
This contribution provides a systematic literature
review of micro aerial vehicle (MAV) swarms for
indoor industrial applications. First, an initial list
of 1997 publications that complies with predefined
inclusion criteria was surveyed by reviewers. Next,
185 publications that comply with the Selection
Process were analyzed based on localization, control,
guidance system, safety and security, MAV charging,
communication, artificial intelligence, and applications.
The analyzed researches could possibly be deployed
in the industrial application of production, logistics
and supply chain or transferable into this field. The
publications encompassed within this study can be
classified under Technology Readiness Level (TRL)
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4. Some works do strive to offer solutions tailored
to industrial tasks, the validation of their findings
predominantly occurs through simulations or controlled
laboratory environments. The findings provide an
overview of the state-of-the-art specifications, the
technologies used by MAVs, trends and outline a future
road map for further research from a practitioner’s
perspective.

KEYWORDS:MAV swarm · indoor · logistic · supply
chain

1 INTRODUCTION
Industry 4.0 is a vision that evolved to optimize
production and manufacturing processes – from raw
material procurement to customer satisfaction [1].
Logistics is an essential component of an industry as
it ensures the link between suppliers, manufacturers,
and customers [2]. Its goal is to guarantee customer
satisfaction by assuring the delivery of suitable goods
to the right customers at the right time and place and in
the economically most efficient way [3]. Furthermore,
in the context of industry 4.0, the logistic sector is
being digitized, optimized, and automated to reduce
inaccuracies while ensuring the effortless sharing
of information in real time. Introducing unmanned
aerial vehicles (UAV)to logistics processes signals an
accelerated transformation to automation. In the EU,
logistics, warehousing, and storage represent up to
15% of the current costs [4]. In the US, warehousing
constitutes 30% of the total logistics cost [5],
underlining the potential for cost savings. Audi tested
the use of UAVs for automated transport of parts in
factory halls [6, 7]. Thus, there is a growing interest
to optimize and automate the operations in warehouse
and production facilities.
It is speculated that the UAV logistics and

transportation market will reach $ 29.06 billion by
2027 with an annual growth rate of almost 21 % [8].
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considers multi-rotor MAVs. However, Micro UAVs
are resource-constrained; for instance, they have a
limited flight time due to the battery capacity, carry a
limited number of sensors, and have a limited payload
and speed [19]. MAV swarms can offer a solution to
overcome the limitations faced by a single MAV.
A MAV swarm is a group of MAVs that use

algorithms to work collaboratively and achieve a
specific goal. The desired collaborative behavior
emerges from the interactions between the MAVs and
the environment through the sensors and actuators.
This behavior is inspired by the animals cooperating
as a team to achieve a common goal [19]. For instance,
migratory birds often fly in echelon formations to save
energy [20]. A MAV swarm allows individual MAVs to
be configured into a team to perform tasks that would
otherwise require a large, task-specific, monolithic
UAV [21]. In addition, the individual MAVs can sense,
share information autonomously, and make appropriate
decisions.
The swarming system can be centralized,

decentralized, or hybrid. Communication occurs
between a MAV and a central station in a centralized
system. A central station could be a Ground Control
System, or one of the members of the MAV swarm
could act as a central control. Centralized swarming
does not require communication among the MAVs.
If the MAVs want to share the data with another
MAV, it can be passed through the central station. In
decentralized swarming, MAVs do not require a central
station to communicate with others. Each MAV in the
swarm can be independently autonomous, intelligent,
and have computational capabilities. These two systems
are explained in Section 4.1. A hybrid system combines

Additionally, the market research report by Polaris had
valued the global drone logistics and transportation
market at $ 350.5 million in 2021 and forecast it to grow
at a compounded annual growth rate of 55.20% till 2030
[9]. UAVs have shown high potential in the logistics
sector and are speculated to be the next big thing [10].
Since the modern supply chains are complex, dynamic,
and technology-driven, there is a need for flexible
logistics systems that can optimize the supply chain.
Small and lightweight UAVs can traverse efficiently in
a cluttered and constrained indoor environment (such
as a warehouse or a factory). They can contribute
significantly towards optimization of the supply chain
[11]. UAVs perfectly fit into the Industry 4.0 setting,
where intelligent objects are networked and exchange
data with each other [12].
Micro UAV or Micro Aerial Vehicle (MAV) refers to

small, lightweight, flying robots weighing less than 2
kg [13–16]. However, none of the works [13–16] clarify
if they consider the weight of MAV with or without
payload. This publication assumes a MAV to weigh
less than 2 kg without payload. However, we believe the
maximum take-off weight of a UAV would be a better
classification parameter, as many countries consider the
maximum weight of a UAV (including payload) while
designing the regulations [17]. MAVs are classified
into fixed-wing, fixed-wing hybrid, single-rotor, and
multi-rotor [18]. Multi-rotor UAVs are the most popular
due to their high mobility, ability to take off vertically,
affordability, and ease of building. The increased
maneuverability can minimize the overall costs of the
supply chain by optimizing various logistics tasks such
as warehousing, route planning, inventory management,
transportation, and surveillance. Therefore, this work

Fig. 1: Visualizing the idea of MAV swarms using various technologies
to perform tasks in an industrial environment
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making capabilities and compute optimal paths,
even within intricate and cluttered surroundings.
Moreover, they are capable of working collaboratively
to complete a task. In the event that a MAV is low on
battery it autonomously navigates to a charging station
to recharge and another fully charged MAV takes its
place. The MAVs autonomously perform diverse tasks
such as stock taking, surveillance, and transportation
with minimal human intervention. Importantly, it is
imperative to ensure the safety of human coexistence
with MAVs. The report by Roland Berger emphasizes
that the full potential of UAVs will only be realized
when autonomous operations become the norm, and the
full potential of artificial intelligence (AI) is harnessed
[24].
Table 1 presents a list of industries that have adopted

UAVs to automate a range of industrial activities. The
list has been gathered from diverse sources, including
company websites, blogs, and news reports. The
analysis of the list highlights that UAVs have found
significant utility in inventory management. However,
the realm of autonomous localization within indoor
environments remains a formidable challenge. Although
UAVs exhibit immense potential, their integration into
industrial sectors for tasks like transportation, pick
and place operations, and surveillance is still in its
nascent stages. The current implementation of UAVs
in industrial settings is not entirely autonomous; a
certain degree of human intervention is necessary, such
as for charging, initialization, mapping and addressing
technical issues. Remarkably, the concept of fully
autonomous UAV swarms collaborating harmoniously

centralized and decentralized systems to mitigate the
disadvantages when used individually. In a hybrid
system, the swarm can have multiple central control
stations, and the individual MAVs also have limited
sensing and computational capabilities. The swarm
control is primarily decentralized and distributed
among the MAVs in the swarm [22]. One can decide
on the type of swarming system to use based on the
end goal while considering the swarming system’s
adaptability, robustness, scalability, and fault tolerance
[23].
While research on UAVs for supply chain and

logistics has gained popularity over the last couple of
years [8], there is a lack of literature reviews focused on
using UAVs to optimize the supply chain or automate
operations in an indoor industrial setting. Therefore,
this contribution aims to perform a systematic
literature review (SLR) on a swarm of MAVs operating
indoor industrial environments such as production,
manufacturing, warehouses, and factories. The
industrial environment is mainly enclosed, consisting
of constrained spaces, with humans working alongside
other machines, and has many static and dynamic
obstacles. Thus, making it suitable for MAVs to be
deployed in such an environment [10].
Figure 1 aims to visualize the goal of this review.

It depicts a swarm of autonomous MAVs working
indoors such as in a warehouse. The MAVs are able
to communicate amongst themselves and also with
a ground station. They are able to localize within
the warehouse and able to avoid static and dynamic
obstacles. These MAVs exhibit real-time decision-

Table 1 presents a list of industries that have adopted UAVs to automate a range of industrial activities.

Ref. Company Swarm Application
[25] Doks. innovation GmbH No Inventory Management. Semi autonomous charging.

Prior environment mapping required to localize the UAV.
[26] Aeriu Smart Solutions Kft. No Inventory Management. Manual charging.

Prior environment mapping required to localize the UAV.
[27] Corvus drones Yes Crop, flowers, and plant managment
[28] Amazon No Inventory Management and outdoor delivery.

Semi-autonomous outdoor localization.
[29] FedEx No Inventory Management and outdoor delivery.

Semi-autonomous outdoor localization.
[30] Walmart No Inventory Management and outdoor delivery.

Semi-autonomous outdoor localization.
[31] IKEA Yes Invenory management. Semi-autonomous localization
[32] DSV Yes Inventory Management. Manual charging.

Prior environment mapping required to localize the UAV.
[33] Ceva Logistics Yes Inventory Management. Manual charging.

Prior environment mapping required to localize the UAV.
[34] Hardis Group Yes Inventory Management. Manual charging.

Prior environment mapping required to localize the UAV.
[35] Aucxis No Inventory Management. Manual charging.

Prior environment mapping required to localize the UAV.
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relevant findings. Section 5 presents some observations
based on all the relevant publications. Finally, this
review concludes by answering the research questions
in Section 6.

2 METHOD OF LITERATURE REVIEW

This SLR is based on the guidelines suggested by [37]
and the process followed is similar to [38]. This work
includes all the published works from 1 Jan 2011 –
30 Dec 2021 that is available to researchers to get
a mental picture of the overall academic activity.
Moreover, we also included some relevant literature
from the year 2022. Google Scholar (GS) facilitates
literature discovery by indexing every scholarly
document it finds. A detailed list of the sources of
Google Scholar can be found in [39]. GS has a more
comprehensive coverage than Scopus, Web of Science
and also IEEE Explore, and includes the great majority
of the documents that they cover [40].
This work excludes works centered on agriculture,

outdoor settings, or military applications.The reasoning
behind omitting military-oriented research stems from
the understanding that military tasks are largely geared
towards outdoor and combat scenarios. Nevertheless,
we acknowledge the potential relevance of certain
military studies that could hold implications for indoor
applications. Moreover, we also excluded student degree
theses, patents, and paid content to ensure the quality
of the work. The rationale for omitting patents lies in
their non-peer-reviewed nature, which complicates the
assurance of their quality and validity. However, it’s
acknowledged that certain patents may offer valuable
insights into industrial trends. For this reason, all patents
encountered have been cataloged in Appendix C. The
detailed method, inclusion criteria and selection process
adopted in this work are explained in Appendix A.

3 UNIQUENESS OF THIS REVIEW

A total of 37 literature reviews were identified during
the selection process, as explained in Section 2. Among
those, five were relevant to this review and are listed
in Table 2. They are being discussed at this point to
emphasize the novelty value of this contribution. In
Table 2, a short content description is given regarding
the commonalities and differences to. The five relevant
reviews are listed in chronologically descending order.
Analyzing the articles in Table 2, Rejeb et al.

focuses on the business and management aspect of
using UAVs in the supply chain [8]. Dias et al. focus
on swarm robotics in general. Therefore, they do
not include all researches in the field of indoor UAV
swarm focused at indoor logistics [43]. Skrinjar et al.
focuses on only the localization techniques used in
indoor environment [44], Obeidat et al. covers only
the applications of UAVs [41]. Ucgun et al. reviews

to execute tasks remains relatively uncommon. The
existing gaps in realizing fully autonomous UAVs
within industrial contexts have motivated us to delve
into researching technologies capable of bridging these
gaps. Consequently, this pursuit has led us to formulate
the research questions that are elaborated at the end of
this section.
Furthermore, as most of the research onMAV swarms

in an indoor environment is relevant for industries, in
this work, all the publications from the previous ten
years related to MAV swarms operating indoors are
considered. This work focuses on the technology aspect
rather than the business and management aspect. The
Technology Readiness Level (TRL) is used in this
work to assess the advancement of a technology from
its initial theoretical or conceptual stage (TRL 1) to
its deployment and utilization in real-world settings
(TRL 9) [36]. The different levels are explained in
detail in Appendix B. This work also aims to help
new researchers who would like to begin research in
MAVs in indoor logistics by giving them an overview
of the technological developments and trends in this
field. Considering the points mentioned above from a
production and logistics practitioner’s perspective, we
seek answers to the following research questions:

1. Which localization technologies are preferred,
and how accurate and cost-effective are they?

2. What type of guidance, navigation, and control
(GNC) methods are used in MAV swarms, and
how does each contribute to system autonomy?

3. MAVs are considered suitable for indoors. What
are the safety concerns regarding deploying
MAVs in industries?

4. What are problems faced to achieve 24/7
operation of the MAV swarm and what
approaches are discussed to resolve them?

5. What are the most suitable swarm
communication systems for an indoor industrial
application?

6. What is current trend seen for MAV swarms in
industries with regards to AI?

7. What are the tasks that are being or could
potentially be performed using MAVs in
industries?

8. What are the research gaps regarding
deployment of MAV swarm in industries?

9. What is the future scope regarding deployment
of MAV swarm in industries?

The scope of this contribution is to answer the above
questions by conducting a systematic literature review.
The remainder of this review is structured as follows.

