been used to do so. However,
no standard set of well-established metrics exists for
this purpose. Further, the multitude of metrics used to
account for the structure of airline networks oftentimes
provides comparable yet not identical insights into the
structure.

Since airline network structure is essential for the
service and cost of airline operations, it is an element
in airline business models. Passenger airline business
models have traditionally been categorized into four
groups: full service carriers, low cost carriers, regional
carriers and charter airlines. It is not trivial to clearly
distinguish between FSC and LCC since the business
models have been evolving. Button and Ison [21] point
out that LCC, in general, implement specific strategies
that differentiate them from FSC. Notably, LCC offer a
limited range of service in their basic fares as compared
to FSC. That is, they strip the core service down to
the transportation and offer additional services at an
extra charge, creating additional revenues. Service is
focused on a single booking class and bookings are
often possible only online. Airports served tend to
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be second-tier airports. Further, LCC focus on short
aircraft ground times and reduce cost by keeping the
variation in aircraft types in the fleet low. Moreover,
they make use of their market power towards suppliers
to create efficiencies in sourcing [21]. It is common
to associate LCC with PP and FSC with HS. As such,
LCC and FSC differ in both their service offer and their
cost positions and compete against each other. Regional

carriers are active only in a restricted geographic area.
Charter airlines do not provide their service directly
to passengers, but rather to wholesale intermediaries
such as travel and tourism companies. The operated
routes are requested by the intermediaries. However,
as competition increases in the challenging airline
industry, the boundaries of airline business models are
blurring and business models are evolving [22-25].

Table 1: Network aspects in airline business models

Reference Type  Structural network aspects touched upon
in identifying airline business models

Bachwich and Wittman [23] N Stage length

Casadesus-Masanell and Ricart [27] N Stage length

Daft and Albers [28] FQ Stage length, service frequency

Dobruszkes [3] FN Gamma connexity index, number of airports served,
number of routes operated

Dobruszkes [29] FN Number of cities served, number of routes operated,
centralization of the network

Gillen and Gados [25] N Stage length, geographic coverage, service frequency

Klophaus et al. [30] FQ Point-to-point service

Lohmann and Koo [31], Jean and FN Network density, number of destinations,

Lohmann [32], Moir and Lohmann [33] service frequency, stage length

Mason and Morrison [34] FN Network density, number of routes, service frequency

O’Connell [35] N Hub-and-spoke operations

Pereira and Caetano [36] FQ Network architecture

Soyk et al. [24] FQ Network concentration, service frequency

Urban et al. [37] FQ Network system (Point-to-point, Hub-and-spoke,
Multi-hub, Point-to-point & Hub-and-spoke),
geographical coverage

Wensveen and Leick [26] FQ Stage length, number of destinations, frequency

Types: (FN) Framework mostly quantitative, (FQ) Framework mostly qualitative, (N) Narrative
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Passenger airline business models describe and
explain how passenger airlines create and capture value.
Researchers do so by following various approaches.
Table 1 highlights, how the aspect of network figures in
the description of airline business models. It is striking
that network is typically considered at a simplified
level, taking into account one or very few features
of an airline network. Stage length appears to be the
most prominent feature included. Dobruszkes [3, 29]
addresses the airline network at a more granular level.
For one, he takes into account the gamma connexity
index as well as the centralization of the network,
both of which relate to graph theory. Moreover, his
understanding of the operating network goes far
beyond its structure. In addition to the features in
Table 1, he includes parameters on how far the airline
network relies on the 5" through 9" freedom of the
air, in how far destinations tend to be ‘warm water’
destinations, the rivalry at the airports and the share
of international flights. In doing so, he consciously
adds additional elements that describe the nature of
the considered airline networks but that are not covered
by graph theory metrics. These elements are specific
to airline networks and provide the analyst with more
insights.

