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Abstract For safe and reliable machine operation,

maintenance, repair and overhaul (MRO) activities are

required. Spare parts demand forecasting and inventory

planning, which is an important part of MRO activities,

must be accurate to avoid costs because of surplus spare

parts or machine downtimes. The restriction of reduced

accessibility to wind turbines during the winter months also

has to be taken into account when planning maintenance

activities and spare part inventories for wind farms. The

presented model provides the most economic stock quan-

tity under given environmental conditions. It is based on

the proportional hazards model, which is extended to cal-

culate the remaining useful component life time and derive

required spare parts inventory levels. The presented model

is validated, using condition monitoring data and envi-

ronmental data of an onshore wind farm. Comparison of

the spare part inventory prediction to wind farm’s failure

data proves the model’s accuracy. Parameter analyses show

that the model can be applied for spare parts inventory

planning under consideration of environmental conditions.

Keywords Proportional hazards model � Spare part �
Inventory planning � MRO � Wind turbine

1 Problem statement

Maintenance, repair and overhaul (MRO) activities are

necessary to ensure safe and reliable machine operation.

For many MRO processes, spare parts are essential,

because their non-availability causes machine downtime. It

is prolonged in case of long lead times that entail high

operation costs. Hence, stock holding is necessary to

achieve high service levels, allowing for short machine

downtime. In contrast to high service levels and spare parts

availability, inventory costs need to be considered to attain

economic machine operation. There is a trade-off between

service and inventory costs. The point of cost-optimal

machine operation has to be determined.

For implementing weather restrictions, utilizing avail-

able information and achieving minimum operation and

maintenance cost, mechanically stressed wind energy

components have been investigated within the research

project ‘‘EloWind’’—service logistics for wind energy

turbines. In the proposed method, a Weibull proportional

hazards model (PHM) is combined with a Bernoulli

approach. The spare demand is forecasted based on wind

speeds and operating temperatures. A cost-optimal inven-

tory level of spare parts is derived, taking into account

inventory costs of spare parts and downtime costs of wind

energy turbines. The proposed method is validated with

data of an onshore wind turbine farm.

2 State of the art

2.1 Maintenance costs

Maintenance costs comprise direct and indirect cost. They

include all costs incurred during a predefined time range,

This article is part of a focus collection on ‘‘Logistics in the

Networked Industry’’ based on the BVL’s 7th International Scientific

Symposium on Logistics in Cologne in 2014.

& D. Schneider

schneider@bime.de

1 Bremen Institute for Mechanical Engineering,

Badgasteinerstr. 1, 28359 Bremen, Germany

123

Logist. Res. (2015) 8:4

DOI 10.1007/s12159-015-0122-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s12159-015-0122-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12159-015-0122-7&amp;domain=pdf


like operational costs, costs for spare parts, cost for

maintenance personnel as well as costs for machine

breakdown [1]. In the literature, the total maintenance costs

during the lifetime of a unit are referred to as average cost

per unit good time [2–4]. Minimizing the average costs per

unit good time is, apart from machine availability, the

overall aim of maintenance. Equation 1 shows all parts of

the total maintenance cost.

cIt ¼ cIi þ cIs þ cPA þ cF þ cM ð1Þ

cIt, total maintenance cost (€); cIs, costs for service provi-

ders (€); cIi, costs for internal maintenances processes (€);

cPA, costs for machine downtime (€); cF, costs for sec-

ondary damages (€); and cM, costs for additional expenses

(€).

Internal maintenance cost include cost for maintenance

measures itself, supply of raw material, resources, tools and

spare parts as well as depreciation for operative units.

Depreciation costs accrue for wearing components oper-

ating many periods. They are based on the units’ price and

the length of the life cycle. The second cost factor, costs for

service providers, complies with the service contract

between the service provider and the machine operator. It

varies with terms of services, for example if spare parts and

repair cost are included, the operator of the machine does

not have to realize spare parts planning. If a failed unit

destroys other units, secondary damages are the conse-

quence. The fourth cost factor comprises additional

expenses, which are common in production, because it is

often possible to produce more goods in advance and,

herewith, compensate loss of production costs. Costs for

secondary damages as well as costs for additional expenses

are neglected in the following, because secondary damages

arise randomly and additional expenses cannot avert con-

sequences of machine downtime in the field of wind

energy. Costs for machine downtime include costs for lost

sales or, in case of wind energy business, missing remu-

neration for feeding electricity into the grid. The costs are

determined by the feed-in tariff, the power of the wind

turbine, the share of full load hours as well as the duration

of the breakdown (Eq. 2).

cPA ¼ td � f � lj � pv � 24 h=day ð2Þ

td, duration of machine breakdown (days); f, feed-in tariff

per kilowatt hour (€/kWh); lj, power of the wind turbine

(kW); and pV, share of full load hours per day (%/day).