Section 2 presents the SLR methodology. In Section 3,
this contribution is demarcated from related surveys to
underline its novelty value. Section 4 gives a descriptive
analysis of the eight categories: localization, control,
guidance system, safety and security, UAV charging,
communication, artificial intelligence, and applications.
Every category has a subsection at the end to discuss the
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discuss it in section 4.1. Once localized, a UAV needs to
have a precise and stable flight. A controller can direct
a UAV’s flight and is regarded as the brain of a UAV.
Thus, the UAV controllers are discussed in section 4.2.
A sound guidance system would ensure a collision-free
path for a UAV swarm and will be discussed in section
4.3. Safety is paramount when deploying a UAV swarm
indoors and is discussed in section 4.4. Communication
among MAVs and MAVs to a base station is essential
to achieve a swarm behavior and will be discussed in
section 4.6. Subsequently, works incorporating AI on
UAVs are discussed in section 4.7. Incorporating the
technologies mentioned above on a MAV, it is possible
to use MAVs in industries. Therefore, in section 4.8, we
look at the works that have deployed MAV swarms for
various industrial applications.

4.1 Localization
Among the 185 papers that reached stage IV, 27 papers
were focused on indoor drone swarm localization,
adhering to the selection criteria in Table 13.
Yearwise distribution of these publications can be
observed in Table 5. One can observe that there has
been a substantial increase in the number of relevant
publications from 2019 to 2021.
A key challenge in designing truly autonomous UAVs

is the UAV localization problem. UAV localization is

only the charging stations for UAVs [42]. None of the
related surveys focuses on the technological aspect of
MAV swarms in indoor or industrial environments.
Therefore, this SLR aims to bridge this research gap.

4 DESCRIPTIVE ANALYSIS OF
LITERATURE CORPUS

1997 publications were obtained from the inclusion
criteria and were analyzed based on the selection
criteria. 185 of them made it to Stage IV as their full
text satisfied the Selection Criteria. Table 3 illustrates
the number of contributions per stage. In this work, the
publications that reached Stage IV are considered for
further analysis.
Figure 2 depicts the distribution of all the 37 relevant

literature reviews. Seven literature reviews cover
swarm behavior, algorithms, applications, challenges,
swarm optimization, and advancements in swarm
robotics: grouped under the swarm category. The
guidance system (GS) category consists of reviews
focusing on path planning, collision avoidance, and
routing algorithms. This category has eight reviews.
There are two reviews related to UAV swarms in
logistics. Analyzing Figure 2 reveals that more than
60% of all the related reviews are from the years 2020
and 2021. GS and Swarm’s categories dominate in
terms of quantity. The Navigation System category
consists of publications focusing on localization and
map building [45].
Localizing a UAV indoors is fundamental when

developing an autonomous UAV swarm. Among all
the research that reached the final stage, most of them
focused on localization. Therefore, based on our criteria,
localization is one of the most researched fields, and we

Table 2: Related literature reviews

Ref. Year Author & Description
[8] 2021 A Rejeb et al. perform a SLR to examine the potential and challenges for UAVs to be integrated

in supply chain. They focus towards the managerial aspect and the benefits for an organization
on incorporating UAVs in the supply chain. They do not delve into the technological aspect of
UAVs.

[41] 2021 Obeidat et al. presenta survey on indoor localization and localization detection techniques.
The localization systems in the survey include satellite-based navigation, inertial navigation
systems, magnetic-based navigation, sound-based technologies, optical-based technologies, and
RF-based technologies. The authors compare the localization systems in terms of accuracy and
cost. Finally, they give an overview of the most common localization algorithms and methods.

[42] 2021 Ucgun et al. survey the wired and wireless charging stations for charging batteries used in
rotary-wing UAVs. The authors compare the charging stations based on energy efficiency and
reliability.

[43] 2021 Dias et al. review fundamental concepts related to swarm robotics, frameworks, simulators,
platforms, basic behaviors and tasks, tools, and application fields in swarm robotics. They also
discuss the techniques currently applied to solve the field problems and the research tools used.

[44] 2018 Jasmina et al. review the contributions of UAVs in logistic processes such as delivery and
warehouse operations. The authors highlight the advantages of incorporating UAVs in logistics.

Table 3: Examined Publications per Stage.

Stage No. of Publications
(I) Keywords 1997
(II) Title 805
(III) Abstract 371
(IV) Full Text 185



6

sensor nodes is transmitted to a central node. The
central node performs the computation for all the
sensor nodes and shares the information with them.
Thus, the computation is performed only once, which
decreases the computation cost. The central node is also
utilized for the coordination, communication, and task
allocation between MAVs [48]. Centralized algorithms
can produce globally optimal solutions; however, the
overall system (or centralized system) is prone to failure
if the central node fails or a communication problem
occurs.
On the other hand, decentralized and distributed

algorithms do not depend on a single node for
communication. A single point of failure is removed,
increasing the robustness and scalability with a more
computationally efficient solution for a multi-UAV
system. Systems employing these algorithms are also
referred to as decentralized and distributed systems.
These systems do not depend on a single node for
communication and are tolerant of errors. A UAV can
perform computations by relying directly on its sensors’
measurements (decentralized) or by combining them
with information communicated by neighboring UAVs
(distributed). Distributed algorithms enable swarms of
UAVs to gather information from disjoint locations
simultaneously, which makes the swarm more robust
to sensor failures since there is some redundancy in
the system. A major drawback with the decentralized
and distributed approach is that an individual MAV
would require on-board sensors and computational
capabilities, which will increase the weight and
power consumption of the MAV. Moreover, there is

determining a UAV’s position (e.g., coordinates) relative
to a global reference frame or a local reference frame.
Accurate knowledge about the 3D position is essential
for UAVs to navigate autonomously to different points
in space and perform aerial coverage tasks such as
exploration and mapping.
Global localization methods for indoor UAVs using

external systems such as motion tracking cameras
are accurate and have low computational complexity.
However, the coverage area of each motion-tracking
camera is limited, and the cameras must be positioned
in such a way as to ensure that they can see all the
objects that need to be tracked, which could be a
problem in a crowded warehouse. The number of
motion tracking cameras required depends on several
factors, such as the accuracy requirement and size
of objects to be tracked. Therefore, such systems are
limited in operation space, are expensive, and thus,
are not practical for a large industrial setting. Local
localization methods determine the position of a robot
within a specific local area, typically indoors or in a
small outdoor space, unlike global localization, which
involves determining the position of a robot anywhere
in the world. Local localization methods use onboard
sensors and are independent of any external systems,
therefore suitable for indoor industrial environments
[46] [47].
In a collaborative drone swarm system, knowledge

of the relative pose of neighboring UAVs is imperative.
Algorithms developed for MAV systems can be
either centralized, decentralized, or distributed. In
a centralized approach, the data from all individual

Fig. 2: Distribution of literature reviews by year
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distances. It is used in the Angle of Arrival (AOA)
approach.
In AOA, node location is estimated using the angle of

arrival of two anchors’ signals at the node. Unlocalized
nodes use the triangulation method to evaluate their
locations. AOA requires additional hardware, which
makes it challenging to use with a drone swarm.
Moreover, this technique is severely affected by NLOS
situations [49, 50, 58].

Dead Reckoning (DR): The DR technique is used to
estimate the present location of a moving object using a
known previous location and velocity information over
some time. The errors are cumulative as new position
estimates are calculated solely from previous estimates.
Typical sensors used for dead reckoning in robotics
include wheel encoders, optical flow, and inertial
measurement units (IMUs). An IMU is commonly
used for dead reckoning. It consists of accelerometers,
gyroscopes, and magnetometers, measuring triaxial
acceleration and angular velocities. [41, 59].

4.1.2 Localization Technologies
The techniques mentioned above are commonly used
with various technologies for localizing MAVs indoors.
Some of the essential technologies are explained below:

Optical Based: The optical signal is an electromagnet
signal. Here, Infrared (IR) and Laser light-based
technologies are discussed. Laser sensors are used for
positioning. These sensors transmit a laser and analyze
the reflected light. The time between transmission and
reception of a short laser pulse is measured using a TOF
system. This type of sensor is called light detection and
ranging sensor (LIDAR). A drawback of LIDAR is the
high computational cost which may affect the response
in real-time applications [60]. IR systems are composed
of a transmitter and a receiver. These systems require a
Line of Sight (LOS) between transmitter and receiver,
as IR cannot penetrate through solid objects such
as doors and walls. IR systems are easy to deploy,

latency due to the lag induced by computations and
communication decay due to the number of interactions
among the swarm members [49, 50].

4.1.1 Localization Techniques
Localization techniques can also be classified into
range-free and range-based localization, as shown in
Figure 3. Range-based algorithms are more accurate
than range free. Therefore, range-based localization
techniques are mostly preferred for Indoor MAV swarm
and will be discussed in this work [51].

Lateration: Lateration involves the determination of
the robot’s position based on distance measurements
between the target and nodes. The position of the nodes
is known. For instance, to estimate the location of a
target in a 2D plane, three nodes with known locations
are required [49]. In trilateration, three nodes are used
to estimate the location. If more than three nodes are
used, the technique is called multilateration. Lateration
is used in approaches such as Time of Arrival (TOA),
Two-Way Ranging (TWR), and Received Signal
Strength Indication (RSSI).
TOA is the absolute time instant when a radio

signal from a transmitter reaches a remote receiver.
Differential measurements between TOA can also be
used to compute distance, Time Difference of Arrival
(TDOA). TDOA is less affected by radio reflection and
is more accurate than TOA in the NLOS (Non-Line of
Sight) situation. [50, 52].
In RSSI, the distance between the transmitter and

receiver is estimated by measuring signal strength at
the receiver. Differential measurements can also be
used to compute distance (DRSSI) [50, 53].
In TWR, the Time of Flight of a radio frequency

signal between the anchor and the node is measured,
which is then multiplied by the speed of light to get
the distance [49]. [54], [55], [56], and [57] use TWR to
achieve localization.

Angulation: It is a direction-based technique using
information about angles between nodes instead of

Fig. 3: Localization Techniques
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in constricted spaces. Zhang et al.use a servo camera
to tackle the problem of restricted Field-of-View (FoV).
They fuse UWB, VIO, and servo camera measurements
to achieve localization accuracy of around 6 cm. In
addition, Aruco markers are pasted on UAVs to enable
other UAVs to detect and identify them [65]. The
servo camera setup can compensate for the drift but
not eliminate it. Using markers for identification is
unsuitable when numerous drones are to be deployed,
mainly due to the limited number of unique tag IDs[66].
Furthermore, a robot with many moving parts requires
frequent maintenance and increases the probability of
failure. An industry would want robust robots requiring
low maintenance.
Holter et al. propose a visual relative localization

system that monitors a 360 degree FoV using a
spherical camera. They put fiducial markers on UAVs
for detection and achieved a relative localization error
of around 4 cm [67]. Finally, Nadler et al. present the
design of two lightweight bearing-only sensors with
low power consumption [68]. The first is a camera-
based sensor using a spherical mirror placed in front
of the lens to enable 360◦ field of view. The second one
is a laser-based beacon together with a photo-diode-
based sensor. They do not use odometry and achieve a
mean localization error of 15 cm.
Cao et al. propose VIR-SLAM, a SLAM

approach combining monocular camera and inertial
measurements, to achieve visual-inertial odometry. To
correct the drift error, authors use a UWB ranging with
a static anchor placed in the environment. The drift
is corrected when the anchor is visible to the camera.
The authors perform a map fusion and implement
collaborative SLAM to get the state estimation. They
reported a start-to-end error of 4.8cm in 2D. However,
in the z direction, the accumulated error was much
bigger [57]. Chen et al. propose a visual multi-robot
localization method based on stereo ORB-SLAM2 to
obtain the state information and build the sparse local
maps for UAVs [69].
Pavliv et al. present an approach to detect, localize,

and track a drone swarm relative to a moving human
using a headset with an embedded camera and IMU.
They use a deep neural network(DNN) for drone
detection. Their approach does not use artificial
markers and is a step towards achieving human swarm
interaction indoors, which is helpful in applications
such as security, surveillance, and inspection [66].
Frame-based cameras record the entire frame at a

pre-defined rate and capture unnecessary information.
Moreover, under fast camera motions, the data may
have motion blur, large displacements, and occlusions
between consecutive frames [70]. These factors could
result in inaccurate localization using cameras for fast-
moving UAVs. Event cameras can detect movements
thousands of times faster than standard frame-based
cameras and could be used for localizing UAVs. They
do not capture full images but rather asynchronously
output the intensity change for each pixel. The EC has

lightweight, small in size, inexpensive, and mostly
use the trilateration technique to estimate the location
of a node[41]. IR is generally used for short-range,
preferably under 5m, as its performance degrades for
more considerable distances. Roozing et al. present a
low-cost IR tracker with a general-purpose point-based
pose estimation algorithm for localizing a MAV. The
authors compared the accuracy against measurements
from an onboard IMU and external stereo vision system
[61].

