
Received: 31 May 2022 / Accepted: 9 March 2023 / Published online: 28 April 2023
© The Author(s) 2023 This article is published with Open Access at www.bvl.de/lore

ABSTRACT

We present an approximation method for the hybrid
flow shop scheduling problem based on relaxation and
machine learning techniques. Our model combines
a suitable relaxation of the objective function to a
continuous solution space with a self-supervised
learning method for neural networks, which does not
require any labeled training data. Thereby, we avoid the
pre-computation of exact solutions, which is generally
not feasible for NP-hard problems such as hybrid flow
shop scheduling. In terms of computational effort
during the decision process, our approach outperforms
other methods with similar approximation accuracy,
which suggests that the considered technique of self-
supervised learning is well suited for high-performance
applications involving the approximate optimization of
discrete NP-hard problems.

KEYWORDS: scheduling · hybrid flow shop · flowtime
· makespan · relaxation · neural networks · self-
supervised learning

Logistics Research (2023) 16:6
DOI_10.23773/2023_6

1 INTRODUCTION

In logistics, many classical tasks of finding optimal
routes or schedules lead to NP-hard problems. While
countless exact approaches to such problems have been
discussed in the literature, it is often more practical
to employ efficient algorithms which provide only
an approximate solution, but require significantly
less computational effort. In general, the choice of
an approximation algorithm requires a compromise
between the accuracy of the solution and computational
performance.
The hybrid flow shop scheduling problem, in

particular, is known to be NP-hard even in seemingly
very simple special cases [8]. Both exact and
approximate solution approaches to this problem have
been the subject of extensive research [23], including
classical methods such as linear programming [19, 33]
and genetic algorithms [16, 32] as well as supervised
and reinforcement machine learning [34, 6]. There
remains, however, the need for highly performant
optimization methods for the hybrid flow shop [33].

1.1 Applications of neural networks to
NP-hard problems

There are several major obstacles for the application of
supervised machine learning techniques to NP-hard
problems such as the hybrid flow shop. Most crucially,
applications of supervised learning generally require
known labels – in this case, the actual solutions to the
problem – for a large amount of input parameters to be
used during the training process. Since computing these
labels would not be feasible for NP-hard problems,
approximate solutions acquired by other means (e.g.
heuristics or simulations) have often been used as
training labels instead [26, 29, 13]. However, this
approach still requires a high computational effort for
the generation of sufficiently large training datasets,
especially since the quality of the training data labels
constitutes a lower bound for the prediction quality
of any machine learning method. Moreover, since
different schedules can often correspond to identical

Relaxation and self-supervised machine learning for the hybrid
flow shop assignment problem

A. Tonnius1 and R. J. Martin2,1

Annika Tonnius1, Corresponding author
email: annika.tonnius@uni-due.de

Robert J. Martin2,1

1 Faculty of Engineering, University of Duisburg-Essen,
Friedrich-Ebert-Str. 12, 47119 Duisburg, Germany

2 Chair for Nonlinear Analysis and Modeling,
Faculty of Mathematics, University of Duisburg-Essen,
Thea-Leymann-Str. 9, 45127 Essen, Germany

This article is part of a focus collection on ‘‘Dynamics in Logistics
– Models and Algorithms for Optimisation, Planning and Control.”

2

Physics-informed neural networks [21], which recently
have been the subject of extensive research [2, 30, 4],
also utilize a highly specific loss function for modeling
and training purposes.

1.2 Overview
In the following, we will first provide a formal
description of the permutation hybrid flow shop, with
a focus on the machine assignment problem and the
specific constraints imposed by a fixed job order.
Section 3 then describes the relaxation of the problem
and the objective function as well as additional penalty
terms used during the learning process, according to
the training procedure for neural networks as presented
in Section 4 (and indicated in Fig. 1). Finally, in Section
5, we provide some numerical examples obtained
from applying a trained neural network to randomly
generated processing times for a simple three-stage
setup to demonstrate the general viability of the
approach.

2 THE HYBRID FLOW SHOP PROBLEM

Hybrid flow shops (also referred to as flexible flow
shops, multiprocessor flow shops or flexible flow lines)
are a generalization of both flow shops and parallel
machine environments. The model was originally
developed for production planning problems in
manufacturing plants, where it is used to describe the
production of different kinds of goods [23]. However,
the HFS problem is also applicable to a wide variety
of other fields, including port logistics [15, 27] or the
allocation of requests to multi-stage computer centers
[1]. For illustration, we will mostly refer to its original
application in manufacturing.
The structure of a production plant following the

HFS scheme is shown in Fig. 2. The plant compromises
different stages i = 1, . . . , I in series, each of which
contains a subset Mi of Mi machines. Every job j has
to pass each stage in sequence and, on each stage i,
needs to be processed by exactly one machine m∈Mi.

objective function values, solutions to scheduling
tasks and related NP-hard problems are generally not
unique, which poses additional challenges to classical
supervised machine learning.
Combinatorial problems are, in general, also not

directly susceptible to machine learning approaches.
In an extensive overview of the topic, Bengio et al. [3]
point out the need for appropriate relaxations of the
combinatorial parameters in order to obtain feasible
solutions. In addition to the direct prediction of optimal
solutions via relaxation, machine learning has also
been integrated into combinatorial models in order
to identify objective functions or the combinatorial
constraints themselves [18].
Here, we will follow a relaxation-based approach in

order to optimize the loss of a hybrid flow shop problem
via neural networks. In order to avoid the problem of
insufficient training data, we consider a method for
training the network by directly employing the objective
function we aim to minimize (e.g. the makespan or the
flowtime, cf. Section 2.3) as the loss function used
during the training process. This approach does not
require any exact labels or ground truths; instead, for
each input x, the loss L(x,�y) corresponding to the output�y predicted by the neural network is based directly on a
relaxed variant of the objective function as described in
Section 3.2. A suitable training algorithm (e.g. Adam)
is then applied with the intention of minimizing the
loss – and thus the objective function – on the training
dataset, as shown in Fig. 1.
Similar approaches have previously been applied not

only to NP-hard problems [20], but to a variety of tasks
such as depth estimation from planar image data [7] or
object recognition and tracking [25]. More generally,
machine learning methods based on a problem-specific
loss function instead of classically labeled training data
can be characterized as weakly supervised learning.
Related approaches, known as self- and semi-supervised
learning, have previously been used in natural language
processing [17] and object recognition [28, 14, 12] as
well as for noise reduction via auto-encoders [24].