Maintenance and spare parts stocking strategy mainly

influence the maintenance cost structure. This becomes

clear when scheduled or unscheduled renewals are con-

sidered. For scheduled renewals, maintenance time equals

repair time that accords to the minimal maintenance time.

If the renewal is unplanned, additional time intervals are

added to the repair time. These periods are caused because

maintenance cannot be performed. Reasons for non-feasi-

bility are [1]:

• missing spare parts,

• inclement weather conditions and

• other missing maintenance resources, like maintenance

personnel.

Inclement weather conditions might be met by mainte-

nance planning and preventive maintenance tasks, and

missing spare parts can be avoided by high inventory levels

that can lead to high capital costs. Capital costs are cal-

culated as presented in Eq. 3.

cLi ¼ cETi � zE þ zLð Þ þ 1ð ÞtLi ð3Þ

cLi, spare part inventory cost per day (€); cETi, spare part

procurement cost (€); zL, inventory rate (%); zE, interest

rate (%); and tLi, duration of stocking (days).

The inventory rate accumulates costs for personnel

working in the inventory, costs for storage space and

administrative costs, which are not directly linked to

individual spare parts. If spare parts are expensive and

stored for a long time, high stocking costs are incurred.

These stocking cost are in conflict with the overall main-

tenance aim of minimal costs. The resulting trade-off

between low inventory costs and short machine downtime

is addressed by spare parts and maintenance planning.

2.2 Spare parts planning

Spare parts replace worn and defective units, which are

unable to fulfill their proposed function [5]. Systems

without redundant units depend on spare parts in case of

malfunctions. Predicting the amount of spare parts needed

in the future is denoted as spare parts management or spare

parts logistic. The field of spare parts logistic is split into

the topics data preprocessing, inventory management and

demand forecasting.

Data preprocessing is used to delete wrong data sets and

to classify spare parts in correspondence to their demand

pattern or according to their procurement costs, with the

aim of grouping spare parts with similar properties [6].

Herewith, complexity of spare parts planning is reduced

and demand prediction algorithms can be utilized accord-

ing to their optimal field of application.

Inventory management as the second field of spare parts

logistic aims at the most economic inventory level and the

procurement strategy. Well-known models of multi-eche-

lon inventory systems are the METRIC model by Sher-

brooke or the model by Muckstadt [7, 8]. The objective of

the current and future research is relaxing the restrictive

assumptions of these two approaches. Examples are models

taking into account lateral transshipments [9] or models

assuming finite repair capacity in case of repairable item
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systems [10, 11]. Basten et al. and Kennedy et al. provide

extensive reviews of latest and past inventory management

models [12, 13].

The resulting inventory levels of inventory management

models depend on the forecast of demand prediction

methods. There are two major groups of demand predic-

tion: quantitative and qualitative methods. Qualitative

methods base on expert knowledge. They do not implement

historical data. Instead, these methods solely rely on the

judgment of experts, which often leads to unsatisfactory

prediction results. In the group of quantitative methods,

time series, life expectancy and causal analytic approaches

are included. The most popular time series analysis meth-

ods are [14, 15]:

• moving average,

• exponential smoothing,

• Crostons’ method or

• regression analysis.

Time series analysis methods are applied if historical

demand patterns are expected in the future. The algorithms

try to recognize patterns in the demand history and

extrapolate them into the future [16–18]. In addition to

demand data only, life expectancy models also utilize

information about lifetime of failed components and the

current age of components. By that, they convey failure

functions for the life cycle of component, which are used to

predict the probability of failure at a given instance [19].

These models have also been extended to include more

parameters, describing the probability of failure as a

function of temperature, machine stress or surrounding

conditions [20–22]. Heng et al. [23] provide a survey of

reliability-based forecasting models.

Time series analysis methods are easy to apply, but do

not offer the possibility of considering condition monitor-

ing information, available in nearly every wind turbine.

Therefore, advanced methods are used for failure predic-

tion, which allow for consideration of information of log-

files and condition monitoring systems.

2.3 Proportional hazards model

The PHM represents a semi-parametric model for analyz-

ing failure data without defining a failure distribution. The

PHM has been introduced by Cox in [24] and has since

then widely been used in the field of biology. It is capable

of integrating and interpreting parameters that describe the

load or the operation conditions of components. It is based

on parametric or a nonparametric baseline hazard function

h0(t). Influences of covariates zm are quantified by the

regression coefficient am (Eq. 4).

h t; zð Þ ¼ exp a1z1 þ a2z2 þ � � � þ amzmð Þh0 tð Þ ð4Þ

h0(t), baseline hazard function; h(t; z), modified hazard

function; zm, covariates; and am, regression coefficient.