Vision Based: Vision-based systems use a camera
for localization and could be included in optical
systems. As more than half of the publications use a
camera for localizing a MAV, we categorize the vision-
based systems separately in this work. Vision-based
systems are considered the future of indoor navigation
technology. They utilize RGB-D images from a
monocular camera or multiple cameras to train and
learn the models for localization. The wide availability
of low-cost, low-power, lightweight cameras and
advancements in computer vision techniques have
made real-time vision processing much more practical.
The pictures or videos captured by the camera can be
processed onboard, or in an external system [62]. These
systems can provide accuracy in several centimeters
in environments with good visibility and well-defined
features. However, accuracy can be affected by
occlusions, lighting conditions, and environmental
changes.
Visual odometry is widely used in robotics to

estimate the motion of a robot (translation and
rotation) in real-time using sequential images obtained
from the camera. The main drawback of VO is that
the accumulated errors may be significant. Visual
odometry-based methods can be divided into feature
matching (matching features over several frames),
feature tracking (matching features in adjacent
frames), and optical flow techniques [63]. Optical flow
is one of the most commonly used techniques used for
image-based navigation. Approaches based on optical
flow estimate the motion based on the analysis of the
sequence of frames caused by the relative movement
between an object and camera [60]. In addition, fiducial
markers such as Aruco or QR codes are also used to
localize UAVs. The markers can be placed on the UAVs
or fixed at known locations in the hall, enabling the
UAVs to compute their location relative to the marker.
Fusing the Vision sensors measurements with other

sensors, such as inertial or RF sensors, can improve
UAV localization estimation, as shown in Figure 4. Li et
al. use a deep neural network (DNN) based architecture
on images from a monocular camera to achieve relative
localization between MAVs. They use relative position
estimates from UWB for labeling, and subsequent
training of the DNN in a self-supervised way [64]. Their
method is suitable for an industrial setting. However,
the field of view of the AI Deck camera is limited to 87
degrees which could result in inaccuracies when flying
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30 and 40 cm[97]. Furthermore, Orgeira et al. use RFID
received signal strength measures and sonar values to
develop a positioning system within a manufacturing
plant for an indoor light part delivery UAV [94].
MAV swarms for indoor deployments face multiple

challenges, such as a lack of infrastructure, limited
sensors, limited computing power, and low-bandwidth
communication. Purohit et al. propose a location-less
coverage system that allows a resource-constrained
MAV sensor swarm to collaboratively and efficiently
attain sensing coverage of a target. They disperse
anchor nodes(MAVs) in an area while maintaining
radio connectivity among the nodes. Subsequently,
explorers (MAVs) move and sense the environment
while collecting radio signatures from anchor nodes.
The explorers receive high-level commands from the
base station to follow a defined path. Their method suits
applications such as surveillance, search & rescue, or
nuclear radiation monitoring [98].
Vision-based methods are intrinsically scalable

but are sensitive to the visibility of the markers or
UAVs. Marker-less detection requires heavy onboard

low latency (in order of microseconds), low power
consumption, high dynamic range, and low bandwidth
demands [71] [72]. None of the works in Figure 3 use
an EC. There has been a sharp spike in the number of
publications using EC for localization and ego-motion
estimation. The list of publications has been well
organized in a GitHub repository [73].

Radio Frequency (RF): RF waves can penetrate
materials like walls and human bodies. The penetrating
characteristics of RF waves reduce the multi-path
effects and identify the user position with precise
accuracy [90]. The position accuracy of an RF-based
Ultra wide-band (UWB) system depends on the line
of sight (LOS) conditions between the UWB anchors,
and tags [91, 92]. UWB methods primarily utilize
triangulation and angulation techniques [41]. UWB
ranging or localization is rarely used as a standalone
system. Instead, it is often integrated with other sensors
such as IMU, optical, or sound sensors to improve the
overall accuracy [93]. Many works use the Extended
Kalman filter (EKF) for full pose estimation of a UAV
[54, 55, 78, 80].
UWB offers many advantages, such as high-

bandwidth transmission, low power consumption,
robustness against interference, and centimeter-level
accuracy performance. Thus, making it suitable for
Warehouse management [94], Internet of things [95],
industries [94], and other logistic applications [96].
Xianjia et al. overview the UWB-based networking
and localization for robotic system [93].
Radio frequency identification (RFID) is also widely

used for indoor localization. Dimitriou et al. propose
a moving system instead of a fixed network of RFID
antennas and readers, which could be deployed in
warehouses, manufacturing, industry, or retail stores.
A moving robot/MAV which hosts radio frequency
identification (RFID) equipment aims to locate passive
RFID tags attached to objects in the surrounding area.
They achieved a mean localization error ranges between

Fig. 4: The distribution of publications based on the localization technologies used.

Table 4: References corresponding
to distribution of Figure 4

Repres-
entation Count Papers

Reference
A 3 [74–76]
C 1 [77]
B 5 [52, 54, 55, 78, 79]
D 1 [80]
E 2 [53, 61]
F 4 [56, 64, 81, 82]
G 5 [57, 58, 83–85]
H 3 [66, 86, 87]
I 3 [67, 88, 89]
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on the specific requirements and environment of the
application. RF-based methods are typically better
suited for indoor environments and can provide
accuracy in several meters [99]. However, other
localization technologies, such as vision or ultrasonic-
based systems, can be more accurate and reliable in
certain situations, such as in environments with high
levels of RF interference or where a high degree of
accuracy is required.

Inertial Navigation System (INS): An inertial
navigation system (INS) employs inertial measuring
units (IMU) such as an accelerometer and gyroscope to
continuously calculate by dead reckoning the position,
orientation, and velocity of a moving object [100].

Sound Based: Sound waves have a lower velocity
than electromagnetic waves; this makes time
synchronization easier and leads to high accuracy
when estimating ToF. Localization using sound can be
classified as ultrasonic and acoustic-based navigation
systems. Liu et al. review various acoustic-based
indoor localization systems [101]. Baisiri et al. present a
suitable method to localize a swarm of MAVs. A single
beacon MAV circles around a reference point in space
while emitting continuous linear chirps of predefined
frequency. MAVs are equipped with an onboard
audio-based relative positioning system to measure
the bearing of the beacon MAV without needing a
communication network [47].

4.1.3 Discussion
The publications in Table 5 use external positioning
systems such as optitrack or vicon or stereo-based
systems as the ground truth to estimate a UAV position.
Excepting six publications [52, 54, 55, 61, 64, 98], the
others have not mentioned the weight and size of the
UAVs deployed, and neither is it possible to compute the
total weight and size of UAVs with onboard equipment.
Therefore, we cannot comment on the preferred
physical parameters of UAVs in a swarm working
indoors. Homogeneous swarms consist of UAVs of the
same model and similar computing characteristics. In a
cluttered indoor environment, accurate NLOS operation
of a swarm is essential. However, the methods used by
only three publications are suitable for non-line of sight
(NLOS) operation [54, 102, 103]. If not mentioned,
we considered the swarm homogeneous, centralized,
and not suitable for NLOS. The publications are also
classified based on the ease of reproducing their work.
Suppose a publication provides the link to an external
repository with the code or explains clearly the step-
by-step process of implementing their method. In that
case, that publication is considered easily reproducible.
Analyzing Figure 4, one can infer that IMUs are not

used alone for the localization task. A combination of
UWB, INS, and Optical-based methods is the most
popular. Based on our search criteria, we only found
one publication each for localization using sound-

computation, which is problematic. However, relative
localization based on wireless communication between
UAVs is light, low-cost, and omnidirectional [55]. Steup
et al. present a UWB-based localization technique
suitable for a MAV swarm. Each drone is equipped
with a UWB transceiver module for communication
and distance measurement. Drones in a swarm can
switch between a swarm member and an anchor
node. The authors recorded the localization error
to be predominantly in the range of ±2m [74]. High
positioning accuracy and low latency are essential to
deploy drones in an industrial setting. In traditional
UWB localization techniques, each tag performs a
separate ranging process with all anchors thus, incurs
a high system delay. Lee et al. propose a UWB-based
positioning technology that reduces the network’s
overhead. They removed the overhead of distinguishing
between nodes as anchors or tags. Each node performs
the same operation. They separated the ranging and
information transmission processes using an out-of-
band network. The authors reported a positioning error
of 32.89 cm [75].
Wei Sun presents a system to sense the relative

position of nano drones in a swarm using RFID. Passive
RFID tags are attached to each drone, and the relative
position of all the RFID-tagged drones is estimated
based on the spatial-temporal phase profiling [76].
Choi et al. present a lightweight UWB-VIO-based
relative positioning method that combines UWB with
VIO to perform device-to-device positioning without
requiring pre-installed infrastructure or pre-learning.
In addition, the authors incorporate intelligent virtual
anchor generation control and adaptive ranging, which
reduces computing complexity and power consumption.
Moreover, it also makes the system robust against
NLOS environments [85]. Generally, in a UWB setup,
multiple fixed modules (anchors) are installed before
they can localize one or multiple moving modules
(tags). Natter et al. propose a method to remove the
need for tedious initial manual setup. The authors
disperse the MAVs in an environment and deploy them
as anchors incrementally. Any flying MAV relies on
both odometry and landed MAVs for localization [77].
Li et al. propose a technique to estimate the relative

position of multiple UAVs by fusing the measurements
from an IMU, an optical flow sensor, and a UWB.
They use an EKF for state estimation [55]. Few other
publications also use a similar approach with a variant
of EKF to achieve localization with an error of less
than 1 m [52, 54, 78]. Liu et al. propose a tight fusion
method for 3D UAV localization by fusing the WiFi
round-trip time and an IMU. They used an outlier EKF
and reported it to perform better than the classic EKF
[79].
The accuracy of RF-based localization systems

can be affected by the density and distribution of RF
sources, interference from other wireless devices, and
the presence of walls and other obstructions. Therefore,
the choice of localization technology to use depends
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4.2 Control
The control part constitutes a core part of a UAV.
It controls the aircraft’s stability and controls each
movement robustly and precisely. In this survey,
we consider UAV swarms, so we divide this control
layer into three levels: the single UAV controller,
collaborative control, and formation control.
In the first level, isolated low-level controllers are

required to maintain the angular stability of each MAV
relaying only in IMU sensors or even the position
stability when localization sensors are involved in
this control level. These low-level controllers are
usually implemented when a commercial autopilot,
like Ardupilot or Pixhawk, or a commercial MAV,
like a DJI Tello or a Crazyflie, is purchased. However,
the vast majority of these low-level controllers only
provide attitude control, so the position of the MAV
can drift over time. Therefore, a high-level controller
is needed when more precise control is required, such
as following a trajectory in space or tracking an object.
When individual UAVs are equipped with a controller,

they can coordinate their movements to cooperate or go
through space while maintaining a specific formation.
The formation control layer supervises the behavior of
each UAV to ensure a coordinated action of a group of
UAVs towards an objective.
Similarly, collaborative control approaches for UAVs

require an additional layer to define an overall task for
the swarm. Subsequently, an appropriate architecture
divides the task into sub-tasks for each agent. The
UAVs interpret these sub-tasks as set points in their
different control layers.

4.2.1 Single UAV controller design
Only 13 publications focused on designing UAV
controllers, according to the inclusion criteria in

based [47] and Ultra Violet Direction and Ranging
(UVDAR) techniques [89]. [86] uses measurements
from a magnetometer, gyroscope, and optical flow to
estimate the position. Only two out of the 16 Optical
based techniques use IR system [53]. The others use a
camera sensor.
The metrics for measuring localization accuracy vary

depending on the algorithm and application domain.
The metrics used are: mean position error, average
error, root mean square error (RMSE), mean absolute
error, mean square error, position error, and absolute
trajectory. However, two other works used position error
in pixels [64] and deviations from the ideal trajectory
[53] as the metric. Ten publications used RMSE as
the metric. The localization accuracy results varied
with the flight duration and the number of drones.
Thus, there is no single standard metric to measure
the accuracy of drone swarms’ indoor localization,
making it challenging to compare the accuracy of the
approaches used by various publications.
Among the 25 publications, only one work allows

the temporary join or exit of the UAVs at run-time,
referred to as plug-and-play [102]. Plug-and-play makes
the swarm more robust and scalable and remains a
relatively open research area. Scalability and robustness
are essential properties for deploying a swarm indoors.
One publication focused on the localization of UAVs
specifically for an industrial environment. All 25
publications conducted testing and demonstrated their
findings in simulated conditions or in a laboratory
setting. Therefore, all of these publications can be
classified as belonging to TRL 4. There is a lack of
research concentrating on deploying UAV swarms in
the industry, making it challenging for industries to gain
full benefits from research in the indoor localization of
MAV swarms.