Figure 1: In contrast to classical supervised learning, the approach of self-supervised learning
does not require the extensive precomputation of minimizers of the training data.

x �y �y − �y�2
y = argminL(x, y)

Generate labels

←−Train
Minimize−→

(a) Supervised learning

x �y L(x, �y)

←−Train
Minimize−→

(b) Self-supervised learning

3Relaxation and self-supervised machine learning for the hybrid flow shop assignment problem

More specifically, we will focus on the permutation
flow shop in the following. For this problem, the
jobs must be processed in a specific order without
overtaking one another, resulting in two additional
constraints: if job j has higher priority than job k, then

– no machine can begin processing job k before
processing of job j has begun on the same stage,

– no machine can finish processing job k before
processing of job j has finished on the same
stage.

In particular, the last job in the given order will
always be (among the) last to fully finish processing.
Due to these two additional constraints, assuming no
unnecessary gaps during the processing on any stage,
the complete schedule is fully determined by the order
of the jobs and the assignments of jobs to machines. An
example of such a schedule is shown in Fig. 3.

Following the definition of Ruiz et al. [23], to be
called a hybrid flow shop, the problem configuration
must include at least two stages, and at least one of the
stages must possess more than one machine. Each job
is assigned a processing time on each machine. In the
case of unrelated machines, which we will consider
in the following, the processing times might differ
both between jobs on the same machine and between
different machines on the same stage.
There are a number of constraints which must be

satisfied by any schedule, i.e. any assignment of jobs
to machines and starting times:

– on each stage, each job is assigned to exactly
one machine,

– each job must be processed completely on one
stage before proceeding to the next,

– a machine must fully process one job before
beginning with the processing of another.

J Jobs

Stage 1

Machine
m11

Machine
m12

Machine
m1M1

...

Stage 2

Machine
m21

Machine
m22

Machine
m2M2

...

Stage I

Machine
mI1

Machine
mI2

Machine
mIMI

...

. . .

1 2 4 6

2 1 3 5 7

3 1 3 5 7

4 2 4 6

5 2 4 6

6 1 3 5 7

Figure 2: Illustration of the hybrid flow shop scheduling problem with jobs j = 1 . . . , J and stages i = 1, . . . , I
with Mi machines on stage i.

Figure 3: An optimal schedule for a given job order and given processing times with J = 7 jobs, M = 6
machines and I = 3 stages with two machines each.

4

(starting times).

Note that Sji denotes the starting time of job j on
the i-th stage (not the i-th machine). The assignment
of jobs to machines is represented by the assignment
matrix A: if job j is assigned to machine m, then
Ajm = 1; otherwise, Ajm = 0. Since in the classical hybrid
flow shop problem, each job is assigned to exactly one
machine on each stage, the requirement A∈A must
hold, where

(2.1)

denotes the set of admissible assignment matrices. An
extension of this set for the assignment-relaxed problem
will be discussed in Section 3.

Example 2.1.We consider a basic example in order to
clarify the notation employed in the following. Assume
that for a hybrid flow shop problem, M = 5 machines
are employed on I = 2 stages with

M1 = {1, 2, 3}, M2 = {4, 5},

i.e. 3 machines on the first and 2 machines on the
second stage. Moreover, let the processing times for
J = 3 jobs be given by the processing times matrix

Then

Figure 4: Schedule from Example 2.1.

For the permutation hybrid f low shop, the
minimization problem now consists of finding the
optimal schedule – i.e. the optimal job order and
assignments – with respect to a specific objective
function which measures the total processing time.
Most commonly, either the makespan or the flowtime
is chosen as the objective (cf. Section 2.3).

2.1 Divide and conquer
The permutation flow shop problem can be divided into
two subproblems:

1. determine the best sequence (permutation) in
which the jobs are processed,

2. determine the machine on each stage on which
a job is processed (machine assignments).

Of course, the two subproblems are mutually
dependent; changing the job order might account for
a change in optimal assignments of the jobs to the
machines and vice versa. For an approximate solution,
however, it has previously been demonstrated that,
following a classical divide-et-impera strategy, these
two problems can indeed be addressed separately [34].
By solving the subproblems individually and combining
the results to a solution of the global problem, the
solution space can be reduced significantly [33].
For the first subproblem, i.e. for determining the job

order, an efficient machine-learning-based approach
has already been established [34]. We will therefore
focus on the second subproblem of finding optimal
machine assignments for jobs in a given fixed order.
Note that a solution to this subproblem is also directly
applicable by itself, for example in cases where a strict
prioritization of jobs – such as a first-in-first-out (FIFO)
policy – needs to be respected [1].

2.2 Notation
In the following, we will assume that the following
parameters are fixed as part of the problem specification:

J (number of jobs),
I (number of stages),
M (number of machines),
Mi (machines on stage i),
Mi = |Mi| (number of machines on stage i).

More accurately, Mi denotes the set of machine
indices for the stage i∈{1, . . . , I }, i.e. m∈Mi if and
only if the m-th machine is part of stage i. The input
variable of the problem is given by the matrix

(processing times)

such that Pjm denotes the time required for machine m
to process job j on the stage i with m∈Mi.
Finally, a schedule is fully defined by the two

matrices

(assignments),

1 1

2 2

3 3

4 2

5 1 3

5Relaxation and self-supervised machine learning for the hybrid flow shop assignment problem

where E is computed via the algorithm in Remark 2.2.
Similarly, the flowtime Csum is given by

and represents the sum of the final finishing times of
all jobs. Again, the equality can be expressed in terms
of E via

for the permutational case.

3 RELAXATION OF THE HYBRID FLOW
SHOP PROBLEM

Note hat the equalities in Section 2.3 rely on the
discreteness of the assignments, i.e. on the requirement
that all but one of the values Ajm are zero on any
given stage. However, as indicated in Section 1, this
discreteness is one of the major obstacles for the
application of machine learning techniques, since any
loss function defined on a discrete set is not directly
suitable for gradient-based optimization procedures.
In the following, we will therefore consider a relaxed
approach by allowing fractional assignments as well
and extending the loss function to the resulting larger
domain of admissible matrices.