The major assumption of the model is a constant hazard

ration (h1(t; z) and h2(t; z)) during lifetime, meaning that a

covariate like wind speed has the same influence on the

probability of survival at two different instances of time.

When modeling mechanical wear, the unspecific base-

line hazard function can be substituted by the Weibull

hazard rate. Equation 5 presents the two parametric Wei-

bull hazard rate.

h0 tð Þ ¼ b
T

t

T

� �b�1

ð5Þ

b, shape parameter and T, scale parameter (weeks).

The model is mainly applied in the field of medicine,

whereupon it has also been used in the technical domain

[25]. Lanza et al. and Abernethy extensively discuss dif-

ferent types of Weibull models for technical applications

[19, 26]. Vlok utilizes the PHM in a technical domain and

estimated the instant of maintenance [27]. Wang and

Ghodrati realized spare parts prediction by means of a

stochastic process based on the PHM [28, 29]. In contrast

to them, Tracht et al. presented a method to preprocess

condition monitoring and operational information and

implemented them into an enhanced forecast model [28,

30]. The method proposed in this paper is an advancement

of the model presented by Tracht. Demand levels are

integrated into an inventory planning approach, but do not

allow for integration of wavering surrounding conditions.

3 Approach

The power train of a wind turbine is in the focus of the

research project. There are several sensors located in the

power train that monitor various condition parameters, for

example, wind speed, power output, temperature of

mechanical components or operational time. For utilizing

this information, the PHM is extended to a Weibull PHM.

This parametric model and the cost functions presented are

integrated in the framework, shown in Fig. 1. It highlights

analysis and computation processes and their interconnec-

tion between each other.

The output of the model is the most economic stock

quantity under given environmental conditions, like

increased wind speeds that will also increase machine

breakdown costs. By comparing costs for surplus of stock

and stock-out costs, the cost-optimal stock quantity can be

calculated.
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3.1 System analysis

The integrated model is based on a system analysis process.

The aim of that first step is an identification of critical

components in terms of technical necessity. Crucial com-

ponents need to be stored or purchased in the instant of a

request. Figure 2 presents the functional model of the main

components of the power train exemplarily. A functional

system is used for fundamental fault analysis of a system

and shows the impact of individual functions on avail-

ability and reliability [31].

From the functional system in Fig. 2, it can be con-

cluded that availability of every component is crucial to

system availability. If there were two redundant compo-

nents, it would have been possible for the machine to

operate, despite malfunction of one component. In the

example presented, flawless operation of every component

is necessary.

For components in stock, further classification steps will

be conducted. They include classification regarding

demand pattern, demand level and purchasing costs.

Demand pattern can be analyzed by means of plotting

Fig. 1 Inventory planning

approach

Fig. 2 Functional system of a power train
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historical data. This is necessary because time series

analysis approaches have to take into account demand

patterns for achieving low prediction errors.

3.2 Demand prediction

When integrating condition monitoring data in a correctly

modeled and validated PHM, the result will be a proba-

bility of failure at the instant of investigation. In case of

mechanical components subject to wear, the semi-para-

metric PHM can be fully parameterized. Herewith, the

PHM becomes a Weibull PHM. Therefore, the probability

of failure during lead time for an individual component is

calculated (Eq. 6).

Fx tð Þ ¼ F t þ xð Þ � F xð Þ
1 � F xð Þ ð6Þ

Fx(t), failure probability during period x to t, conditional

the component is operational at instant x (–); F(t), failure

probability at the instant t (–); and F(x), failure probability

at the instant x (–).

For spare parts planning, the average failure probability

during lead time of all components is integrated into a

Bernoulli process. For that reason, the mean failure prob-

ability of all components is calculated (Eq. 7). It is inserted

into the Bernoulli process that also integrates the number of

components monitored.

�Fx tð Þ ¼ 1

n

Xn
i¼1

Fx tð Þi ð7Þ

n, number of components (pieces) and �Fx tð Þ, mean failure

probability of all components during lead time (–).

Using the Bernoulli process, the probability for 0, 1, 2,

m demands during lead time is estimated for a defined

number of wind turbines or components in operation.

Equation 8 presents the cumulative density function of the

Bernoulli process [32].