Pub. [53] [61] [47] [80] [87] [54] [52] [56] [84] [86] [69] [67] [55]
Year 2012 2013 2014 2017 2017 2018 2018 2019 2020 2020 2020 2020 2020
Test Env. I I S,O S I I I I,O O I S I S,I
Scheme DC C C DC C DC C DC DC C C C C
NLOS N N N N N Y N N N N N N N
Swar H H H - H H H H H NH H H H
Ease Rep. N N N Y N Y N N N N N N Y
Pub. [102] [65] [74] [66] [89] [58] [57] [64] [78] [88] [83] [79] [85]
Year 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2022 2022
Test Env. I,OD I,O I,O I, S,O I,O I D I S,I,O S,I I I
Scheme DC DC C C DC DC D DC DC DC D C C
NLOS Y N N N N N N N N N N Y Y
Swarm H H - - H - H H H H NH H H
Ease Rep. Y N Y N N Y N Y N N N N N

Table 5: Classification of publications focused on indoor localization of UAV swarm.
NLOS: Non line of sight, I: Indoor, O: outdoor, OD: outdoor dataset, S: Simulation, C: Centralized,
DC: De-centralized, D: Distributed, H: Homogeneous, NH: Non Homogeneous, Y: Yes, N: No
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the effect of external disturbances on the system by
controlling the magnitude of the closed-loop transfer
function. This method uses mathematical optimization
to find control inputs that result in the best performance
for the system, even in the presence of external
disturbances. H-infinity control benefits control
systems for its robustness, stability, and performance
in the event of uncertainties in the model and external
disturbances [108].
Since the quadrotor system has four inputs and six

degrees of freedom, it can be considered a non-linear
under-actuated system. Therefore, a non-linear (NL)
controller is warranted to obtain a stable flight. Some
commonly used non-linear controllers are feedback
(FB) linearization, backstepping control, and sliding
mode control (SMC). Intelligent control (I) covers a
wide range of uncertainty compared to other controller
categories. Model predictive control (MPC), fuzzy
logic (FL), and neural network controllers are the types
of intelligent controllers that are commonly used [109].
Romero et al. implement a model predictive

contouring control (MPCC) for time-optimal quadrotor
flight indoors. They address the problem of flying a
UAV through multiple waypoints in minimum time
by generating a path in real-time. Their approach is
best suited for situations where UAVs are required
to achieve high accelerations and aggressive attitude
changes, such as in UAV racing. They can reach speeds
of up to 60 km/h [110]. High-speed UAVs in industries
could speed up industrial processes and save money.
The University of Zurich has done substantial research
on building high-speed UAVs that can beat professional
human pilots in a UAV race [111–113]. However, more
research is needed to make this technology safer and
more viable for industries.

4.2.2 Collaborative control
Collaborative control, within the field of swarm
intelligence, studies the ability of systems composed
of multiple agents to execute a task in a coordinated
manner. Over the years, several researchers have
applied collaborative control techniques in mobile
robotics (including UAVs) by imitating natural
behaviors such as ant colonization, bird flocking,
hunting packs, and others. Based on this, the control

Section A.1. These inclusion criteria may leave out
several relevant articles on the control of each UAV
in isolation since some keywords like swarm may not
appear in most relevant articles on UAV control. Isolate
UAV control is the basis for generating collective
behaviors among multiple UAVs. Thus, we have
extended our inclusion criteria to cover state-of-the-
art UAV controllers more reliably.
The control strategy for MAVs is generally a double-

loop architecture, also known as cascade control. An
inner loop for attitude stabilization and an outer loop
for position control [104, 105]. Several different classes
of controllers have been used to control MAVs. They
can be broadly classified into three categories, as shown
in Figure 5.
Linear controllers were the first controllers used

to obtain a stable flight. The proportional Integral
Derivative controller (PID) is one of the most popular
controllers due to its simplicity. Other methods, such
as Linear Quadratic Controllers (LQC), are control
methods that use mathematical optimization to control
the behavior of systems. There are two types of LQC:
Linear Quadratic Regulator (LQR)[106] and Linear
Quadratic Gaussian (LQG) controllers [107]:

• LQR controllers use linear control theory to
optimize a cost function that balances the trade-
off between control effort and system performance.
The goal of an LQR controller is to find the optimal
control inputs that minimize the cost function,
which is a combination of the state of the system
and control inputs. LQR controllers are widely
used in control systems because of their simplicity,
stability, and robustness.

• LQG controllers are an extension of LQR
controllers that consider the presence of process
noise and measurement noise. LQG controllers use
Kalman filtering to estimate the system’s state and
optimize the control inputs based on this estimate.
LQG controllers are commonly used in control
systems with significant uncertainty in the system
dynamics or measurement noise.

H-infinity control is another method mainly used
for systems with external disturbances and model
uncertainties. H-infinity control aims to minimize

Table 6: List of publication focused on control strategies deployed on UAVs.
FPID: Fuzzy PID, NMPC: Non-linear MPC

Pub. [114] [115] [116] [117] [118] [119] [120] [121] [122] [83] [123] [124]
Year 2014 2018 2019 2019 2019 2020 2020 2021 2021 2021 2021 2021
Category L I I I I NL L I NL I I
Technique LQR FPID Fuzzy MPC NMPC SMC H NMPC FB MPC NMPC
Swarm H - H H H NH H H H NH H -
Control D - D DC D C DC DC C D C -
Ease Rep. N N N N N Y N Y N N N N
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[130]. On their side, Yazıcıoglu et al. state a game
theoretical solution to the distributed task execution
problem, where a homogeneous team of robots plans
their trajectories in a distributed manner to provide
optimal service to cooperative tasks dispersed over
space and time [131].

4.2.3 Formation Control
The swarm formation control has multiple applications
and theoretical challenges that have attracted
the attention of researchers in recent years. This
technique organizes the robots in a global structure
by modifying their locations to complete a defined
task while considering their dynamic constraints [43].
According to [132], these systems face three main
problems: formation generation, shape-retaining, and
reconfiguration. In this context, the formation can be
rigid (agents are moving to maintain relative positions),
flexible (reconfiguration or splitting with detected
obstacles), or both depending on the task [133, 134]. In
the literature, several methods deal with the formation
control problem. However, some authors [132, 135, 136]
have grouped them into the following categories:
1. Leader-follower;
2. Virtual structure;
3. Behavior-based;
4. Consensus-based.

In this context, the leader-follower approach
designates one or more agents in the formation to be
the leaders and the others to be followers; in these
cases, the trajectory path of the leader is the follower
reference. The main advantage of this strategy is its
simplicity and scalability; however, this configuration
is highly dependent on the leader. For instance, the
research presented by Rafifandi et al. [137] uses a pole-
placement technique to develop proportionalderivative
(PD) controllers for the follower in a real quadrotor
scenario. Moreover, other researchers apply deep
reinforcement learning techniques to perform this task
[138–140]. In the case of a leader and follower failure,
[103] propose a dynamic, collaborative navigation

architecture is decisive in the coordination. Multiple
works in the literature identify three types: centralized,
decentralized, and distributed.
Therefore, in centralized architectures, task control

depends on a central node; their main advantage is
the simplicity of the agents in the swarm; however,
their excessive dependence on the central system
could be a problem. On the other hand, in the
decentralized architecture, each agent performs its
tasks autonomously or with a tiny intervention of the
central node; its main disadvantage is the computational
complexity of the hardware and software of each agent.
Thus, distributed architectures leverage the advantages
of both centralized and decentralized systems. For
instance, Foerster et al. [125] use a centralized planning
and distributed decision-making system to improve the
limitations of single-agent observation; similarly, Luna
et al. [126] propose a centralized task planning system
with a distributed formation controller. In an indoor
factory, collective perception of the environment can
increase factory automation. Garcia et al. introduce two
decentralized resource allocation schemes: 1. device
sequential and 2. group scheduling. They evaluated
the schemes in an industrial robotic swarm setting
and applied them in a UAV swarming scenario [127].
In a recent approach of distributed control, where the
authors propose a combination of locally centralized
and distributed architecture to perform a cooperative
navigation task, the centralized system estimates
the positions of the UAVs in the first stage, and the
corrections are calculated in a second stage with
distributed collaborative estimations [128]. A similar
approach using probabilistic estimation techniques can
be found in [129].
In collaborative control proposals, the Multiple

Travelling Salesman Problem (MTSP) is widely
researched and has applications such as mapping,
target tracking, and warehouse order-picking problems.
Sathyan et al. follow the approach of minimizing the
total time required to perform a task by the swarm to
solve the MTSP problem. They propose a cluster-first
approach that allocates each UAV to a subset of targets

Fig. 5: Categorization of Controllers [109]
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introduce an approach called Multi-Robot Preemptive
Task Scheduling with Fault Recovery (MRPF) [154].
They evaluated the MRPF through experimentation
on mobile robots in a small-scale physical warehouse
called ARENA. In case a robot fails, MRPF ensures a
replacement. MRPF is suitable for MAVs in logistics.
Wubben et al. focus on resilience against losing any
number of swarm elements and reconfiguring a swarm
into any new desired formation [155]. Their approach
can also handle swarm splitups so that a subset of
the original swarm can still work together. Finally,
Ramachandran et al. propose a method that enables a
team of heterogeneous robots to reconfigure themselves
to a new formation in case a robot’s resource fails [156].
15 publications focused on formation control of UAV

swarm and are listed in Table 7.

4.2.4 Discussion
In this chapter, we can observe different techniques
used in the literature, starting with methods for the
design of single UAV controllers up to the coordination
of tasks and formation control. In this way, each control
layer faces its own challenges.
When developing or using a controller, it is crucial to

consider the angular stability based on IMU sensors;
and the correction of accumulated errors in velocity
and position, including the additional sensors used to
correct them. Observing Table 6, it can be inferred that
most publications use an intelligent controller, as it can
manage the numerous uncertainties that occur during
a UAV flight. However, no publications use AI-based
techniques to develop a control strategy for an indoor
UAV swarm. AI shows promising results in other
fields and could help design a highly stable controller.
The control methods are tested in a laboratory or
a simulator. As the industrial environment is very
different, experimentation in an industrial setting would
give a clearer picture of the usability of the proposed
controller for UAVs flying in an industry. Therefore,
all publications in this category can be classified as
belonging to TRL 4.

4.3 Guidance System
In this work, guidance systems include path planning
and collision avoidance methods deployed on indoor
UAV swarms.
Path planning uses sensor data and initial robot

information to allow an autonomous robot to
compute the best path from source to destination

model based on a hierarchical navigation structure
to recover from the failure. Their approach improves
the followers’ positional accuracy and the swarm’s
navigation robustness.
In the virtual structure technique, UAVs should

maintain a rigid geo-metrical relationship between
them; its main challenge is to keep formation for
collision avoidance tasks. Low and Ng [141] present
a virtual structure approach based on curvilinear
coordinates to get a flexible formation structure to
avoid obstacles, and Cai et al. [142] combine the
virtual structure technique with potential field to get
a cooperative formation control.
On the other hand, in the behavior-based method, the

control signal is obtained by the weighted combination
of different behaviors, such as collision avoidance,
moving to a goal, maintaining the formation, and
others. For instance, Craig Reynolds developed the
flocking behavior using three basic rules: cohesion
rule, alignment rule, and separation rule [143]; other
examples of flocking behavior can be found at [116, 118,
144–148]. Xinhua Wang et al. [149] uses the behavior-
based strategy as an active fault-tolerant control method
based on the principle of fault hiding to hide the failure.
Finally, the consensus strategy proposes cooperative

control among swarm agents and is commonly used in
decentralized systems. For example, in [150], Kuriki
and Namerikawa propose a consensus-based control
to keep the desired formation and decentralized MPC
in each UAV to avoid obstacles. Furthermore, the
research by Yan [151] shows cooperative guidance and
control algorithms based on a second-order consensus
algorithm. On the other hand, the authors in [152]
propose a consensus control method using Riccati
equations in discrete time.
The successful execution of a formation flight

requires accurate location information. Accurate
pattern formation of MAVs relies on either centralized
or distributed control. Centralized control primarily
relies on external tracking devices such as GPS or
motion-capturing systems. Distributed control relies
on onboard sensing, and MAV to MAV communication
[153]. In this way, formation control could be a special
case of collaborative control. The formation flying
of UAVs is prone to failures or faults, often affecting
the entire formation. The failures in UAVs generally
include actuator and sensor failures. Therefore, fault-
tolerant methods are required to ensure the error-
free operation of the MAV swarm. Kalempa et al.