3. METHODOLOGY

3.1. Dataset

We collected flight data to be analyzed from
flightradar24.com. Our analysis is based on the
information of flights that were operated by the
individual airlines during the observation period. The
data we collected originates from Automatic Dependent
Surveillance-Broadcast (ADS-B) technology. Its
benefit for our purposes is that it retraces aircraft as
they move in the air and on ground, providing us with
the information of operated flights. It can be used to
observe and analyze flight trajectories (e.g. [38, 39]),
a feature that we do not even need to employ. We
cross-checked a sample of the collected information
with actual flight schedules and are confident that the
information we collected accurately reflects flight
operations. Budd [40] has compared the reliability of
ADS-B based information with that of proprietary
airline information and classifies this data source as
an “innovative and welcome source of empirical data”.
Other studies have made use of the commercial OAG
database before for this purpose (e.g. [13, 37, 3, 29]).
The OAG database contains data on scheduled flights
and is known to be reliable. However, since OAG is
built around flight schedules, charter airline flights are
not included in the data provided by OAG [29]. We
opted to use the freely available ADS-B based flight
information because it covers all operated flights, at a
low cost of data collection and because we are confident
that the data collected is accurate.

The dataset contains 134652 flights from 58 European
airlines during the week of November 19-26, 2017.
Airlines were selected based on their fleet size. In order
to draw conclusions regarding network structure, the
airlines need substantial operations. Azur Air and TAP
Express operate the smallest fleet in the sample with 22
aircraft each. We include an airline if its headquarters
is located in a country on the European continent.
Hence, we include Russian and Turkish airlines in the
sample. Table A.1 in the Appendix lists the airlines
included as well as their fleet size and country of origin.

For each flight, data on the origin, destination and
operating date were collected. This information is used
to reconstruct the as-operated flight networks of the
airlines. The networks are interpreted as graphs where
the nodes are the individual airports and directed edges
represent the connections of each airline between two
airports in the timespan. The arcs are weighted by the
number of flights on the connections per week.

Note that the aircraft are allocated to the individual
airlines based on their registration. That is, wet leased
aircraft appear as flying for the owning company.
Further, code share flights are allocated to the operating
airline. In addition, we do not aggregate airlines to their
mother companies, but allocate aircraft to airlines
solely based on their registration. This implies, for
instance, that HOP! appears as an individual airline
in our sample, independent from its mother company
Air France. This seems reasonable as HOP! acts on
the market independently from Air France at the time
of the data collection. It is certainly true that this
approach may be challenged as it also implies that TAP
Express appears individually even though it operates as
a capacity provider to TAP airlines. The key question
to be addressed would be to identify which flights are
actually planned under individual responsibility and
which ones are jointly managed with another airline. As
this question cannot be answered consistently without
inside knowledge on all airlines, we refrained from this
approach apart from one exception. We aggregated
Germanwings and Eurowings flights since it is public
knowledge that at the time of data collection they had
already been merged and were operating jointly.

3.2. Graph theory metrics
A large set of graph theory metrics are available to
study network structures. The networks are modeled
as graphs with airport nodes and flight edges. The data
needed for this representation of the network structure
may come directly from airlines or aggregated flight
schedules. It is thus possible to collect the information
ata very limited cost as it is generally available publicly.
We use eight network metrics to describe the network
structures. These metrics have been chosen as they are
well known and have previously been used to analyze
the structure of airline networks (e.g., [18, 41, 14]).
Four of these metrics describe the network as a whole
and the four remaining metrics describe individual
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nodes. The node-individual metrics are aggregated to
a network metric by calculating their network-specific
Hirschman-Herfindal index (HHI). Thus, the analysis
focuses on the level differences between the node-
individual metrics within a network. Furthermore, the
HHI also normalizes the metric with regard to network
size.

Average edge weight is the first network metric. It
is defined as the total number of flights over the total
number of routes in the network. Hence, it expresses
how often on average the airline operates a flight on
one of its routes.