3.1 Assignment relaxation
Recall from (2.1) that for the classical hybrid flow shop
problem, the set of admissible assignments is given by

(3.1)

since each job must be assigned to exactly one machine
on each stage. In the assignment-relaxed hybrid
flow shop model, we allow for a split (or fractional)
assignment of a job to multiple machines on a single
stage in the form of a convex combination, which is
described by the extended set

(3.2)

is an admissible combination of assignments and
starting times, with the resulting schedule shown in
Fig. 4. In particular, if the job order is fixed according
to the order of the rows of P, then the shown schedule
satisfies all constraints for the permutation hybrid flow
shop problem without any unnecessary gaps; note that
neither job 2 nor job 3 can begin any earlier due to the
two constraints for sequential processing, while job 3
starts on the second stage as soon as its processing is
finished on stage 1. The starting times S are therefore
already implicitly determined by the order of jobs and
the assignment matrix A.

Remark 2.2. In general, the starting times for a given
job order can easily be obtained from the assignments
A and the processing times P: First, let M0 = {} and

here, Ejm represents the time at which the processing of
job j on machine m ends. Then, for each job j = 1, . . . , J
(in sequential order), consider each stage i = 1 . . . , I in
increasing order, and let m denote the unique machine
on stage i which processes job j. Set

(2.2)

and

This procedure ensures that processing starts at the
earliest admissible time on each stage for each job under
the constraints of the permutation hybrid flow shop. The
four “inner” maxima in (2.2) ensure, respectively, that
a job j does not start on stage i if it has not been fully
processed on stage i − 1, that machine m has finished
all previous processing and that no previous job k is
overtaken either at the start or the end of the stage.

2.3 Objective functions
Once the full schedule (consisting of the assignments
and the starting times) is known, the two most common
objective functions are easily computed: The makespan
Cmax is defined as the time at which the final job is
finished on the last stage, i.e.

For the permutation problem, the makespan is simply
given by

6

(3.4)

Example 3.1. For J = 3, M = 5 and I = 2 with
M1 = {1, 2, 3} andM2 = {4, 5}, we consider the same
processing times matrix P as in Example 2.1. For the
relaxed assignment A and the starting times S with

and ,

we obtain the schedules shown in Figs. 5 and 6 for
the interpretation of the relaxation as job splitting and
machine splitting, respectively.
Since the notion of machine splitting would introduce

additional rectification discontinuities for the purely
assignment-relaxed hybrid flow shop (cf. 4.3), we
will mainly focus on the case of job splitting in the
following.

3.2 The assignment-relaxed permutation
hybrid flow shop problem

In order to extend the definition of the two main
objective functions Cmax and Csum from Section
2.3 to the alignment relaxed case, we assume again
that the jobs are given in a fixed order. Then, for
given assignments A, the schedule can be created
analogously to the procedure described in Remark 2.2.
However, following the job-splitting interpretation of
non-binary assignments, the actual processing time
on each stage needs to be modified according to eq.
(3.3). Furthermore, a single job might occupy multiple

of admissible assignment matrices. The notion of jobs
being processed simultaneously on multiple machines
has previously been discussed in the literature, both
as a relaxation technique [31] and as an optimization
problem in its own right [5]. Although our focus lies
on the former approach, i.e. on viewing relaxation as a
mathematical tool for obtaining classical solutions, it is
nevertheless important to distinguish between different
interpretations of fractional assignments in order to
determine how the objective function can be reasonably
extended to AR.

Job splitting
First, we can consider an assignment of a job j to
multiple machines m1, . . . , mn on a stage i as a split
of the job itself into multiple parts. In this case, the
weight factor Ajm ∈ [0, 1] determines the fraction of
the job which is being processed by machine m. Then
the processing time for this part is naturally given by
Ajm · Pjm. During this time, machine m is considered
to be fully occupied. The total processing time Δt for
job j on stage i is then given by

(3.3)

i.e. the job is finished on the stage once all parts have
been processed.

Machine splitting
Alternatively, we can interpret a fractional assignment
as a partial occupation of a particular machine such
that Ajm∈ [0, 1] represents the fraction of machine m
which is dedicated to the processing of job j. In this
case, the job itself is considered to be undivided, with
the required processing time Δt on stage i given by the
weighted harmonic mean1

Figure 5: Schedule with job splitting. Figure 6: Schedule with machine splitting.

1 The use of the harmonic mean is due to the interpretation of Ajm as the ratio of the machine’s performance pjm, which is related to the
processing time via Pjm = 1/pjm.

1 1

2 2

3 3

4 1 2

5 1 2 3

1 1

2 2

3 3

4
1

2

5 1
2

3

7Relaxation and self-supervised machine learning for the hybrid flow shop assignment problem

stage. This procedure is formalized in Definition 3.2
with an algorithm in tensorial form, as is required by
many machine learning frameworks.

Definition 3.2. The relaxed makespan and the
relaxed flowtime are defined by Algorithm 1:

machines on a single stage for different time intervals,
which needs to be taken into account for the scheduling
as well.
Once the schedule is set up, the relaxed makespan

and the relaxed flowtime are easily
computed, respectively, via the maximum and the sum
of the end-of-processing times over all jobs on the final

Algorithm 1: Relaxed Loss
1 RelaxedLoss (P,A)

inputs : Processing times matrix P of size J ×M ,
Assignment matrix A of size J ×M

output: The relaxed losses CR
max, C

R
sum

2 P ∗ ← P ·A // elementwise multiplication
3 jobs ← rows of P ∗

4 MO ← �01×M // MO: Machine Occupation
5 SOstart ← �01×I // SO: Stage Occupation
6 SOend ← �01×I

7 foreach j ∈ jobs do
8 JOj ← 0
9 foreach i ∈ stages do

10 SOstarti ← SOstart[i]
11 SOendi ← SOend[i]
12 JOj ← SOend[i]
13 foreach m ∈ Mi do
14 P∗

jm ← P∗[job, m] // Weighted processing time for job j on machine m
15 MOm ← MO[m]
16 SOendshift

i ← SOendi−P∗
jm

17 startTimejm ← max(JOj , MOm, SOstarti, SOendshift
i)

18 Cjm ← startTimejm+P∗
jm // Completion time of job j on machine m

19 MO[m]← C[j,m]
20 SOstart[i] ← max(SOstarti, C[j,m] − P∗

jm)
21 SOend[i] ← max(SOendi, C[j,m])

22 CR
max ← max(SOend[I])

23 CR
sum ← �

SOend[I]

24 return CR
max, C

R
sum

Note that for any classically admissible assignment
A∈A⊂AR, the relaxed makespan is equal to the
classical makespan. Furthermore, the domain in
Definition 3.2 ensures that the jobs are indeed “split”
among the machines on a stage, which is implicitly
assumed by the algorithm.
If, for a neural network, we ensure via a suitable

choice for the output layer that the output values
remain in the domain of the relaxed makespan, then
this function can directly be used as the loss function
for the training process.