Table 7: Classification of publications focused on formation control of UAV swarm.
C: Centralized, DC: De-centralized, D: Distributed,Y: Yes, N: No

Pub. [114] [87] [157] [116] [137] [56] [69] [158] [65] [159] [144] [160] [161] [145] [162]
Year 2014 2017 2019 2019 2019 2019 2020 2020 2021 2021 2021 2021 2021 2021 2021
Category 4 1 - 3 1 4 4 1 3 3 3 4 1 3 4
Control D C C D C DC C D DC D D D DC D D
Ease Rep N N N N N N N N N N Y N N N N



15Micro UAV Swarm for industrial applications in indoor environment – A Systematic Literature Review

FF methods are highly adaptable and perform
well in dynamic and complex environments. On
the other side, these methods need significant
computing power and time, which makes this
method unsuitable for small UAVs in real-life
applications.

• Optimization Based Methods: Optimization
(Opt) based methods aim to plan the most feasible
collision-free trajectories for UAVs to reach the
destination from current position. To address the
high computational complexity of probabilistic
search algorithms, several optimization methods
such as ant-inspired algorithms, genetic algorithms,
Bayesian optimization, gradient descent-based
methods, particle swarm optimization, greedy
methods, and local approximations are used [167].
Optimization methods provide high adaptability
and accuracy in predicting obstacle locations and
behaviours. However, their high computational cost
and complexity can make these methods unsuitable
for some MAVs applications.

• Sense and Avoid Methods: Sense and avoid (S&A)
based methods react quickly to obstacles and are
appropriate for dynamic environments. In this
approach, a robot can be equipped with LiDAR,
sonar, camera, and radar sensors. These methods
focus on reducing the computational power by
simplifying the process of collision avoidance to
individual detection and avoidance of obstacles
[167]. Lu et al. present a depth-based, robust, fast
collision avoidance method for MAVs in a cluttered
dynamic environment. They use only an onboard
depth sensor and test their approach on a single
MAV, but could be used for a swarm [168]. (S&A)
approaches take advantage of various sensors that
improve safety and are well-suited for dynamic
environments. However, these algorithms can be
rather complex and provide limited accuracy in
predicting obstacles compared with other methods.

A total of 23 publications focused on computing a
safe, collision-free path for a swarm of UAVs in an
indoor environment. Work by Honig et al. is the only
research focused on navigating a UAV swarm in a
warehouse setting [169]. Ourari et al. simulate a virtual
package delivery by UAVs using Deep RL [170]. Zhou
et al. propose an algorithm suitable for a UAV swarm
in an obstacle-rich environment and experiments
in a forest [171]. The other works are motivated by
something other than an application suitable for an
indoor industrial setting. Table 8 compares 22 papers
based on 5 categories. Jang et al. describe a 3D reference
trajectory generation and tracking control method for
a UAV without a clear method for collision avoidance;
thus is not included in Table 8. Peterson et al. present an
automaton-theoretic approach for generating collision-
free paths for a multi-agent system such that each
UAVs task is expressed as a Time-Window Temporal
Logic (TWTL) [172]. Commonly used metrics by

without colliding with their environment [163], which
constitutes an essential module for achieving safe
autonomous flights. The computed path for the UAVs
should be free from collisions such as inter-UAV and
collisions with static and dynamic obstacles.
There are mainly two approaches, classic and

probabilistic, in path planning algorithms. Classic
approaches decompose the configuration space in
a graph (cell decomposition, roadmaps or potential
fields) and performs a search in the graph. The search
algorithm computes the best path to overcoming
challenges such as path length, obstacle avoidance,
restricted areas, fault tolerance, completeness, UAV
configuration, and other external factors [163, 164].
Some of the most used algorithms are Breadth-First
Search (BFS), Depth-First Search (DFS), Dijkstra or A*.
The idea behind probabilistic approaches is to take

random samples from the robot’s configuration space,
instead of decomposing it, and test them whether they
are in free space or not. Then, one of the mentioned
search algorithm computes the path to reach the goal
through the graph. The most relevant probabilistic-based
algorithms for planning are Rapidly-exploring Random
Trees (RRT) and Probabilistic Roadmaps (PRM). Lu et
al. propose a collision-free navigation system for UAVs
to enable high-speed flights in cluttered environments
like an industrial plant. First, they use a depth sensor
to build a map of the environment. Subsequently, they
develop a local planner using the RRT-based path
generation algorithm and CHOMP objective function
to select an optimal trajectory. Finally, the local
planner combines localization, perception, trajectory
optimization, and control to build a fully autonomous
UAV system [165]. Punete et al. review AI-based
approaches in path planning [163].

4.3.1 Collision Avoidance
Collision avoidance is one of the fundamental elements
in an autonomous UAV to achieve a safe path. Sawalmeh
et al. and Yasin et al. review the collision avoidance
approaches for UAVs [166, 167]. Collision avoidance
algorithms can be categorized into the following major
methods:

• Geometric Methods: Geometric (Geo) methods
compute the time to collision among UAVs
and between a UAV and an obstacle. These
methods utilize information such as velocities
of both UAV and obstacle, the distance between
UAVs and between a UAV and obstacles and the
location of obstacles [166, 167]. These simple and
computationally efficient methods can be used
in simple environments. But, they might fail in
cluttered environments.

• Force FieldMethods: Force-field (FF) methods use
a repulsive field to repel a robot from an obstacle
or an attractive force field to pull it towards a goal.
Different weights can be assigned to the forces
when computing the UAV control commands [166].
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4.4 Safety and Security
Safety is paramount when deploying UAVs indoors
and around humans. In recent years the use of UAVs
in industries has significantly increased, making
the mitigation of risks due to onboard avionics
malfunctions essential to ensure a sustainable and safe
flight. Therefore, UAVs nowadays use a fault detection
system to detect and mitigate the fault’s effects on UAV
performance.
Four key features are primarily present in a fault

detection system [190]:
• Fast detection of abnormal situations;
• Identification of the fault and the faulty

equipment;
• Robustness to noise and uncertainties;
• Low false alarm rate.

Faults can be divided into three categories [190]:

1. Sensor faults: a malfunction of the sensors
on-board the UAV.

2. Actuator faults: a malfunction of actuators
acting on system dynamics. For instance
propeller loss, electrical or mechanical
actuator failure.

3. Process faults: a strong change in system
dynamics due to structural problems.

Amato et al. propose a fault detection and isolation
algorithm for low-cost multi-rotor UAVs with duplex
sensor architecture. The proposed procedure detects
and isolates faults on inertial measurement units
(IMUs) onboard a UAV. The hardware consists of two
IMUs fitted on a tri-rotor UAV. A particle filtering
approach deals with the attitude estimation problem
[190]. Barbeau et al. use error tolerant path planning
algorithm for MAV swarms to handle errors due to

the works listed in Table 8 include trajectory time,
trajectory length, safety ratio, solver time, distance to
an obstacle, computation time, total time required, goal
completeness, distance traveled, and average episode
reward.

4.3.2 Discussion
Environmental disturbances exist in the industries
and significantly impact UAVs [167]. However, the
publications must consider environmental effects
while designing their methods. Analyzing Table 8, it
is observed that publications mostly use optimization
or force field methods for collision avoidance. Only one
work uses Deep RL to ensure a collision-free path. Six
publications use a decentralized approach, and four
works are reproducible. None of the works uses a
heterogeneous UAV swarm. All publications in Table
8 conducted testing and demonstrated their findings
using simulations or in a laboratory setting. Therefore,
all of these publications can be classified as belonging
to TRL 4.
Based on the observations, more industry-focused

research is necessary to deploy a UAV swarm in an
industry. In addition, quickly reproducible methods
help bring the technology faster to the industries.
Moreover, AI-based techniques for guidance systems
in an indoor UAV swarm could help create a safer
environment for UAVs operating alongside humans in
an industry. It is essential to consider environmental
factors to deploy UAVs successfully in the industry.
Moreover, experiments with UAV swarms around
humans should be performed in a natural environment,
as industries would feel safer deploying such swarms in
reality. Therefore, works on ensuring a safe UAV flight
indoors are discussed next.

Table 8: Classification of publications focused on guidance system for indoor UAV swarm. Publications
test their method either with a Dynamic (D), Static(St) or without an obstacle. However, all methods implement

inter UAV collision avoidance. S:Simulator, I:Indoor, C:Centralized, DC:Decentralized

Pub. [173] [169] [174] [175] [176] [177] [178] [179] [180] [181] [172]
Year 2018 2018 2019 2019 2019 2020 2020 2020 2020 2020 2020
Method Geo Opt Opt FF Opt FF,Opt Opt Opt Opt Opt -
Test Env. I S, I S,I I S I S S,I S S,I S
Approach C C C C C C C C C DC DC
Obstacle D St - St,D - - St St St D St
Ease Rep. N N N N N N Y N N N Y

Pub. [182] [183] [89] [171] [170] [184] [185] [186] [187] [188] [189]
Year 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021
Method FF Opt S&A Opt DRL FF Opt FF,Opt Geo Geo S&A
Test Env. S I,O S,O I S,I S,I S,I S,I S S S
Approach C DC DC DC DC C C C C C C
Obstacle St St D St - D St St,D St - St
Ease Rep. N N N Y N N Y N N N N
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Unfortunately, the battery life for MAVs flying
indoors generally varies between 10 min and 30 min
[196], significantly limiting the applications a MAV
can perform. In addition, batteries need to be charged
or replaced to ensure continuous MAV flights. MAV
batteries can be recharged via wired power transmission
or wireless power transmission [42]. Ucgun et al. review
the charging stations to charge the batteries of the
rotary-wing UAVs [42].
A MAV swarm’s energy requirement needs to be

managed based on the task performed by individual
MAVs. For instance, it would be wasteful to charge
a MAV to maximum capacity if it is known that the
task requires much less energy. Therefore, energy
optimization algorithms are needed to reduce the
wastage of unused energy. Moreover, exploiting
environmental information gathered by swarmmembers
would reduce the swarm energy costs. Efficient energy
allocation would enable better and more prolonged
cooperative operation of a MAV swarm. Chen et al.
present an adaptive, energy-efficient, and energy-aware
approach that minimizes a swarm’s overall energy
cost while maximizing swarm performance during
foraging. Each robot stores energy thresholds and
capacity variables to indicate the energy requirement
and usage during foraging [197]. Mostaghim et al.
introduce a PSO-based search mechanism called
Energy Aware PSO, which considers each individual’s
energy consumption. Individuals estimate the required
energy to move to the next position, then decide by
considering the trade-off between profit in terms of
the overall gain in the search process and the energy
consumption cost [198]. Timothy and Dario compare
three strategies suitable for UAV swarms, characterized
by minimal computation, communication, and sensing
requirements. They deployed the UAVs for a search task
in an unknown environment. They used the Energy-
Time-Product metric, measured in Joule-Seconds, to
estimate the total energy consumption [199].
Charging stations can charge the batteries of single or

multiple UAVs at a time. However, the charging stations
are limited in number. Therefore, Hassija et al. propose
an adequate, fair, and cost-optimal scheduling algorithm
first to serve the most needed drone. A game-theoretic
approach with constraints of optimizing criticality
and task deadline is used to cost-effectively model
the energy trading between the drones and charging
stations. The energy system heavily constrains the
overall flight duration of a MAV swarm [200]. Zhang
et al. develop an autonomous mobile charging station
for the UAV swarm system that automates the mission
cycle, including taking off, complete area coverage,
vision-based positioning, landing, and recharging. The
authors propose charging scheduling algorithms and an
area coverage policy to prolong the endurance of the
UAV swarm [201].

faulty sensors and errors due to weather conditions
[191]. MAVs communicate and exchange information
providing an adaptive error-tolerant navigation system.
Lanzon et al. solve the problem of controlling a

quadrotor when one of the rotors can no longer supply
thrust. They use a dual control loop architecture in
which model-based techniques are adopted in both
control loops to deal with a rotor fault [105]. In addition,
they proposed a novel control strategy allowing the
vehicle to use the remaining three functional rotors to
enter a constant angular speed around its vertical axis,
granting stability and representing an effective way to
deal with rotor failure in quadrotor vehicles. Whereas,
Lanzon et al. based their control strategy on external
state estimation, Sun et al. proposed an algorithm that
combines fault-tolerant control and onboard vision-
based state estimation [192]. They achieved accurate
control of the position of a quadrotor during a motor
failure scenario without any external help.
Another important factor in security is data. The data

captured by UAVs are precious and sensitive. Thus, it is
essential to ensure secure data transfer between UAVs
and UAVs to the ground station. Efficient techniques
are required to protect UAVs from hackers and cyber-
attacks. Syed et al. review three techniques, block-chain,
ML, and watermarking, for securing data transmission
of UAVs [193]. Jamming attacks are also a severe threat
that causes a malfunction in UAV systems. Such attacks
are even more dangerous for resource-constrained
UAVs operating in a swarm. Jamming attacks can
dramatically degrade the network performance by
interfering transmitting of packets [194]. Mykytyn1 et
al. propose a real-time Jamming detection mechanism
for an IR-UWB ranging technology in an autonomous
UAV swarm [195]. The mechanism utilizes the network
parameters available to the system and some additional
measures to distinguish between lousy transmission
quality and Jamming to avoid false positive alarms.