Latora and Marchiori [42] introduced network
efficiency,ametric applied for the airline network context

by Lin and Ban [43]. Itis defined as E = —— ./ — a’

N(N 1)
where N is the number of nodes in the network, and
d;; is the distance between nodes i and j, measured
in the number of edges between them. If a directed
network is fully connected, it will have N(N — 1)
edges. In this case, the distance between all nodes is 1

and E = Z#]d

N(N D N(N_l)*_

N(N 1)

Edge density in a directed graph is defined as

D= % , where M is the number of edges in the
graph. Edge density calculates the ratio of the existing
edges in a network over the maximum number of
potential edges in the network. A complete graph has
D = 1. Edge density has been used in the airline context
among others by Sun and Wandelt [44].

Finally, network transitivity is a metric to account
for clustering in a network. Formally, it is defined

3*(number of triangles on the graph)

as T = [45]. A triple of

number of connected triples of nodes
nodes refers to a node and its two directly connected
neighbors. The triangles on the graph refer to the
situation where three nodes are connected by a loop
of three edges. Network transitivity accounts for how
often neighbors of one node are also connected directly.
It is a variant of a clustering coefficient.
The first node-specific metric is closeness. It is
one of the well-known point centralities summarized

1

by Freeman [46]. It is calculated as C.(j) = SV
i=1 l]

That is, it is the inverse of the sum of all shortest
distances from one node to all other nodes. This
metric is easily confounded with network efficiency,
yet the two metrics are far from identical. Important
to note is that the metric decreases as networks grow,
hence comparing node closeness centrality across
networks needs to correct for network size. Freeman
[46] suggests measuring graph centrality based on the
existing point centrality as the normalized difference

to the node with the highest point centrality. The graph
centrality is then independent of the number of nodes
in the network. We deviate from this suggestion and
calculate the HHI of the closeness node centralities
in the network. Thereby, we put an emphasis on how
equally distributed closeness centrality is.

Node strength is the weighted sum of all incoming
and outgoing edges in a node: s; = X ey w;; [43].
w;; is the weight of the edge from i to j and N; is
the set of neighbor nodes to i. The airport-specific
metric increases, as the airport is connected to more
destinations and/or if existing routes are operated
at higher frequencies. Very important airports such
as FSC hubs will have a high node strength. Again,
the variable analyzed per network is the HHI of node
strength, hence the measure of how equally distributed
the strength of the nodes in the network is.

PageRank is an index to account for the importance
of nodes in networks. PageRank is well-known today
as it is the basis for googles website scorings based
on the work by Brin and Page [47]. It goes back to
the observation in social network analysis that the
importance of a group leader not only results from
the number of ties she has to other actors, but is also
strongly influenced by the importance of her connected
actors. With this observation, Katz [48] suggested an
index to take both the number of edges as well as
the neighboring nodes’ importance into account. In
the airline context, PageRank is used to measure the
likelihood that an arbitrary flight lands at a specific
airport [49]. An airport is perceived important if this
likelihood is high. It is intuitive that the likelihood that
a flight reaches an airport increases with the number
of connected airports as well as the importance of the
connected airport. The individual nodes’ PageRank
values are aggregated to a network metric by their HHI.

Betweenness centrality is defined as the number
of shortest paths in the network that a node is part
of. Following Freeman [46], the index calculation
starts by determining the number of existing shortest
paths from node i to node j in the network, denoted
as g;j. The number of these shortest paths going
through node k is defined as g;;(k). With these two
parameters, the betweenness centrality of node &

91]( )

reads Cp(k) = ;X< . Betweenness centrality
in airline networks is commonly associated with the
capability of an airport to offer connecting services
(e.g. [16]). Freeman [46] suggests a graph betweenness
centrality to account for the deviations from the
average node betweenness centralities. Again, we do
not make use of this index but calculate the HHI of
the node betweenness centrality to focus more on the
inequality among nodes.

The metrics were selected such that they are
independent of the network size. The application of the
HHI eliminates the potential effect of the network size
in the data for the respective metrics.
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It is important to keep in mind that none of the
individual metrics will assume negative values. Table

2 reports the descriptive statistics of the calculated
metrics.