3.3 Starting time relaxation
In addition to the assignments, we can also relax the
various constraints on the starting times, e.g. that no
two jobs j1, j2 can occupy the same machine at the same

time or that processing of job j on a stage i cannot start
before j has been fully processed on all previous stages
1, . . . , i − 1. Most generally, we can admit any matrix

as relaxed starting times. Alternatively, we
can prescribe some simple additional constraints which
are independent of the processing times, such as the
requirement that Sj,i ≥ Sj,i−1 for all j∈{1, . . . , J} and
all i∈{2, . . . , I}, i.e. that no job can be processed on a
stage before it has even started on the previous one. In
that case, the extended set of admissible starting times
is given by

8

for every j∈{1, . . . , J} and i∈{1, . . . , I} due to the
choice of AR as the domain of definition for p1, which
ensures that p1 (A) ≥ 0 for all A∈AR and that p1 (A) = 0
if and only if A∈D, i.e. p1 attains the minimum value
exactly at the classically admissible assignments.2

3.4.2 Penalties for the starting-time relaxed case
If the starting times are relaxed as well, two additional
issues need to taken into account: first, a job might
start being processed on a machine without having
completed the previous stage; second, two different
jobs might be assigned (in parts) to the same machine
over some intersecting time intervals. To penalize the
former, we introduce the penalty function

where (cf. eq. (3.4))

denotes the (relaxed) processing time of job j on stage i
for the assignment A. The penalty p2 therefore measures
the overlap between processing intervals on consecutive
stages; recall that due to the choice of SR in the domain
of definition, it can be assumed a priori that the starting
times Sji are increasing for each job j.
Finally, we consider the penalty function

where fd(A, S, j, k, i)
with
fd(A, S, j, k, i) = max (0, Smax − Emin),

Smax = max (Sji, Ski),

Emin = min (Sji +Δt(A, j, i), Ski +Δt(A, k, i))

is the duration of a possible overlap3 between the
processing of jobs j and k on stage i and

3.4 Penalty functions
In general, optimal solutions to relaxed problems
are not admissible for the classical, non-relaxed
hybrid flow shop problem; for example, the machine
assignment for which the relaxed makespan attains its
minimum might require the assignments 0.3 and 0.7,
respectively, on two machines of the first stage for the
first job, whereas a single machine would need to be
selected in the classical problem. While a conversion
to the “nearest” admissible solution (cf. Section 4.3) is
always possible – in this case by selecting the machine
with the highest assignment value – it cannot be
ensured that the resulting classical solution is in any
sense optimal, especially if the relaxed solution is not
“sufficiently close” to any classical one. Therefore, the
relaxed objective function needs to be supplemented
by additional penalty terms which penalize deviations
from the set of classically admissible solutions [11].

3.4.1 Penalties for the assignment relaxed case
We first consider the case of assignment relaxation.
A straightforward penalty of the split between
assignments is given by the function

For a given assignment A and a processing times
matrix P, the term p0(A, P) represents the sum over
all processing times except the ones on machines with
the maximum assignment value for a given stage-job
combination. Therefore, p0 penalizes all processing on
multiple machines and thereby all deviations from a
discrete, admissible assignment on each stage.
Alternatively, we can consider the penalty

which does not depend on the processing times P and
is differentiable at any A ∈AR. For every combination
of jobs and stages, the function p1 additively weighs
the split of the job between any combination m, n of
machines on the stage. Note that

2 It is also easy to see that p1 does not attain any other local minima and that is maximal if and only if
for all m∈Mi.

3 Here, Smax and Emin denote the later starting times and the earlier end time of two jobs, respectively, so that Smax − Emin is positive
if and only if there is an overlap between the two processing intervals, in which case, the difference is equal to the length of the overlap.

9Relaxation and self-supervised machine learning for the hybrid flow shop assignment problem

Then the only input parameter of the neural network is
the processing times matrix
In the following, we will focus on the pure assignment

problem: assuming that the order in which the jobs need
to be processed is fixed, we aim to find the optimal
assignment strategy, i.e. the assignment A∈A such that
the resulting objective function – either the makespan
or the flowtime – is minimal.4 For the relaxed problem,
the neural network itself can then be described as a
mapping

where �A denotes the predicted relaxed assignment for
the processing times P. In a final step, the matrix �A
is then rectified (cf. Section 4.3) in order to obtain a
classical admissible schedule A∈A.

4.1 Training process
In order to train the neural network, i.e. to determine the
network parameters such that the prediction �A =F(P)
represents an optimal assignment, we directly employ
the relaxed makespan function from Definition 3.2 as
the loss function for the training process. Thereby,
it is sufficient to create a random training dataset

without pre-computing any labels. For
given input P∈T , the loss L is then simply defined as5

where �A =F(P) denotes the predicted assignment
matrix and p(P, �A) is a suitable penalty term, as
described in Section 3.4. Due to the continuous
structure of both the output and the input space, and
since the is sufficiently regular, it is then possible
to employ gradient-descent based methods in order to
find optimal network parameters such that the loss L is
minimized on the training dataset, i.e. the loss

is minimized over the parameter space. By the choice of
L, such a minimization ensures that the relaxed objective
function value, e.g. , is sufficiently small
and, via the penalty p, that �A =F(P) is close to a
classical assignment A∈A for any P∈T ; note again
that if A∈A. Of course, whether
the rectification of an assignment �A =F(P) also results
in an optimal or close-to-optimal solution for P∈/ T
should be monitored during the training process on a
suitable validation dataset and – most importantly –
after the training is complete by using a separate set
of test data.

measures to what degree the two jobs occupy the same
machines during any overlap; note that the function
value fd(A, B, j, k, i) ∈ [0, 1] is equal to 1 if and only
if the two jobs have the exact same assignment on
the stage and equal to 0 if and only if they share no
machines at all.