4.4.1 Discussion
Safety and Security, seemed not to be a significant
field of research today. There is also a lack of research
regarding individual UAVs’ safety while working
collaboratively in a swarm. Moreover, none of the
publications explicitly focus on UAV swarms or industry
environments. Therefore, further research could
increase UAV’s industry deployment and robustness
or reduce drone malfunctions. In addition, this would
decrease the cost of automation in the industry using
a MAV swarm. All publications conducted testing and
demonstrated their findings using simulations or in a
laboratory setting. Therefore, all of these publications
can be classified as belonging to TRL 4.

4.5 MAV charging
Energy consumption is one of the biggest problems
that MAVs face. MAVs mostly use lithium batteries to
meet the energy requirements of onboard equipment,
such as sensors, actuators, propellers, and controllers.
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unstructured environment. This approach leverages the
modification of the environment to store information
to solve the sparse payload available for complex
onboard sensors. However, stigmergy is currently
challenging to implement in real robots, so they
proposed two approaches and tested them in a virtual
environment. Since these approaches do not require
global localization, they suit indoor environments.
Passive action recognition is communication-free, but
it depends on the robot’s ability to interpret sensory
information and analyze other robots’ actions. In [204],
the proposed system uses a passive action recognition
technique that mimics the waggle dance of honey bees
to form and recognize different patterns, which allows
the robots to communicate with each other without the
need for explicit communication channels.
Explicit communication is direct and effective

but requires a reliable communication channel and
mechanisms to handle communication failures.
However, stigmergy and passive action recognition
may be exciting fields of study but are mainly useful in
changing environments with unreliable communication.
In an indoor industrial environment, assuming that the
infrastructure can enable fairly reliable channels to
allow explicit communication is acceptable.
Explicit communication is performed between flying

UAVs and the ground station (GS). UAVs can also be
aerial user equipment or flying base stations (BSs).
There are already many surveys in the literature

reviewing explicit communication. [205] states that
satellite communication technology is preferred
for drone communication when used for security,
defense, or longer-range operations. In contrast,
cellular communication technologies are preferred
for civil and personal applications. However, for
indoor communication, especially in the case of
mesh networks and wireless sensor networks (WSN),
communication using Bluetooth and other point-
to-point (P2P) protocols has proven more efficient.
This survey focuses on emerging communication
technologies for unmanned aerial vehicles and their
applications for next-generation wireless networks in
an indoor environment.
[206] is a study of Unmanned Aerial Vehicle

Communication Networks (UAVCN), defining it as
a specific type of Mobile Adhoc Network (MANET)
composed of a set of UAVs to build a network. This
study describes the main issues affecting a UAVCN:
high speed of mobile nodes and continuous change in
the network’s topology affect the routing mechanism
and quality of service and optimize the limited power. It
also provides a detailed taxonomy of wireless networks
for next-generation UAV communication networks,
their characteristics, design issues, routing, quality
of service, power and energy consumption, and some
applications in which UAVs will perform best.
UAV-based aerial networks and flying base stations

enhance coverage and allow reliable, flexible, fast
wireless connections. [207] tests the use of relay UAVs

4.5.1 Discussion
Environmental conditions such as wind, temperature
and humidity could affect the energy consumption of a
MAV swarm. However, there needs to be more research
accounting for the above factors in optimization
algorithms. Moreover, there need to be more AI
algorithms to optimize the energy consumption of the
MAV swarm. Furthermore, AI could predict future
energy consumption based on various internal and
external factors.
There is also a lack of research regarding individual

UAVs’ energy consumption and requirement while
working collaboratively in a swarm. For instance,
individual UAVs could have different energy
requirements in a heterogeneous swarm. Therefore,
further research could increase UAV’s flight time,
reduce idle time and optimize energy consumption. In
addition, this would decrease the cost of automation
in the industry using a MAV swarm. All publications
conducted testing and demonstrated their findings using
simulations or in a laboratory setting. Therefore, all
of these publications can be classified as belonging to
TRL 4.
Additionally, research by Stephen Baur highlights a

significant decline in the cost of lithium-ion batteries,
plummeting from $ 917 per kw/h in 2011 to $ 101 per
kw/h in 2023. Concurrently, battery densities have
demonstrated a yearly improvement of nearly 10% [24].
These trends collectively suggest that future MAVs will
possess more powerful batteries, enabling them to
accommodate larger payloads. This advancement would
lead to many new use cases for MAVs, particularly in
warehouse environments.

4.6 Communication
Communication plays a critical role in the performance
of a swarm, as UAVs interact with each other to
exchange knowledge about their environment. In
general, multi mobile robot communication [202], and
also UAV, can be divided into three categories;
• Explicit communication: UAVs directly and

intentionally communicate with their teammates
through some active means;

• Implicit communication: Uses the environment
as a means of communication. Each UAV
modifies the world to convey information to
others that are captured using onboard sensors,
i.e., stigmergy;

• Passive recognition of actions: UAVs use
sensors to directly observe the behavior of
their companions, decode it and interpret their
actions.

Different approaches to multi-robot communication
have their advantages and limitation. Stigmergy is
simple and does not require explicit communication,
but it is limited by the robot’s perception of the
environment. In [203], the authors proposed stigmergy
to solve swarm communication for micro-UAV in an
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superior joint policy. One of the real-world applications
of this framework is drone swarm control.
[217] studies the possibility of using radio frequency

identification (RFID) in communication inside a swarm
of drones. The results show that this technology
increased the protection against external interception
and interference and decreased energy consumption.
Since there is a lack of dedicated spectrum for

UAV communications, the large radio-frequency
(RF) transmission footprint from a UAV can cause
interference to cochannel ground communication
links, significantly deteriorating their performance. As
a result, it is necessary to design efficient spectrum-
sharing policies for UAV communications to enhance
spectral efficiency (SE) and control interference
to ground communications. [218] analyze the
implementation of spatial spectrum sensing (SSS), a
technique for spectrum sharing that enables devices
to sense spatial spectrum opportunities and reuse
them aggressively and efficiently. [220] propose
a centralized Cognitive Radio Network-based
communication approach, using a Ground Control
Station as a coordinator. Dynamic Time Division
Multiple Access techniques share available frequencies
between the UAVs. The proposed approach is evaluated
in a surveillance context regarding data transfer time,
packet count, and achieved throughput.
The radio frequency environment in some

environments such as urban regions is complex, and
meeting the latency thresholds of each receiver requires
considering the propagation environment and selecting
the best candidate nodes for transmission. Increasing
SNR at the receiver is one way to ensure timely
and correct packet delivery. [221] presents a novel
distributed beam forming framework called SABRE
for UAVs, which optimizes the selection of transmitters
to achieve the best possible user-defined Quality of
Service (QoS), considering factors such as the relative
distances to receivers, traffic characteristics, the
desired cumulative Signal-to-Noise Ratio (SNR) at the
receiver, and the estimated individual SNR for each
link. This work is flexible enough to be deployed on
next-generation wireless protocols like WiFi 7, 5G/6G,
and stand-alone aerial UAV networks.
IEEE 802.11ah is a promising technology for IoT

applications due to its high data rates, flexibility, MIMO
capabilities, and low power consumption. However, the
performance of the communication links between UAVs
and GCS in a UAV swarm can be affected by range
and throughput requirements. To address these issues,
[216] propose incorporating MultiCode MultiCarrier
Code Division Multiple Access (MC-MC CDMA)
in the physical layer of IEEE 802.11ah. The authors
conclude that by incorporating MC-MC CDMA into
IEEE 802.11ah, the overall performance aligns with the
trade-off between data rate and throughput.
[219] explores the maximum sum rate performance

for cellular-connected UAV swarm communications

within role-based connectivity management that
extends a UAV’s operational range while maintaining
reliable communication between UAVs and GS.
[208] provides a comprehensive review of the

potential applications of UAVs in conjunction with
IoT and 5G technologies. In addition, it addresses the
various technical, logistical, and security challenges
that must be considered to ensure their safe and
effective use. UAVs can also enhance wireless networks
and 5G systems. Thus, they play a significant role in
Internet of Drones (IoD) architecture.
In the Internet of Drones (IoD) [209] [210], UAVs are

considered networked objects which can communicate
among themselves and with several network entities
deployed on the ground. An overview of the research
activities on the IoD network architecture is provided
in [211]. The authors also explain the communication
technologies: Wi-Fi, mmWave, and machine-type
communication and their application domain.
One exciting application of the UAV swarm network

can be found in [212]. In this paper, the authors propose
a method for detecting the coordinates of victims in
emergencies using Wi-Fi signals generated from their
phones and a flying network of UAVs. The method
includes a new protocol for communication between
UAVs and UAV swarms and a structure of UAV swarms
to optimize search time.
Machine learning and AI-based techniques can also

enhance the communication capabilities of multi-
UAV systems. [213] presents an extensive overview of
machine-learning applications in networks with UAVs.
Based on the communication and network aspects
implemented, these techniques are classified as follows:

• Physical Layer: including channel modeling,
interference management, and transmission
parameters configuration.

• Security and Safety: including physical layer
security and public safety applications.

• Resource Management and Network Planning:
including energy efficiency and power control,
multiple access and routing protocols

• Position Related Aspects: detection, localization,
placement, and trajectory design.

Finally, the authors conclude that deep learning-
based solutions are useful for revealing correlations
in large and heterogeneous datasets. However, they
may not be practical in scenarios where UAVs have
limited processing capabilities, energy constraints, and
limited connectivity. In such cases, lower complexity
solutions that involve local estimation and processing
of parameters, such as reinforcement and regret-based
learning, may be more appropriate.
One example of reinforcement learning applied to

communication is proposed in [214]. The proposed
framework considers multiple agents communicating
over a noisy channel in a multi-agent reinforcement
learning framework. As a result, the agents learn to
collaborate and communicate effectively, resulting in a
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scarcity, which can limit their availability and bandwidth
for UAVs. In [222], the authors study the application
of mmWave beamforming in UAV communication. In
contrast to traditional lower frequency bands, mmWave
bands have wider bandwidths, allowing for the
transmission of larger amounts of data in a shorter time.
This is especially useful for high-speed data transfer
applications, such as high-resolution video streaming.
mmWave communication has been successfully used
in satellite communications and indoor short-range
communications.
Reducing traffic loads for central cloud servers

and decreasing latency and high throughput is
essential to enhancing intra-UAV and UAV-to-GCS

for IoT applications. The problem is formulated as a
non-convex optimization problem and solved using an
iterative algorithm that converges to a global solution.
Simulation results indicate that the algorithm proposed
can find an optimal antenna beamwidth to maximize
the sum rate. Furthermore, an increase in the maximum
transmit power of the UAV leads to an increase in the
sum rate.
Microwave bands are widely used in terrestrial

communication networks, but they may not be ideal
for UAV communications due to the crowded frequency
spectrum and high interference levels. Furthermore,
with the increasing demand for wireless communication
services, these bands are facing severe spectrum

Table 9: List of researches related to communication. SAR: Search and Rescue

Pub.
Year

Problem Focus Solution Application

[207]
2014

Establish a reliable and continuous
communication between an
operator and the UAVs

Role-Based Connectivity Management to maintain reliable
communication in UAV swarms

-

[204]
2016

Overcome limitations of implicit
and explicit communication
methods in adverse environments.

Proposes a novel multi-robot communication system, that
uses a passive action recognition technique.

SAR

[215]
2019

Routing protocol have light fidelity. Design a protocol referred to as the link velocity connectivity
algorithm for indoor Flying Ad-hoc Network

Indoor UAV
swarm

[216]
2020

Overcome differential requirements
of range and throughput for UAV to
UAV and UAV to Ground Control
Station (GCS).

Incorporate MultiCode Multi-Carrier Code Division
Multiple Access in the physical layer of IEEE 802.11ah.

goods delivery,
real-time video
surveillance

[217]
2020

Joint application of RFID and UAV
to ensure secure communication
and low power consumption.

Uses RFID to form control and traffic channels of a
distributed self organizing UAV system.

-

[218]
2020

Designing efficient spectrum-
sharing policies

Proposes spatial spectrum sensing to enable devices to sense
spatial spectrum opportunities and reuse them efficiently by
controlling the SSS radius.

-

[203]
2020

Development of tasks in difficult,
unstructured environments,
with signal availability and
communication limitations.

Two types of swarm behavior (SLABE and SEPHT) that use
stigmergy as an indirect communication are proposed.

Inspect
unknown
indoor
environment.

[219]
2021

Cellular-connected UAV swarm
communications

Proposes an iterative algorithm to solve the sum rate
maximization problem.

UAV assisted
IoT.