Table 2: Descriptive statistics

Variable min median  Mean max
Average edge weight 1.687 7.859 8.216 16.765
Network efficiency 0.048 0.124 0.153 0.395
Edge density 0.011 0.048 0.052 0.158
Transitivity 0.000 0.041 0.085 0.319
Closeness (HHI) 0.004 0.017 0.018 0.051
Node strength (HHI) 0.014 0.102 0.109 0.257
PageRank (HHI) 0.019 0.113 0.116 0.223
Betweenness (HHI) 0.028 0.209 0.306 1.000

3.3. Principal component analysis

A principal component analysis (PCA) used as a
factorial method serves to reduce the dimensions in
a dataset to a few principal components (PC). The
idea behind PCA is to find a few weighted linear
combinations of the multiple variables in the dataset
that nevertheless describe the dataset well; that is
they maximize the explained variance in the data.

This approach works particularly well if the original
variables are sufficiently correlated. Handling and
interpreting the few linear combinations is easier than
dealing with the original variables. See Héardle and
Simar [50] for an introduction into the mathematical
background of PCA. We follow Backhaus et al. [51] in
conducting this PCA.

Table 3: Correlation of network metrics

> Z = - a Z = =
: £ & E z 2 £ z
4 = =y Z. g »n ~ b4
[0 - = - o g
® = g = ] = =] =
g e Z. = z g = 3
® 2 £ < B = z g
bt e = = =
< o) — — s sl
g, 2 = = = =
) < s =
= =
Average edge weight 1 -0.781 -0.502 -0.398 -0.220 0.490 0.485 0.423
Network efficiency 1 0.624 0.555 0.127 -0.638 -0.655 -0.568
Edge density 0.655 0.690 -0.393 -0.412 -0.323
Transitivity 1 0.129 -0.729 -0.746 -0.636
Closeness (HHI) 1 0.180 0.165 0.185
Node strength (HHI) 1 0973 0.953
PageRank (HHI) 1 0.895
Betweenness (HHI) 1
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An essential question before conducting a PCA
is whether the multiple variables are sufficiently
correlated. Backhaus et al. [51] suggest using the
Kaiser-Mayer-Olkin (KMO) criterion to test if the
matrix of correlation of the variables allows for a PCA.
Generally, a PCA should not be conducted if the matrix
displays a KMO below 0.5.

The weights assigned to the original variables
to obtain the PC are referred to as factor loadings.
The factor loadings support the interpretation of the
principal components. Factor loadings below a certain
absolute value do not support the interpretation of the
PC. Specifically, we shall not include absolute factor
loadings below 0.25. Our data suggests this value
as most variables load strongly to one of the PCs.
Dobruszkes [29] chooses an alternative approach
by calculating a significance threshold based on the
number of observations.

It is not surprising from the description above
that some of the information aggregated in the eight
metrics points towards the same aspects of network
structure. Table 3 presents the correlation between
the different metrics and finds very strong effects for
some metrics such as node strength (HHI), PageRank
(HHT) and betweenness (HHI). It is worthwhile to note
that closeness (HHI) and network efficiency hardly
correlate despite similarities in their definition at first
sight. Our data shows a KMO of 0.69. Thus, we may
thus safely assume that the collected variables are
sufficiently correlated to conduct a PCA. We turn to
the Eigenvalue criterion to define the number of factors
present in the data. Two PC have an Eigenvalue greater
than 1, which indicates that they are suitable to explain
the data. The following then proceeds with two PC.
Table 4 lists the PC loadings. Together, the two PC
explain 82% of the variance in the data (PC1 0.57 and
PC2 0.24).

3.4. Cluster analysis
Given that we find two PC, we may conduct a cluster
analysis in two dimensions, allowing for an intuitive
representation in a coordinate system. Cluster analysis
is “one of the most used multivariate statistical
techniques for segmentation” [52].

The 58 airline network observations are positioned in
a coordinate system expanded by PC 1 and PC 2. We are
interested in identifying groups of airlines with similar
airline structure. We thus conduct a 2-dimensional
cluster analysis based on a k-means algorithm. The
scree plot suggests four to eight clusters. Based on
the interpretability of the data, a solution with seven
clusters is presented below. Since all eight original
metrics are defined in the positive range, a positioning
of an airline in the negative range of PC 1 or PC 2 is
the result of negative factor loadings.