4 HYBRID FLOW SHOP SCHEDULING
WITH NEURAL NETWORKS

While the relaxation of the hybrid flow shop circumvents
the difficulties which arise from the discreteness of the
problem, applying machine learning methods to predict
optimal schedules remains challenging due to the lack
of accurately labeled training data. As indicated in
Section 1.1, we therefore employ a self-supervised
training method which uses the relaxed objective
functions and directly as part of the loss
function for an artificial neural network.
In traditional supervised learning, a neural network

is generally trained by minimizing the deviation of the
network’s output �y from the known labels (or ground
truths) y associated with the training data x. Most
commonly, this deviation is measured by the mean
square error, i.e. by

where y1, . . . , yN and �y 1 . . . , �yN, denote the labels and
the output predicted by the neural network for the
corresponding input data, respectively.
While machine learning methods are often applied

to empirical measurement data in order to provide a
data-driven model in cases where no analytical model
is available, the same methods are applicable to the
task of finding approximate solutions to analytical
minimization problems. In this case, finding the “true”
solutions y1, . . . , yN to the minimization problem by
other (numerical) means would be necessary in order
to provide a labeled training dataset for the neural
network. Of course, depending on the complexity of
the minimization task, generating a sufficiently large
set of labels might be computationally too expensive for
any practical applications; for the NP-hard problems
considered here, this is clearly the case.
In order to employ neural networks to find optimal

solutions to the hybrid flow shop problem, we again
assume that the number of jobs, stages and machines
(J, I andM) as well as the distributionMi of machines
to the stages i = 1, . . . , I remain fixed (cf. Section 4.5).

4 Note again that if a neural network is indeed able to identify an optimal (or a near-optimal) assignment for a given job order, it can easily
be combined with additional dispatching rules which optimize the job order itself, such as the machine learning approach presented in
[34].

5 Of course, the training method can be performed analogously if the relaxed makespan is replaced with the relaxed flowtime .

10

4.4 Applications
The main advantage of the proposed method is the very
low computational effort required for determining the
processing times once the neural network is trained.
This performance advantage is particularly important
in cases where high-frequency scheduling is required,
such as applications in scheduling of processor services
[1]. The simulation of logistical processes also requires
extremely fast decision processes: if a hybrid flow shop
is used as part of a more extensive model, approximate
solutions can be used during the simulation to provide
a plausible model of the scheduling. Since numerous
repetitions might be required for various simulations,
the performance offered by neural-network-based
predictions would be highly advantageous.

4.5 Limitations
In general, it should not be expected that neural
networks are able to predict globally optimal
schedules for given processing times: Both the applied
relaxation techniques and the machine learning
methods themselves introduce possible sources of
error. Although gradient-descent-based optimization
methods, such as the Adam algorithm employed in the
numerical examples in Section 5, are capable of finding
local minima for very general classes of functions, they
usually cannot ensure that global minima are identified.
The neural-network-based approach presented
therefore does not provide an exact solution, but rather
an approximation method for the hybrid flow shop
scheduling problem.
Furthermore, while the computational cost for finding

a schedule using a trained neural network is extremely
low when compared to other optimization methods
(cf. Section 5), the effort required during the training
process needs to be considered as well. However, the
training does not need to be performed “online” during
high-frequency scheduling applications; instead, the
network can be prepared at any point, and the training
can be continued in the background over time to further
improve results.
Finally, it should be noted that, due to the fixed

topology of the trained neural network, the number of
jobs, stages and machines per stage cannot be changed
without restarting the training process. However,
for a reduced number of jobs, a schedule can still be
predicted via zero padding of the input, i.e. by including
additional jobs with zero processing time. The number
of stages can be reduced in a similar fashion, whereas
the number of machines per stage could be decreased
by adding machines with prohibitively large processing
times to the input (“infinity padding”). The maximum
number of jobs, stages and machines for which the
network is applicable, however, remains bounded by
the selected training data. Due to the increasing number

Although this approach seems remarkably
straightforward, it has, to the best of our knowledge,
not found a widespread use for discrete optimization
problems. We will demonstrate the viability of the
method in Section 5.

4.2 Strict constraints
While the requirement of discrete machine selections
has been relaxed in our loss function, we still require
the condition

(4.1)

for all to be strictly
satisfied by the assignment output of the neural
network. Note that, in particular, the penalty functions
introduced in Section 3.4 are no longer viable for
arbitrary assignment values on the individual stages.
This strict constraint can be ensured by a suitable

choice of the network’s output layer. More specifically,
if the final layer of the neural network applies the
softmax function

to the assignment values for each stage and each job,
then the output is properly constrained: Since the range
of the softmax function is given by

each assignment matrix �A predicted by the neural
network must then satisfy the constraint (4.1) by
construction.6

4.3 Rectification
Since the output of the neural network is, in general, not
an admissible schedule due to the employed relaxation,
it is necessary to apply a rectification method in order
to obtain a classical prediction from the ANN. For the
assignment matrix, a simple rounding technique can be
used by stagewise assigning each job to the machine
with the highest relaxed assignment value:

Note that the computational overhead due to this
conversion is negligible and that output matrices
which are already admissible are invariant under these
rectification methods, i.e. if both �A and �S satisfy the
hybrid flow shop constraints, then A = �A and S = �S.
6 Note that this method is closely related to the classical approach of minimizing a loss function L under strict constraints by finding a

minimizer of L ◦ g, where the range of g is the proper (constrained) domain of L.

11Relaxation and self-supervised machine learning for the hybrid flow shop assignment problem

represent two examples of processing times matrices
generated by the above method with different mean
values and standard deviations on the stages for J = 6
jobs. The processing times on each stage are normally
distributed. The stages in P1 exhibit very small standard
deviations which emphasizes the division between the
stages, whereas the high standard deviations in P2
result in a less structured problem.