[212]
2021

Detecting the coordinates of
subscribers with the Wi-Fi signals
generated from victims’ phone.

Designs a cluster-based Multichannel MAC IEEE 802.11p
protocol.

SAR

[214]
2021

Multiple agents communicating
over a noisy channel.

Propose a DRL technique employing DDPG, and actor-critic
algorithm to significantly improve the block error probability
of the resultant code.

-

[220]
2021

Overcome the spectrum scarcity
issue faced by UAVs.

Propose a centralized cognitive radio network based
communication approach for UAVs-GCS communication.
Deploy two frequency sharing strategies based on dynamic
TDMA.

Surveillance

[74]
2021

Robust drone localization. Propose a localization system based on UWB-Ranging to
fixed anchor nodes for autonomous quadcopters extendable
to swarm localization.

Indoor and
outdoor
environments.

[221]
2022

Latency in a radio-frequency
environment with a high density of
users

Propose a framework called SABRE that synchronizes
airborne transmitters for data communication with target
receivers based on user-defined QoS.

-
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4.7 Artificial Intelligence
Incorporating AI on UAVs would enable them to
perform complex tasks accurately, speedily, and
intelligently in a complex and dynamic environment,
similar to how a human would do [213, 226, 227]. 12
publications focus on using AI on a multi-UAV system,
according to the inclusion criteria A.1. None of the
works focus on deploying UAVs for automating tasks in
the industry. Akhloufi et al. [228], and Sen et al. [229]
test their method on a single UAV but is transferable to
a swarm. Most works validate their approach using a
simulator (S) or just a dataset (D).
Although AI encompasses many more fields,

nowadays, we mainly refer to Deep Learning (DL)
when we talk about AI applied to robotics. The main
advantage of deep learning techniques is that it is
unnecessary to code the solution for each case it faces.
Instead, it is only necessary to acquire sufficient
information so the neural network can learn the main
features to obtain the desired answer, facilitating the
realization of more robust behaviors. However, neural
networks require high computational resources, which
may limit their use in specific configurations, such as
onboard computing.
Most DL techniques applied to drones focus on

environment perception and control strategies. In terms
of perception, convolutional neural networks (CNNs)
were a breakthrough in image processing. Techniques
based on this type of neural network are used in the
industry mainly for object detection and classification.
Some examples in swarm application are landmark
recognition [229], segmentation of object instances
[230], exploration of unknown environments [231], or
detection of other drones for formation control [83].
Reinforcement learning (RL) and deep reinforcement

learning (DRL) are generally used for designing
controllers [123, 146], generation of a collision-free
trajectory [232] or the addition of imitation learning for
cooperation between UGV and UAV [233]. Obtaining
actual data to train DL models is feasible, but this is
quite difficult for RL. Since RL obtains data during
training, improving its performance with each failure,
training an aerial robot in a natural environment
is risky. Therefore, most RL training is done on
simulators. Some research focuses on creating accurate
simulation environments for RL training [145] and
transferring the models trained in simulation to the
real world [234].
Moreover, both DL and RL techniques can be

combined for pursuit-evasion, as shown in [228].
The authors trained policies parameterized by neural
networks capable of controlling individual drones in
a swarm in a fully decentralized manner. They have
shown the successful deployment of the model learned
in simulation to highly resource-constrained physical
quadrotors performing station-keeping and goal-
swapping behaviors.

communication. For UAVs, mobile edge computing
(MEC) offers a solution to improve the quality of
service. MEC computations are performed on edge
devices such as UAVs, reducing network traffic and
load on central servers. MEC is one of the central
building blocks for 5G networks [223].
Generally, MAVs are constrained in energy and

processing power, making long-term handling of
large data volumes impossible for standalone MAVs.
Mukherjee et al. propose load mitigation by offloading
data from a source UAV to other swarm members with
sufficient energy and processing requirements. They
formulate a multi-armed bandit-based offload path
selection scheme, which selects the most resource-
optimized multi-hop path between a source and a target
UAV in a decentralized edge UAV swarm [224].
Steup et al. propose a single-copter localization

system using UWB transceiver modules for
communication and distance measurement [74]. This
system has been designed to be easily extendable to
drone swarms and used in indoor and outdoor scenarios.
Furthermore, the authors aim to create a scalable multi-
hop drone swarm localization system where drones can
switch roles between active members and anchor nodes.
In recent years new technologies are under study.

Terahertz band communication and unmanned aerial
vehicles (UAVs) are potential 6G technologies that
can provide ultra-high rate and reliable wireless
connectivity for critical scenarios. THz-UAV
communication has several open issues and challenges,
and since THz communication is highly affected by
meteorological conditions, it is suited for indoor
applications. [225] explores recent works and physical
layer-related challenges and opportunities to inspire
research breakthroughs.

4.6.1 Discussion
A total of 11 publications reached this stage, listed in
table 9. Analyzing the table, one can infer there has been
a steady increase in publications per year over the past
decade. Moreover, none of the publications explicitly
focus on establishing communication for UAV swarms
in an industry. However, few works focus on devising
communication strategies specifically for the indoor
environment, which could be used in industries. There
are also many surveys about communication techniques
and applications on UAVs and swarms. Based on the
papers reviewed, explicit communication is mostly
preferred to establish communication among UAVs in
a swarm indoors.
The commonly used metrics to validate the

method are: packets received, bit error rate, data rate,
spectral efficiency, re-transmission attempts, average
throughput, average delay, number of collisions, energy
consumption, and total flight time. All publications
conducted testing and demonstrated their findings using
simulations or in a laboratory setting. Therefore, all
of these publications can be classified as belonging to
TRL 4.
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4.8 Application
MAVs have a wide range of applications in various
fields, from agriculture to emergency response or
environmental monitoring. The most noteworthy
application are the ones that take place in areas that are
not easily accessible or are dangerous for humans and
can easily navigate through narrow and cluttered spaces
with high agility due to their small dimensions [19].
Therefore, they are suitable for applications such as
inventory management, exploration [236] of unknown
indoor spaces, gas leak localization, and search and
rescue (SAR). Table 11 lists the 16 publications focused
on using UAVs in an indoor industrial setting, as per the
inclusion criteria in Section A.1. Hartman et al. [237],
and Almesha et al. [238] use a single UAV to complete
their missions. However, the methods they deploy are
transferable to a swarm of UAVs. The remaining 14
publications deploy a swarm in an indoor testbed or

4.7.1 Discussion
AI, and specifically DL, constitute a significant field of
research today. Table 10 categorizes the publications
from the last 10 years. Since both DL and drone
swarms are relatively recent research fields, few
publications combine both. As can be seen in the
table, most publications are from the years 2018-2021.
Nevertheless, much of the research being done in AI
applies to fields that affect swarms, such as localization,
perception, or control. None of the publications focuses
on the application in an industrial environment. All
publications conducted testing and demonstrated their
findings using simulations or in a laboratory setting.
Therefore, all of these publications can be classified as
belonging to TRL 4.

Table 10: List of publication focused on using AI on multi UAV systems. AI: AI technique used,
Test: Test environment, Rep: Reproducible, IL: Incremental Learning, OR: Object Recognition,
RL:Reinforcement Learning, S: Simulator, D:Dataset, O: Outdoor, I:Indoor, Y: Yes, N: No

Pub Year AI Test Rep. Focus and Findings Application
[146] 2018 RL S N Consists of modular state-action-reward-state-action (SARSA)

controller that learn multiple Q tables.
Swarm control

[228] 2019 RL,
DL

O N Employs a vision-based deep learning object detection and
reinforcement learning for detecting and tracking a UAV by another
UAV. Deploy YOLO v2 for object detection and first layers of VGG-M
network in Deep RL architecture.

pursuit-
evasion

[232] 2019 RL S N Deep Q-learning and Hungarian algorithm is used for implementing
obstacle avoidance in multi-UAV swarm environment.

collision free
trajectory

[230] 2019 DL,
OR

D N Mask R-CNN is experimentally evaluated and compared with Faster
R-CNN for object instance segmentation.

SAR

[229] 2020 IL D N propose an incremental learning-based network architectures, which
combines the advantages of deep learning and broad learning system.

landmark
recognition

[233] 2020 DRL S N Propose an Imitation Augmented Deep Reinforcement Learning model
that enables a UGV and UAV to perform tasks cooperatively.

Tasking in
dynamic
environment

[231] 2020 DL S,I,
O

N Aims to understand items in an unknown environment. The authors
combine ML and YOLO object detection to understand unknown
environment better. The proposed architecture is generalizable,
transportable and scalable for UAV flocks.

Exploration

[234] 2021 DRL S,I Y Propose a model agnostic method for learning drone swarm controllers
that are zero-shot transferable to real UAVs via large-scale multi-agent
end-to-end reinforcement learning.

Swarm control

[83] 2021 DL S,I N Drone detection using YOLO v3 tiny. Formation
Control

[123] 2021 RL S N Present an approach for tuning MPC parameters through cooperative
reinforcement learning. The UAVs coordinate their learning strategies
in real time.

MPC

[145] 2021 DRL S N A digital twin (DT) enabled DRL training framework is proposed. DT
enables the DRL model to be deployed faster on real world multi-UAV
system.

Flocking

[235] 2021 IL I,O Y Present an approach to fly a UAV at high speeds in environments
with complex obstacle geometry using only onboard sensing and
computation. The authors present a zero-shot transfer from simulation
to challenging unseen real-world environments. In addition, they train
the navigation policy via privileged learning.

High-speed
flight in wild
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Table 11: List of application focused researches. SA: Swarming Approach, Rep:Reproducible,
Test: Test environment, S: Simulator, O: Outdoor, I:Indoor, C:Centralized, DC: Decentralized, D: Distributed,

HPE: Human pose estimation, SAR: Search and Rescue, Y: Yes, N: No

Pub. Year Application Test SA Rep Focus Points
[98] 2013 Exploration S,I C N Resource constrained MAVs achieve efficient sensing coverage.
[237] 2016 Radiation

detection
I - N Remote sensing of neutron and gamma radiations

[239] 2018 HPE I,O C N A swarm of camera-equipped MAVs jointly optimizes swarm’s and
skeletal states (3D joint positions) in real time.

[238] 2018 SAR S,I - N A vision-based neural network controller is designed for autonomous
landing of a UAV on fixed and moving targets.

[240] 2019 Target search I C N
- UAVs perform search, track, return, and deploy operations using
on-board sensor and battery measurements.
- Autonomous recharging of UAVs ensures continuous operation of
the swarm.

[241] 2019 Gas tracking S C N The swarm of UAVs determine the location of a gas dispersion in a
production area.

[242] 2020 Inventory
management

I DC N
- Implements UAV swarm management, wireless charging,
inventorying, inventory data storage using low cost UAVs.
- Simulated the operations of a food warehouse.
- UAVs autonomously recharge at the ground recharge station to
enable 24/7 operation.

[243] 2021 Gas tracking S D Y

- A swarm of UAVs is equipped with gas sensors for industrial remote
gas-plume sensing.
- The swarm dynamically adjusts the formation to maximize the
perception of the dynamic plume-cloud.
- A simulator simulates an indoor industrial environment for testing.

[244] 2021 Gas tracking S,I C Y
- Fully autonomous swarm of gas-seeking nano UAVs.
- Parameters are evolved in simulation and successfully transferred to
real-world environment.

[245] 2021 Target search S DC Y
- A team of UAVs cooperatively explores and finds a target in a
complex indoor environment with obstacles.
- Use laser sensors and known map for localization.
- The UAVs share their observations and location with other UAVs.

[246] 2021 Target search S C N Focuses on detection of targets which can only be detected within
specific angles.

[247] 2021 Target Search S C N - The task consists of coordinated motion of a UAV swarm to locate a
target zone.
- Uses a multi-objective optimization algorithm on a UAV swarm
without and with the presence of obstacles.

[96] 2021 Transportation S C N
- Focuses on UAVs picking up goods in a logistic industry.
- The Multi-UAV pickup theory combines the idea of green
scheduling and the theory of secondary task assignment.
- Improves the utilization rate of UAVs to complete a pickup task and
reduces energy consumption.

[248] 2021 Inspection S C N
- Low-cost UAVs are used for visual inspection of oil and gas
pressure vessel.
- ORB-SLAM3 is used for localizing the UAV.
- Simulated pressure vessel is created for testing.

[249] 2021 Exploration S C N Proposes an exploration strategy in unknown environments
for a team of UAVs

[250] 2021 Aerial
manipulator

I DC N
- Proposes a method to control multiple UAVs connected to
an end-effector by passive kinematic chains.
- Use onboard monocular vision and internal configuration
control of UAVs without extroceptive measurements.
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architecture composed of various modules such
as localization, path planner, obstacle avoidance,
controller, communication, and safety is essential
to overcome the challenges. It is beneficial to have
such an architecture for a UAV swarm operating
in a complex industrial environment, where time,
safety, and accuracy are critical constraints. Software
architectures like the Aerostack framework [259], eases
the development of these tasks, providing an ecosystem
of modules ready to be used. Moreover, Sampedro et
al. present a scalable, robust, and flexible architecture
for dynamic agent-to-task assignment and real-time
mission planning for a swarm of UAVs [260] integrated
in this framework.