3.5. Data analysis software

The analysis was conducted fully in the R software,
version 3.5.1. The igraph package (version 1.2.1) for R
provides an extensive library of metrics for network
structure. PCA and cluster analysis are among the
statistical tools implemented in R.

4. FINDINGS

4.1. Interpretation of factor loadings

Table 4: Factor loadings

Principal component
1 2
Average edge weight 0.60 -0.40
Network efficiency -0.76 0.33
Edge density -0.47 0.79
Transitivity -0.79 (0.20)
Closeness (HHI) (0.15) 0.93
Node strength (HHI) 0.98 (0.18)
PageRank (HHI) 0.97 (0.15)
Betweenness (HHI) 0.93 0.22)

In approaching an interpretation of the two factors
presented in Table 4, note that most metrics correlate
heavily with one factor. Network efficiency and
transitivity load negatively, HHI of node strength, HHI
of PageRank and HHI of betweenness centrality load
positively to PC 1. Edge density and HHI of closeness
influence PC 2 positively and PC 1 negatively. Average
edge weight loads to both factors but with varying
signs. It is the only metric negatively correlated with
PC 2, rendering it important for the discussion below.
PC 1 canbe interpreted as the coverage of the network.
An airline network will score high in this dimension
when node strength, PageRank and betweenness of
the nodes in the network are unevenly distributed as
this will increase the respective HHI. Node strength
increases with many flights at an airport. If this
metric is unevenly distributed, this suggests that many
airports have few flights and few airports operate many
flights. This is achieved in a centrally oriented star-type
structure where few central airports serve a very large
number of smaller airports. A betweenness HHI value
equally suggests a star-type structure as the central
airports liec on many shortest paths between other
airports while spoke airports do not have this property.
A structure with some important airports would create
a high value on the PageRank HHI. The PageRank of
an airport increases in particular when it is connected
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to few other important airports in the network. This is
achieved for instance, when several hub airports are
interconnected. Furthermore, in order to score high on
the PC 1 dimension, network efficiency and transitivity
should be low. Recall that network efficiency is the
average of the inverse of the distances in the network.
The longer the paths in the network, the lower the
network efficiency values. Hence, airline networks
where passengers can keep connecting from airport to
airport (even though it may not be very smart to do
so for passengers) tend to have low network efficiency
values. Transitivity is low when there are no clusters
of airports, i.e., neighboring nodes are not connected.

This is common for hub networks again. In a hub
network, several spoke cities are connected to a hub,
but there typically is no direct connection between the
spokes. Summing up these points suggests that high
values on PC 1 relate to centrally oriented multi-hub
structures where spoke airports are served distinctly
from one of the hubs. A network that scores high in
this dimension maximizes its coverage while limiting
the number of routes.

In contrast, PC 2 focuses on frequency of service.
Edge density and closeness HHI will contribute
positively to PC 2. Edge density increases as the
network moves from sparse to complete. Hence more
complete networks c.p. have a higher position on the
PC 2 axis. Recall that node closeness is the inverse
of the distance of a node to all others. To achieve a
high HHI few nodes need to acquire a major share of
the total closeness centralities in the network. Highest
node closeness centrality is achieved by the center of a
star and it decreases for multi-star networks. Average
edge weight furthermore negatively influences the
positioning on the PC 2 axis. Average edge weight
refers to the average number of flights per operated
route. Thus, airlines with a high frequency will score
lower on PC 2 than ones with fewer flights on the
routes. Bringing these three aspects together, a network
scoring positively on the PC 2 axis offers many routes
from one central base or hub but the routes are not
operated at high frequencies.