5.2 Structure of the neural network
The model of the neural network created to predict
the assignment matrix A combines elements of
convolutional neural networks and recurrent neural
networks.8 We first perform convolutions over the
machines on each stage of each job. The subsequent
recurrent part of the network consists of so-called long
short-term memory layers as proposed by Hochreiter
et al. [10]. These layers are most commonly used
for time series analysis, where they are employed to
take into account datasets preceding the current one;
here, we intended to exploit the well-defined job order
for the considered problem, which suggests that the
individual processing times can be regarded as time-
wise dependent datasets.
Afterwards, the model is split into several parallel

dense layers. Each dense layer represents the machines
on a specific stage of a specific job. Our choice of
J = 6 jobs, I = 3 stages and two machines on each stage
results in J · I = 18 layers with two nodes each. Fig. 7
shows a visualization of the neural network’s structure
for J = 3, with J · I = 9 parallel dense layers; some
normalization, reshape and dropout layers were omitted
for simplicity. As described in Section 4.2, we apply
a softmax activation function on the outputs of these
parallel layers, so that the output values of each layer
are positive numbers and add up to 1. Eventually, the
parallel layers are concatenated to obtain the relaxed
assignment matrix �A, which can then be converted to
the final assignment A predicted by the neural network.
Note that the number of nodes in the neural networks

scales with the problem size. Therefore, for a larger
number J of jobs, the complexity of the neural network
and thus the computation time required both for the
training process and the prediction increases.

5.3 Evaluation
For I = 3 stages with two machines each (i.e. M = 6
machines total) and up to J = 6 jobs, the exact solution
to the assignment problem for a fixed job order could
still be computed in a reasonable amount of time with
the resources available. For 1000 randomly generated
instances Popt of processing times, we therefore
computed the optimal minimum makespan using
the commercial optimization tool Gurobi [9].

of parameters and the resulting computational effort
in training the network for larger input dimensions, a
limit for these numbers needs to be carefully chosen
beforehand.

5 NUMERICAL EXAMPLES

To demonstrate the viability of the proposed method,
we implemented and trained a neural network for the
prediction of assignments – as described in Section 4 –
in Python using the TensorFlow library7 and evaluated
the assignments predicted by the neural network in
terms of the classical makespan (cf. Remark 2.2).
For small problem sizes (up to 6 jobs), the computed

schedules are compared directly to exact solutions,
which were obtained via mixed integer linear
programming. For larger numbers of jobs, finding an
optimal solution was no longer feasible. We therefore
compare our results for larger input sizes to other
high-performance approximation methods: the Monte
Carlo method, which simply selects the best outcome
out of multiple randomly generated assignments, and
time-limited linear programming. We also show that
an already trained neural network can effectively be
applied to smaller numbers of jobs via zero padding,
as described in Section 4.5.

5.1 Distribution of generated processing times
For all numerical experiments, a hybrid flow shop
consisting of three stages with two machines each
was considered. For the machines on each stage i, we
generated normally distributed processing times Pjm
which were then rounded to integer values. For the
specific distributions on the stages,
we randomly selected a mean value µi∈ [10, 900]
between 10 and 900 as well as a standard deviation

; samples with Pjm < 1 were rejected.
This randomization method results in problem matrices
with varied processing times.

Example 5.1. The matrices

7 Some obstacles had to be overcome during the implementation; note that Algorithm 1 still requires some care in order to remain compatible
with tensorial operations, especially with respect to variable assignments.

8 The results presented in Section 5.4 were obtained with the neural network structure described and exceeded earlier attempts with generic
networks consisting purely of densely connected layers.

12

for larger problem sizes. For our numerical experiments,
we use the commercial mathematical solver Gurobi
which, due to its high degree of optimization [22],
should be considered a state-of-the-art competitor in
terms of computational performance.

5.4 Results
We begin by training the neural network outlined in
Section 5.2 according to the procedure from Section
4 for the input size of J = 6 jobs, I = 3 stages and two
machines on each stage. The resulting neural network
is then applied to a separate test dataset of 1000
processing time matrices for which optimal solutions
have been determined beforehand. All experiments are
performed on a 3.4 Ghz Intel i7 CPU with 4 cores and
16 GB of memory.
Figure 8 shows a direct comparison of the schedules

predicted by the neural network compared to the true
optimal results. In particular, for 20% of all predicted
assignments, the corresponding makespan is indeed
globally optimal. Overall, the mean deviation of the
makespan for the predicted schedule is 4.9%.
The network is then trained for the larger problem

size of J = 12 jobs. The trained network is then applied
to the same test dataset via zero padding (cf. Section
4.5); in this case, six rows of zeros concatenated to the
matrices in order to create a matrix of size 12 × 6. The
accuracy of this prediction is comparable to the one
obtained for the network specifically trained for this
input size: a global optimizer is predicted in 16% of the
cases, with a mean deviation of 7% from the globally
optimal solution. These results suggest that networks
trained for larger input sizes are indeed applicable

For larger problem sizes, we compare our results
to approximate solutions obtained via the Monte
Carlo method and time-limited mixed linear integer
programming.

Monte Carlo method
For each input P, we apply a simple Monte Carlo
algorithm by selecting 1000 possible (classical)
assignment matrices A∈A and compute the makespan
for each. The best of these assignment matrices is
then chosen as the output. Although one of the most
simple algorithms imaginable, this method of guessing
solutions tends to yield remarkably good results in
practice, especially comparatively small problem sizes.
The limit of 1000 generated input matrices ensures a
limit to the computation time; note that determining the
makespan for each of the selected assignment matrices
must be performed according to the scheduling
procedure from Remark 2.2.

Mixed integer linear programming
For our test dataset, we also compute an approximate
solution to the scheduling problem by applying a
mixed integer linear programming solver to the input
P for a limited amount of time. As for the Monte
Carlo method, no relaxation is required in this case,
since integer programming allows for constraints on
the solution variables which ensure that the resulting
assignment matrix A contains only integers or, in this
case, the binary values 0 and 1. Note that for unlimited
computation time, this method would always yield an
exact solution. For high performance applications,
however, such a limit would be unavoidable, especially

Figure 7: Overview of the structure of the neural network model to predict the assignment matrix A for J = 3.