P X� xð Þ ¼
Xx
m¼0

n

m

� �
�Fx tð Þm 1 � �Fx tð Þð Þn�m ð8Þ

m, demand level during prognosis horizon (pieces).

Therefore, it is possible to calculate stock out and sur-

plus probability, which can be multiplied with the daily

downtime and daily inventor cost, respectively.

3.3 Inventory planning

With the help of Eq. 8, the occurrence probability of a

specific demand level is estimated. The calculated proba-

bility combined with cost parameter of surplus material and

downtime because missing spare parts allow for cost-op-

timal inventory planning. For investigation purposes, the

S - 1/S strategy will be used, whereas every other strategy

could also be implemented in the model. The strategy is

chosen because stock level for expensive, slow moving

spare parts is planned at the instant of demand. The stock

level leading to minimal total costs per day is calculated as

shown in Eq. 9 [33].

ct ¼
X1
m¼S

m� Sð Þpm

 !
cd þ

XS
m¼0

S� mð Þpm

 !
ci ð9Þ

ct, total costs per day (€); m, demand level during lead time

(pieces); S, stock level (pieces); pm, probability of

appearance (–); cd, downtime cost per day per component

(€/piece); and ci, inventory cost per day per component

(€/piece).

Stock-out costs arise when inventory level is lower than

demand. The first expression in Eq. 9 represents daily

downtime cost, caused by missing material. In the second

expression, the probability of surplus material is multiplied

with the inventory cost per day. Minimizing this function

leads to the cost-optimal inventory level, because further

cost parameter named in Eq. 1 cannot be influenced by

means of increasing or lowering spare parts inventory level.

4 Results

4.1 Validation of demand forecasting

Table 1 shows the data set used for validation of the pro-

posed method. Demand data are clustered by years, in

which the requests took place. Because of the low sample

Table 1 Demand data for

validation
Year 1/2009 2/2009 1/2010 2/2010 1/2011 2/2011 1/2012 2/2012

Number of requests 0 2 2 0 0 0 1 0

0

1

2

3

de
m

an
d 

[p
ie

ce
s]

years

historical demand data
point forecast
0.77 confidence interval
0.95 confidence interval

Fig. 3 Demand pattern of validation data
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size, data are not split into test and validation data. Instead,

validation takes place by comparing prognosis results of

the proposed method to established and well-tested meth-

ods, like the method proposed by Abernethy [19] or

exponential smoothing. Rabe et al. [34] propose a similar

validation approach.

In Fig. 3, forecast results based on exponential

smoothing and discrete demand data are presented.

The figure shows many periods without demand. For

that kind of demand pattern, either Croston’s algorithm or

exponential smoothing is used to predict demand [35].

There is no linear or seasonal trend in the demand pattern,

which points to the simple exponential smoothing method.

The parameter estimate a = 0.0001. When forecasting the

demand for the following 6 months, this parameter leads to

the results presented in Table 2. It presents the point

forecast as well as the forecast levels of the confidence

intervals of 0.77 and 0.95. The intervals are chosen because

they make the comparison with the results of Bernoulli’s

approach possible.

One demand is estimated by the point forecast for the

following 6 months. For the upper threshold levels of the

confidence intervals, two parts are estimated respectively.

The forecast results are rounded, because spare parts can

only be stored in entire pieces.

In addition to demand data, information about the life-

time is utilized for Weibull parameter calculation. This is

realized with the help of the maximum likelihood method,

including condition monitoring information. The lifetime is

calculated based on days. The values of Weibull parame-

ters for the probabilistic model are presented in Table 3.

Investigations of condition monitoring data highlighted the

most significant correlation between the parameter tem-

perature of stator 2 and lifetime in this example of wind

energy turbines. Tracht et al. [30] showed that the combi-

nation of these parameters generated the best result and the

lowest p value of the Chi-square test. Contrary to the

Arrhenius law, which only takes into account temperature,

other parameters can also be used for this model, allowing

for a broader application [21].

The investigations were conducted using a Weibull

PHM, which comprises a baseline hazard function. The

baseline hazard function is determined based on failure

probability data. The parameters impacting the hazard

function—called covariates—can be the temperatures of

the generator, the stator, the main bearing or the nominal

power output. The amount of the impact of the covariates

on the Weibull PHM is determined by regression param-

eters, which are calculated, applying the maximum likeli-

hood approach.