4.2. Findings from the cluster analysis

Figure 1 shows the positioning of the airlines in the
sample along the two axis. The seven resulting clusters
are identified by colors and labelled by cluster number.
Cluster I contains a subset of the traditional full service
carriers, including Air France, Iberia, British Airways
and Lufthansa. The airlines share strong hub operations
and operate large networks. Cluster II features further
full service carriers. This cluster subsumes the slightly
smaller counterparts to the airlines in Cluster I. These
airlines are positioned higher on PC 2 particularly
as their average edge weight is lower than their
counterparts in Cluster I. This is worth noting since
the selected metrics are independent of network size.
Hence, what is observed here is a specific network

structure that differs between Clusters I and II and not
the effect of the network size per se. Given that the
airlines spread further right on PC 1, this implies that
the node strength, PageRank and betweenness are less
evenly distributed than in the networks of Cluster I.
It indicates that the spread between the operations at
the hubs in comparison to the served airports is more
pronounced than for Cluster I. It is noteworthy that
Pegasus Airlines figures in Cluster I: It can rather be
attributed to the LCC context, yet it operates a star-
shaped network from a few Turkish airports.

Closely related to these two is Cluster III that also
includes FSCs. This cluster contains large airlines
from smaller countries that act as their flag carrier,
such as Ukraine International Airlines or Aer Lingus.
The networks are operated at lower frequencies, that
is, lower edge weight, than the airlines in Cluster
I, moving Cluster III upwards on the PC 2 axis in
comparison. Thus, based on the analysis of the network
metrics, the business model of FSC is separated into
three subgroups.

Cluster IV closely relates to Cluster V. Both clusters
score similar values in PC 1 yet they differ in PC 2.
Cluster IV is positioned below Cluster V on the PC
2 axis. The networks of the airlines in Cluster IV are
more star-type than those of Cluster V. That is, the
Cluster IV networks rely more heavily on their hubs or
bases. The average flight frequency is greater. In sum,
this suggests star-shaped networks with many airports
directly connected to a few important bases. Judging
from the business side, Cluster IV includes what is
commonly perceived as large LCC on the European
market: Ryanair, Easylet, Lufthansa’s low cost
offspring Eurowings, Air France’s offspring Hop! In
comparison, Cluster V contains mostly charter airlines,
some of them with a regional focus. Their flights are
offered at a lower frequency. Keep in mind that the
collected data is from November in Europe, which is an
off-peak season for holiday flights. During this season,
charter airlines will not operate at high frequencies on
few routes as it would be expected during the summer
months.

Cluster VI is comparable to Cluster II on the PC 1
axis. It contains airlines with a rather regional focus
of destinations. For instance, TAP Express and Iberia
Express both are regional feeder partners. Icelandair
focuses on flights from Iceland. However, Cluster VI
airlines show a higher position on the PC 2 axis than
the airlines in Cluster II. The networks in this cluster
have fewer destinations and flights are operated at
lower frequencies.

Finally, Cluster VII contains three airlines whose
networks have hardly any characteristics in common
with the other clusters. Jet2.com is a low cost carrier
operating with eight bases from within Great Britain.
Loganair is a Scottish regional carrier with very
particular services such as short connections to and
between Channel Islands. Rusline is a Russian regional
carrier serving mostly Russian destinations.
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Figure I: Positioning of airlines (clusters are identified by color and number)

Observe that the far ends of the coordinate system
remain mainly void. Among the analyzed airline
networks, only the airlines in Cluster VII score extreme
values on both components. The other airlines appear
to emphasize only one component.

The airline industry is dynamic and the strategic
position of airlines in our sample has changed since the
data collection. For instance, HOP! has been moving
its operations significantly closer to Air France since
October 2018. Most notably, Germania Fluggesellschaft
mbH declared bankruptcy in February 2019 and ceased
operations the following day. Moreover, Flybe was sold
to the Connect Airways consortium in February 2019
with the intention that Flybe will operate for Virgin
Atlantic. Strategic changes such as these will affect
the airlines’ networks and revisiting the networks
in the future will most likely allow identifying the
operational differences.