InputLayer Conv2D Conv2D Reshape LSTM Dropout

Dense

Dense

Dense

Dense

Dense

Dense

Dense

Dense

Dense

Concatenate Reshape

13Relaxation and self-supervised machine learning for the hybrid flow shop assignment problem

A comparison of the results is shown in Fig. 10. The
approximation quality of the three different methods
is indeed very similar: Compared to the Monte Carlo
heuristic, the assignment predicted by the neural
network results in a lower makespan for ∼ 60% of all
processing times, while a direct comparison between
the linear programming method and the neural network
shows that each provides a better result in ∼ 50% of
the cases.
It is important to note that for this “break-even

point”, the computation time for a single prediction of

to a smaller number of jobs as well, which implies a
higher degree of flexibility for this approach, since the
necessity of preparing for every possible combination
of input sizes is thereby avoided.
Finally, we apply the neural network to a test dataset

of 1000 random problem matrices with J = 6 jobs,
I = 3 stages and two machines on each stage. For each
processing time P in the dataset, assignments are also
computed using the Monte Carlo method and Gurobi,
with the latter limited to a computation time of 0.2
seconds.

(a) Predicted makespan vs. globally optimal makespan. (b) Distribution of deviations from the
globally optimal makespan.

Figure 8: Results for the assignment of J = 6 jobs predicted by a neural network.

(a) Predicted makespan vs. globally optimal makespan. (b) Distribution of deviations from the
globally optimal makespan.

Figure 9: Results for the assignment of J = 6 jobs, predicted by a neural network trained for J = 12 jobs.

14

Further investigation of the applicability of this
promising approach to other NP-hard problems is
strongly suggested by these results. In particular,
adaptations to more complex extensions of the hybrid
flow shop problem, such as tooling constraints, could be
considered by a suitable adaptation of the loss function
or by adding corresponding penalty terms. Stochastic
neural networks could also be investigated with respect
to the problem of uncertain arrival times. Finally, the
scalability to larger problem sizes should be examined
more closely if the computational capacity is available.

7 REFERENCES

[1] A. Allahverdi and F. S. Al-Anzi. “Scheduling
multi-stage parallel-processor services to
minimize average response time”. Journal of the
Operational Research Society 57.1 (2006). Pp.
101–110. issn: 0160-5682. doi: 10.1057/palgrave.
jors.2601987.

[2] M. A. Aragon-Calvo and J. Carvajal. “Self-
supervised learning with physics-aware neural
networks – I. Galaxy model fitting”. Monthly
Notices of the Royal Astronomical Society 498.3
(2020). Pp. 3713–3719.

[3] Y. Bengio, A. Lodi, and A. Prouvost. Machine
Learning for Combinatorial Optimization: a
Methodological Tour d’Horizon. 2018. url: http://
arxiv.org/pdf/1811.06128v2.

[4] T. Beucler, M. Pritchard, S. Rasp, J. Ott, P. Baldi,
and P. Gentine. “Enforcing analytic constraints
in neural networks emulating physical systems”.
Physical Review Letters 126.9 (2021). P. 098302.

[5] F. M. Defersha. “A comprehensive mathematical
model for hybrid flexible flowshop lot streaming
problem”. International Journal of Industrial
Engineering Computations 2.2 (2011). Pp.
283–294. issn: 19232926. doi: 10.5267/j.
ijiec.2010.07.006.

the neural network is significantly lower than the 0.2
seconds allocated to Gurobi; in fact, while applying the
Monte Carlo method and the linear programming solver
to the entire dataset requires – on our test system – more
than 15 minutes and more than 3 minutes, respectively,
all 1000 assignments can be predicted by the neural
network in less than 4 seconds, including even some
additional overhead for loading the model parameters.
Our results suggest that for highly time-critical

problems, the proposed method exceeds the
performance of both alternatives significantly. For
larger instances, these advantages should be expected
to increase even further due to the differences in scaling
between the methods.

6 SUMMARY AND OUTLOOK

Our numerical results show that neural networks
can provide a highly performant method for finding
approximate solutions to the hybrid flow shop
scheduling problem for a given job order. The approach
presented here, which combines the relaxation of binary
assignments to fractional values via job splitting with
a self-supervised learning technique that directly
employs a relaxed objective function instead of labeled
training data, when compared to the Monte Carlo
method and a time restricted MILP approach with
comparable accuracy, was able to outperform both in
terms of computational time required for the decision
process. With additional computational resources or
improvements to the neural network structure, it may
also be possible to significantly improve upon our
results. It should be noted, however, that a further
improvement of the neural network’s accuracy would
indeed require such structural changes or a more
extensive training process, whereas both alternatives
considered here could be scaled more conveniently to
a higher expected accuracy, albeit at the cost of even
higher computational time requirements.

Figure 10: Comparison of neural network predictions to time-limited mixed integer linear programming
and the Monte Carlo method.

15Relaxation and self-supervised machine learning for the hybrid flow shop assignment problem

[17] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J.
Zhang, and J. Tang. “Self-supervised learning:
Generative or contrastive”. IEEE Transactions on
Knowledge and Data Engineering (2021).

[18] M. Lombardi and M. Milano. “Boosting
Combinatorial Problem Modeling with
Machine Learning” (2018). Pp. 1270–1276. doi:
10.24963/ijcai.2018/177. url: http://arxiv.org/
pdf/1807.05517v1.

[19] L. Meng, C. Zhang, X. Shao, B. Zhang, Y. Ren,
and W. Lin. “More MILP models for hybrid
flow shop scheduling problem and its extended
problems”. International Journal of Production
Research 58.13 (2020). Pp. 3905–3930. issn:
0020-7543. doi: 10.1080/00207543.2019.1636324.

[20] A. Milan, S. H. Rezatofighi, R. Garg, A. Dick,
and I. Reid. “Data-driven approximations to NP-
hard problems”. Thirty-first AAAI conference on
artificial intelligence. 2017.

[21] M. Raissi, P. Perdikaris, and G. E. Karniadakis.
“Physics-informed neural networks: A deep
learning framework for solving forward and
inverse problems involving nonlinear partial
differential equations”. Journal of Computational
Physics 378 (2019). Pp. 686–707.