The positive regression parameter shows the positive

correlation between temperature exceedances and end of

life. When utilizing these parameters for demand predic-

tion, the condition information considered in the model

also needs to be predicted. In this prediction scenario, the

temperature of the stator during time of prognosis is

0
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Fig. 4 Scenario analyses

Table 2 Prognosis result of

simple exponential smoothing
Point forecast Forecast confidence level of 0.77 Forecast confidence level of 0.95

Lower limit Upper limit Lower limit Upper limit

0.63 (1) part -0.40 (0) parts 1.65 (2) parts -1.05 (0) parts 2.30 (2) parts

Table 3 Weibull PHM parameter estimations

Parameter Value

Shape parameter 1.17 (–)

Scale parameter 2667 days

Regression parameter a 0.0138 (–)

p value (v2 test) 0.0206

Table 4 Comparison of conventional and proposed method

Method Point

forecast

Confidence levels of

forecast

Upper limit

(0.77)

Upper limit

(0.95)

Exponential smoothing 0.63 (1)

part

1.65 (2)

parts

2.30 (2)

parts

Probabilistic method 0.64 (1)

part

– –

Combined method

(WPHM)

– 1 part 2 parts
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assumed to rise forty times over the threshold of 100 �C.

Therefore, the outcome of the Weibull PHM is inserted to

formula 6 to calculate the failure probability of every

single unit.

As proposed by Abernethy, individual failure probabil-

ities during prognostic time intervals are cumulated and the

mean of the failure probability is determined [19]. There-

fore, the point estimate for the conventional probabilistic

demand prediction method is calculated (probabilistic

method). By means of the proposed combined method, it is

possible to estimate probabilities of occurrence of a certain

demand level. The demand level and its probability of

occurrence are used for inventory planning (formula 8).

The condition monitoring information is considered in the

Weibull PHM. The outcome of its parameter estimation,

distribution parameter and regression coefficients of

covariates, as shown in Table 3, is inserted into the

framework presented in Fig. 1 (combined method WPHM).

Demand forecasting results for the three described methods

are presented in Table 4.

The results in Table 4 show that the proposed method

leads to results comparable to conventional methods. The

advantage of the combined method is the integration of

information about the lifetime and condition monitoring

data and, therefore, compensating missing demand history

information. Furthermore, it is possible to determine the

probability of occurrence and to assess the financial impact

of stock outs and surplus material by considering envi-

ronmental conditions in spare parts planning.

4.2 Dynamic inventory planning

For validation of the dynamic planning approach, param-

eter analyses have been conducted. During 1 year, the ratio

between the two cost parameter inventory and downtime

costs varies because wind speed influences downtime cost,

as shown in Eq. 2. Therefore, the parameter g is intro-

duced. It is the ratio between inventory and downtime cost

per day (Eq. 10).

g ¼ Ki

Kd

ð10Þ

Ki, inventory cost per day (€); Kd, downtime cost per day

(€); and g, cost ratio (–).

Varying g and mean failure probability, cost minimal

stock level for 20 operating components has been simu-

lated. If g equals 1, stock level rises linearly with increasing

average failure probability. Whenever downtime costs are

significantly lower than inventory cost (e.g., g = 1/4), stock

level should be increased to achieve minimal total cost.

With an increasing failure probability, more spare parts

should be put in stock. Nominal power output increases

with higher wind speeds. For example, average failure

probability equals 0.3 and g equals 1/1 during summer time.

In winter, downtime costs increase because of higher wind

speeds, which lead to g = 1/2. For cost-optimal spare parts

provisioning, stock level should be increased by one spare

part. The results shown in Fig. 4 highlight the necessity to

investigate failure probability and cost parameters, because

interdependencies between stock level and minimal total

costs are not linear for every scenario.

Forecasting accuracy of the proposed method improves

with the amount of available historical data for calculating

the remaining useful lifetime. The method is not suitable

for parts that only have a short lifetime in relation to the

planning period, because the failure rate caused by a

parameter (e.g., wind) has to remain constant during the

planning period.

5 Summary

The research work conducted within the project EloWind

made it possible to utilize information of condition moni-

toring systems already available and integrate them into a

novel probabilistic planning approach. The planning

approach has been evaluated and tested for slow moving,

expensive spare parts of a power train. Above that,

wavering surrounding conditions in terms of different wind

speeds are considered in the developed model. It is the first

model to allow for consideration of environmental condi-

tions. Interdependencies between all relevant parameters

are presented by means of parameter studies. Thereby,

stock levels can be dynamically adjusted regarding the time

of the year and lowering maintenance costs. This will

reduce energy costs generated from wind turbines and will

make renewable energy resources more competitive. The

presented model is a first example of integrating sur-

rounding conditions into a probabilistic planning approach.

The example calculation shows very promising results.

Further case studies and extensive laboratory experiments

to analyze the impact of additional parameters will be

conducted in the future.
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