5. DISCUSSION

Our analysis intentionally rests solely on metrics of
network structure. Unlike, e.g. Dobruszkes [3, 29],
we do not include elements to describe the nature
of the airline network such as if the network serves
‘warm water’ destinations or the share of international

flights. This difference in approach leads to different
insights. Consider Ryanair and EasyJet in Figure 1.
Previously, Graham [53] has compared the network
structures of LCC, including these two airlines.
Equally, Dobruszkes [29] includes these two airlines
in his sample on LCC. Both find relevant differences
between Ryanair and Easylet and it appears reasonable
that differences between the two business models
appear more pronounced than for our study, which
considers a broader sample of airlines to start with.
Graham [53] points out that at the time, Ryanair was
serving more destinations than Easylet, and at a
higher average frequency per route. At the same time,
Ryanair’s network relied strongly on its base in London
Stansted while EasylJet distributed its flights almost
evenly between London Stansted, Gatwick and Luton.
Dobruszkes [29] observes that Ryanair and EasyJet
differ in particular regarding his first two PC: the
volume of supply and the density of the network. The
difference in the other two PC, namely centralization
and charter-like operations, is less significant. Our
analysis takes into account not only LCC but reveals
insights on the positions of more diverse airlines. Hence,
it is natural that the differences between Ryanair’s and
EasylJet’s networks appear less pronounced. In addition,
we intended to correct our analysis for network size.
Hence, the differences in network structure resulting
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from the number of destinations served between the
two competitors should be reduced in our analysis.
We do observe that EasyJet’s network scores slightly
higher on the PC 1 dimension than Ryanair’s, which is
partially driven by Easylet operating not from one but
from three key airports in the London area.

The analysis of the data reveals that the network
structures of FSC can be separated in three clusters.
This is an indication that they do operate different
types of networks. When comparing solutions with
fewer clusters, we see that the next two clusters to
be merged are Cluster II and III and subsequently
Cluster [ will be added to this large cluster. Thus, it can
easily be argued that the networks among the FSC are
somewhat similar, yet there are three types of networks
to be distinguished. The analysis identified large flag
carriers with more or less global networks with many
spokes and potentially several hubs, hence positioned
in lower ranges of PC 1. Furthermore, we find smaller
counterparts to these used as feeders as well as smaller
alliance partners. Network size is corrected for in the
analyzed metrics, hence the finding here is that the
smaller carriers share a similar structure.

Urban et al. [37] conduct a cluster analysis only of
FSC and LCC on a global scale. Their focus is on the
convergence of these two business models. Parameters
for the entire breadth of airline business models feed
into their study. The route network is taken into account
as a categorical variable (HS, PP, HS and PP, multi-
hub). Similar to our findings, they observe subgroups
for both FSC and LCC. The identified groups for
FSC are medium-size network carrier, global niche
market network carrier, high quality network carrier
and large-size network carrier. There is an overlap of
13 airlines with our analysis. EasyJet, Ryanair, and
Vueling are consistently clustered by our approach
jointly in Cluster I'V such as in the group of PP LCC by
Urban et al. [37]. For the FSC, the allocation to clusters
is not fully identical. Urban et al. [37] group Aeroflot,
Finnair, and TAP and among the global niche market
network carriers. They all show in Cluster I above with
KLM joining them in our analysis. In contrast, Cluster
I of large FSC includes Air France, British Airways,
Iberia, Lufthansa and Turkish Airlines while Urban
et al. [37] allocate them to three different subgroups
of FSC, differentiating between medium- and large-
size and high quality. It is a relevant finding that both
approaches — covering the full breadth of airline
business parameters and studying only the network
structure — produce mostly consistent findings. It
would be interesting to extend our analysis similarly
to a global sample to verify if subgroups among the
LCC can equally be identified. Omitting the regional
and charter airlines may also bring in additional focus
on the LCC networks.

As is true for all empirical studies, our findings only
apply to the investigated dataset of European airlines.
However, the airline business is mostly considered a
global market and airline competition is not limited to

Europe. Further, we identified similarities to the results
of a global sample by Urban et al. [37]. It appears
reasonable to assume that similar findings may be
generated for other geographic markets.