[22] S. F. Roselli, K. Bengtsson, and K. Åkesson.
“SMT Solvers for Job-Shop Scheduling
Problems: Models Comparison and Performance
Evaluation”. 2018 IEEE 14th International
Conference on Automation Science and
Engineering (CASE). 2018, pp. 547–552. doi:
10.1109/COASE.2018.8560344.

[23] R. Ruiz and J. A. Vázquez-Rodríguez. “The
hybrid flow shop scheduling problem”. European
Journal of Operational Research 205.1
(2010). Pp. 1–18. issn: 03772217. doi: 10.1016/j.
ejor.2009.09.024.

[24] D. E. Rumelhart, G. E. Hinton, and R. J.
Williams. Learning internal representations by
error propagation. Tech. rep. California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[25] R. Stewart and S. Ermon. “Label-free supervision
of neural networks with physics and domain
knowledge”. Thirty-First AAAI Conference on
Artificial Intelligence. 2017.

[26] L. Tang, W. Liu, and J. Liu. “A neural network
model and algorithm for the hybrid flow shop
scheduling problem in a dynamic environment”.
Journal of Intel ligent Manufacturing 16.3 (2005).
Pp. 361–370. issn: 0956-5515. doi: 10.1007/s10845-
005-7029-0.

[27] R. Tavakkoli-Moghaddam, S. Fatemi-Anaraki, D.
Abdolhamidi, and B. Vahedi-Nouri. “Integrated
Waterway Scheduling, Berth Allocation and Quay
Crane Assignment Problem by Using a Hybrid
Flow Shop Concept”. eng. 2019 International
Conference on Industrial Engineering and
Systems Management (IESM). IEEE, 2019, pp.
1–5. isbn: 1728115663.

[6] Y. C. Fonseca-Reyna, Y. Martinez-Jimenez, A.
V. Cabrera, and E. A. R. Sanchez. “Optimization
of heavily constrained hybrid-flexible flowshop
problems using a multi-agent reinforcement
learning approach”. Investigación operacional
40.1 (2019). issn: 0257-4306.

[7] R. Garg, V. K. Bg, G. Carneiro, and I. Reid.
“Unsupervised CNN for single view depth
estimation: Geometry to the rescue”. European
conference on computer vision. Springer. 2016,
pp. 740–756.

[8] J. N. D. Gupta. “Two-Stage, Hybrid Flowshop
Scheduling Problem”. The Journal of the
Operational Research Society 39.4 (1988). Pp.
359–364. issn: 01605682, 14769360. url: http://
www.jstor.org/ stable/2582115 (visited on
05/17/2022).

[9] Gurobi Optimization, LLC. Gurobi Optimizer
Reference Manual. 2022. url: https://www.gurobi.
com.

[10] S. Hochreiter and J. Schmidhuber. “Long
Short-term Memory”. Neural computation
9 (Dec. 1997). Pp. 1735–80. doi: 10.1162/
neco.1997.9.8.1735.

[11] J. J. Hopfield and D. W. Tank. “”Neural”
computation of decisions in optimization
problems”. Biological cybernetics 52.3 (1985).
Pp. 141–152. issn: 0340-1200. doi: 10.1007/
BF00339943.

[12] L. Jing and Y. Tian. “Self-supervised visual
feature learning with deep neural networks: A
survey”. IEEE transactions on pattern analysis
and machine intelligence (2020).

[13] A. W. de Jong, J. I. U. Rubrico, M. Adachi, T.
Nakamura, and J. Ota. “Big data in automation:
Towards generalized makespan estimation
in shop scheduling problems”. eng. 2017 13th
IEEE Conference on Automation Science and
Engineering (CASE). IEEE, 2017, pp. 1516–1521.
isbn: 9781509067817.

[14] J. D. Lee, Q. Lei, N. Saunshi, and J. Zhuo.
“Predicting what you already know helps:
Provable self-supervised learning”. arXiv preprint
arXiv:2008.01064 (2020).

[15] B. Li, W.-f. Li, and S. Voß. “Modeling Container
Terminal Scheduling Systems as Hybrid Flow
Shops with Blocking Based on Attributes”.
Logistik Management. Ed. by S. Voß, J. Pahl, and
S. Schwarze. Heidelberg: Physica-Verlag HD,
2009, pp. 413–434. isbn: 978-3-7908-2361-5. doi:
10 . 1007 / 978 - 3 -7908-2362-2_21.

[16] F.-T. Lin, C.-Y. Kao, and C.-C. Hsu. “Applying the
genetic approach to simulated annealing in solving
some NP-hard problems”. IEEE Transactions on
Systems, Man, and Cybernetics 23.6 (1993). Pp.
1752–1767. doi: 10.1109/21.257766.

16

[32] Yi Wu, Min Liu, and Cheng Wu. “A genetic
algorithm for solving flow shop scheduling
problems with parallel machine and special
procedure constraints”. Proceedings of the 2003
International Conference on Machine Learning
and Cybernetics (IEEE Cat. No.03EX693).
Vol. 3. 2003, 1774–1779 Vol.3. doi: 10.1109/
ICMLC.2003.1259784.

[33] M. Zacharias. “Combining heuristics and
machine learning for hybrid flow shop scheduling
problems”. PhD thesis. Duisburg and Essen.

[34] M. Zacharias, A. Tonnius, and J. Gottschling.
“Machine Learning in Hybrid Flow Shop
Scheduling with Unrelated Machines”. 2019
International Conference on Industrial
Engineering and Systems Management (IESM).
2019, pp. 1–6. doi: 10.1109/IESM45758.2019.
8948113.

[28] F. Wang and H. Liu. “Understanding the
behaviour of contrastive loss”. Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 2495–2504.

[29] H. Wang, V. Jacob, and E. Rolland. “Design of
efficient hybrid neural networks for flexible flow
shop scheduling”. Expert systems 20.4 (2003). Pp.
208–231.

[30] R. Wang and R. Yu. “Physics-Guided Deep
Learning for Dynamical Systems: A Survey”.
arXiv preprint arXiv:2107.01272 (2021).

[31] F. Yalaoui and C. Chu. “New exact method
to solve the P m/rj /ΣCj schedule problem”.
International Journal of Production Economics
100 (Feb. 2006). Pp. 168–179. doi: 10.1016/j.
ijpe.2004.11.002.