6. CONCLUSIONS

We have collected and analyzed information on
European airline network structures. We did so with
the intention to discuss the benefit of detailed metrics
for airline network structure for describing airline
business networks. We found that airlines of related
business models do share significant similarities in
their network structures. In fact, clustering the airlines
based on the information collected about their network
structures by itself suggests a strikingly consistent
landscape of airline business models. Full service
carriers are found in Clusters I, IT and partially III. Low
cost carriers form Cluster IV. Many charter airlines
figure in Cluster V and most regional carriers in Cluster
V1. This observation supports the idea that studying
airline business networks can greatly benefit from the
objective assessment of airline network structure based
on metrics from graph theory.

The airline network is commonly considered as one
element of an airline business model. Jointly, all of the
elements define an airline business model. Describing
the element of network more granularly is a step
towards exploring the distinctions between business
models.

It is furthermore relevant to observe that the PCA
identifies two components that characterize airline
networks. They hint at differences between HS und
PP networks. PC 1 aims at identifying the network
coverage whereas PC 2 points at the service network.
Obviously, both aspects contribute to the understanding
that a HS network increases its coverage and operates
the connections between hubs at high frequency.

From a methodological perspective, it is worth
mentioning that PCA proves to be a powerful tool
to condense the network information obtained from
multiple metrics originating in graph theory. In general,
the metrics are strongly correlated but not identical, as
is also the case with our data. This may be one reason
why research has applied a wide variety of metrics to
account for HS and PP networks. Trying to identify the
one best metric among them is virtually impossible.
Our analysis includes eight network metrics and the
PCA reduces them to two components. It is a valid
path for further research to validate that other network
metrics lead to consistent components.

The correlation of airline network structure and
business model is intuitive at first, given that it is
common to assume that LCC operate PP networks
and FSC HS networks. However, it has been observed
previously that these two types of networks cannot
meaningfully describe the existing spectrum of network
structures. We have illustrated that incorporating more
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granular and objective metrics of network structure in
the description of airline business models overcomes
this obstacle and allows to describe the network
perspective better.
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APPENDIX:

Airline Code Country Number of aircraft in dataset

Aegean Airlines A3 Greece 47

Aer Lingus EI Ireland 63

Aeroflot SU Russia 224

Air Baltic BT Latvia 30

Air Europa UXx Spain 52

Air France AF France 230

Air Serbia AF France 230

Alitalia AZ Italy 120

Atlasjet KK Turkey 24

Austrian Airlines oS Austria 84

Azur Air ZF Russia 22

Belavia B2 Belarus 29

Blue Air 0B Romania 30

British Airways BA United Kingdom 318

Brussels Airlines SN Belgium 51

Condor DE Germany 42

Eastern Airways T3 United Kingdom 30

Easylet U2 United Kingdom 280

Eurowings & Germanwings*  EW/U2 Germany 78

Finnair AY Finland 64

Flybe BE United Kingdom 84

Germania ST Germany 29

HOP! AS France 86

Iberia 1B Spain 114

Iberia Express 12 Spain 21

Icelandair FI Iceland 32
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Jet2 LS United Kingdom 75
KLM KL The Netherlands 160
Loganair LM United Kingdom 28
LOT LO Poland 47
Lufthansa LH Germany 280
Lufthansa Cityline LH Germany 50
Norwegian DY Norway 142
Pegasus Airlines PC Turkey 74
Rossiya FV Russia 62
Rusline 7R Russia 23
Ryanair FR Ireland 417
S7 Airlines S7 Russia 78
SAS SK Sweden 162
SunExpress XQ Turkey 46
Swiftair WT Spain 38
Swiss LX Switzerland 77
TAP Express NI Portugal 22
TAP Portugal TP Portugal 66
Tarom RO Romania 25
Thomas Cook Airlines MT United Kingdom 60
Transavia HV The Netherlands 70
TUI fly HV The Netherlands 70
Turkish Airlines TK Turkey 324
Ukraine Int. Airlines PS Ukraine 41
Ural Airlines u6 Russia 43
UTair uT Russia 68
Virgin Atlantic Airways VS United Kingdom 38
Volotea \'/ Spain 25
Vueling VY Spain 107
Wideroe WF Norway 41
Wizz Air W6 Hungary 87
Yamal Airlines YC Russia 40

Table A.1: List of airlines, *operated jointly at the time of data collection