5 OBSERVATIONS

In this section, we delve into an analysis of prevailing
patterns and trends across publications that have
successfully navigated through the review process to
its final stage. Given the constrained nature of MAVs
due to their weight limitations, we further stratify
these publications based on weight. Subsequently,
the observations from Section 4 to Section 4.8 are
summarized.
Figure 6 shows the distribution of the publications

over the past ten years that reached the final stage of
the review process. Considering the 148 publications
(excluding reviews), 108 publications use more than two
UAVs for testing their method indoors or on a simulator.
20 publications test their method on a single UAV but
are transferable to a swarm. 20 works either do not
mention the number of UAVs, use a mobile robot for
experimentation, or use a dataset to test their approach.
Nevertheless, these approaches are adaptable for
application in UAV swarms. Remarkably, none of the
publications ventured into field-testing their methods
in industrial or warehouse environments. In this work,
the majority of publications centered around the use
of homogeneous swarms. Over the past decade, there
hasn’t been any discernible inclination or preference
for centralized or decentralized control or decision-
making strategies within the Micro Aerial Vehicle
(MAV) swarm research community. Furthermore, it’s
worth noting that the bulk of experiments took place in
simulated environments or controlled indoor laboratory
settings.
Among the 148 publications surveyed, 86 of them

conducted experiments using Micro Aerial Vehicles
(MAVs). An additional eight studies utilized various
DJI drone variants, while a few others opted for
Sensorfly, Parrot, F 450, and Intel Aero MAVs. It’s
important to highlight that several publications did not
specify the type of MAV used or its weight, leading us
to categorize them as custom-designed MAVs, although
determining their exact weight remains challenging.

a simulation. Therefore, all the 16 publications in this
category can be classified as belonging to TRL 4. The
works predominantly still use a centralized approach,
even though a decentralized or distributed one holds
greater advantages for a swarm [22].
In recent years, some MAVs have been deployed in

warehouses for inventorying tasks [251–253]. However,
these works only use a single MAV to perform simple
tasks like detecting a fiducial marker or identifying
tags. Deploying a swarm of MAVs in industries capable
of performing complex tasks is still an open challenge.
Awasthi et al. deploy a swarm of MAVs alongside
humans to automate picking up multiple virtual
packages from various locations and delivering them
to the specified destination. The task is performed in
a warehouse-like environment [254]. Only two of the
16 publications deploy a MAV swarm in a warehouse
for inventory management [242] and transportation
[96]. Thus, the use of UAVs in the manufacturing and
supply chain is still in its infancy. The size and sensor
capabilities onboard a UAV open new perspectives
under the industry 4.0 framework. UAVs are used for
industrial tasks such as manufacturing, maintenance,
monitoring, material handling, asset management,
and smart factory [6, 255]. Mourtzis et al. propose an
intelligent framework based on the Industrial Internet
of Things (IIoT) for real-time machine shop monitoring
and data acquisition in strategic production points
[255]. A scheduler schedules the execution of tasks
and monitors the UAV operations according to a given
schedule, and it is essential to achieve efficient UAV
operations in an indoor environment. Khosiawan and
Nielsenis present a detailed study of existing UAV
systems focused on UAV scheduling systems [256].
The Internet of Drones recently gained momentum

due to their adaptability to various complex scenarios
[211]. Low-altitude UAVs-enabled wireless networks
can be quickly deployed and flexibly reconfigured
to enhance network coverage and capacity. Liu et al.
review the opportunities and challenges of UAVs for
the Internet of Everything (IoE) [95].
Some works deploy a single medium or large-sized

UAV for industrial tasks performed indoors or in GPS-
denied environments. For example, Novak et al. propose
a smart hangar system that uses UAVs for aircraft
maintenance. They use digital technologies to record
data which can be a part of industry 4.0 [257]. Rozas
et al. propose a framework for fire extinguishing in an
urban scenario by a team of aerial and ground robots
[258]. They designed a 3D LIDAR-based mapping and
localization module to work in GPS-denied scenarios
and performed tests on UAVs weighing more than 6 kg.
Lu et al. propose an autonomous exploration algorithm
for aerial robots suitable for SAR tasks. However, they
only tested the algorithm on a single UAV [236].
High-level tasks, such as automatic target detection,

inspection, and autonomous exploration in an indoor
environment using a UAV, are challenging. A flexible
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safety and security of MAV swarms is scarce at present.
However, safety becomes acutely pronounced if MAV
swarms are to be deployed in industries replete with
both static and dynamic obstacles. The battery life of
MAVs significantly influences their flight duration and
payload capacity. However there is a scarcity of research
addressing the energy demands of individual MAVs
within a swarm context. Intra-swarm communication is
chiefly executed through explicit communication-based
methodologies. Meanwhile, there has been a surge
in research applying artificial intelligence to MAV
operations. Nevertheless, this surge of research has yet
to be effectively channeled into industrial applications.
While a few publications do strive to offer solutions
tailored to industrial tasks, the validation of their
findings predominantly occurs through simulations or
controlled laboratory environments. Consequently, all
the publications encompassed within this study can be
classified under Technology Readiness Level (TRL) 4.
The progression of research toward TRL 9 necessitates
a concerted endeavor to bridge the existing gap.

6 CONCLUSION

This systematic literature review aims to identify the
gaps that capture the state-of-the-art and the trends for
Micro UAV swarms operating in an indoor industrial
setting. 186 contributions are selected from an initial list
of 1997 publications according to predefined Inclusion
Criteria. The relevant literature is categorized and
analyzed by domain experts in robotics. Every category
has a discussion section that discusses the findings
and identifies the gaps in that category. Based on the
findings from each category, the guiding questions from
Section 1 are answered:

1. Which localization technologies are preferred,
and how accurate and costeffective are they?

As discussed in Section 4.1, sensor fusion is primarily
used. Most research is done by fusing UWB, IMU, and
vision sensors. These sensors weigh less than 15 grams
and can be as small as 11 x 9 x 2 mm. Sensor fusion
increases the accuracy up to 10 − 15 cm. However,
many works prefer to use only UWB or vision sensors.
Setting up IMUs, Cameras, and UWB indoors is
cheaper than setting up an external localization system
such as a motion capturing system. Even though motion
capturing systems have accuracy in mm, they are still
not preferred by industries due to their high cost.

2. What type of guidance, navigation, and control
(GNC) methods are used in MAV swarms, and
how does each contribute to system autonomy?

Section 4.2 presents two main trends to control
UAV swarms: collaborative and formation control.
In collaborative approaches, each UAV has a subtask
assigned to it as part of a global task, while in formation
control methods, the coordinated flight of all agents is

Fig. 6: Distribution of the 185 publications
over the last ten years.

Out of the total, 35 publications either mentioned
the complete weight of the MAV, inclusive of onboard
equipment, or provided enough information to
estimate the approximate total weight. Notably, 28
of these studies employed Crazyflie MAVs, which
have a compact design with a weight of 27 grams
and a maximum take-off capacity of 42 grams. In 15
publications, the authors indicated the type of MAV
used but omitted details regarding its total weight. In
these cases, we considered the base weight of the MAV.
It’s noteworthy that the MAVs in these 50 publications
all weighed less than 2 kilograms. The distribution of
publications based on weight categories is presented
in Table 12.

Table 12: Number of publications
distributed by weight.

Number of publications Weight of MAV (grams)
28 <50
12 50 - 1000
10 1000 - 2000

Summarizing the observations in this work, a fusion
of UWB, INS, and Optical-based methods emerges
as the most prevalent approach to achieve indoor
localization.Attaining stable control is frequently
accomplished through the adoption of intelligent
controllers, as it can manage the numerous uncertainties
intrinsic to a MAV flight. However, it’s noteworthy
that AI-based techniques have yet to find widespread
application in the formulation of control strategies
for indoor MAV swarms. Majority of the works use
optimization or force field methods for collision
avoidance, while path planning is achieved using classic
and probabilistic approaches. Research pertaining to
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thresholds, such as 20ms for sensor data sharing
between users and 10ms for coordinated control of
equipment. While WiFi and mmWave can be used for
UAV communication in indoor environments, mmWave
offers some additional advantages. It can provide higher
data rates and bandwidth and better network reliability
through multi-path routing. Additionally, mmWave is
well-suited for mission-critical applications such as
UAV communication.

6. What is current trend seen for MAV swarms in
industries with regards to AI?

There has been a substantial increase in publications
using AI for MAV swarm localization, security and
communication over the past years, with a particular
interest in control and perception. Several publications
have reviewed the use of AI algorithms in localization,
communication, and control. As seen in Section 4.2,
intelligent controllers are the preferred controllers
among many.
Section 4.7 explained primary AI research fields

currently, mainly Deep Learning and Reinforcement
Learning, applied in control and perception. However,
as AI has been successfully adopted in other domains,
we believe there will be an increase in implementing
AI algorithms for other topics like collision avoidance
or path planning for a MAV swarm indoors.

7. What are the tasks that are being or could
potentially be performed using MAVs in
industries?

Manually and semi-autonomous operated MAVs have
been deployed in inventory management and inspection
in industries. Numerous researchers use autonomous
MAV swarms in the laboratory environment to perform
tasks such as exploration, inspection, surveillance,
and inventory management. Such research could
potentially be used in industries to automate various
tasks. However, testing in industries would give a
better picture. Transportation of goods in an industry
is an essential task primarily performed manually or
using mobile robots. However, there needs to be more
research on using MAV swarms to transport lightweight
goods in an industrial setting safely.

8. What is the research gap to deploy MAV swarms
in industries? What should be the future scope?

From the reviewer’s perspective, further research
on MAV swarms for industries should focus on the
following issues:
(a) Research on a dynamic swarm that allows

joining and leaving MAVs in real-time without
affecting swarm operations is missing. This
feature could make the swarm flexible, robust,
scalable, economical, and safer to deploy in
industries.

(b) Only 16 out of the 148 publications are
reproducible. This makes it difficult for
industries to verify the proposed method and

required. Furthermore, these swarms can be controlled
in a centralized or distributed manner. Thus, in
distributed systems, UAVs have greater autonomy than
centralized ones because they do not depend totally on
the central node; however, these approaches require
aircraft with more complex guidance and navigation
systems. In this context, Section 4.3 presents the
techniques of guidance and navigation where collision-
free path planning and onboard sensor-based obstacle
avoidance approaches predominate.

3. MAVs are considered suitable for indoors. What
are the safety concerns regarding deploying
MAVs in industries?

Major safety concerns are collisions, failure of sensors
onboard a MAV, and failure of MAV actuators. Out of
these, most works focus on collision avoidance based
methods to ensure MAV safety. However, if MAVs
are to be deployed in industries, other safety concerns
should also be focused upon and incorporated into each
MAV. Multiple methods for collision avoidance are
listed in Section 4.3.1. Methods to tackle the failure of
UAV components and sensors are listed in Section 4.4.

4. What are problems faced to achieve 24/7
operation of the MAV swarm in industries, and
what approaches are discussed to resolve them?

The MAVs have a limited battery capacity, which is
the major constraint in achieving 24/7 operation of the
MAV swarm in industries. Therefore, researching ways
to frequently charge the MAVs, such as using charging
stations, is essential. However, more research is needed
on charging stations for MAVs. As a result, it is yet
to be feasible to deploy them in real-world scenarios.
Methods for battery management, scheduling, and
charging stations are discussed in Section 4.5. However,
further research is required regarding the flexibility
of deploying charging stations, their deployment
feasibility, and cost-benefit analysis for industries.

5. What are the most suitable swarm
communication systems for an indoor industrial
application?

As discussed earlier in the section on section 4.6,
although even perception-based techniques like
stigmergy and passive recognition are being studied,
in an indoor industrial environment, it is reasonable
to assume that the infrastructure can support reliable
channels for explicit communication, which is direct
and effective. Next-generation wireless networks
such as IEEE 802.11be (WiFi 7) are exploring new
technologies like multi-Access Point coordination
and coordinated beamforming to support high-
throughput and low-latency applications in dense
user deployments while minimizing interference.
Industries like automotive, transport, logistics, and IoT
have specified their service requirements in standard
specifications, such as the 3GPP technical specification
for 5G. Different applications have varying latency
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9 FUTURE WORK

While conducting this review, it became evident that
the researches did not prioritize the crucial aspect of
sustainability. Recognizing its significance, we intend
to undertake a study that specifically examines the
sustainability implications of diverse technologies
associated with MAVs. This study would shed light on
how these technologies can align with environmental
considerations and long-term viability. Furthermore, we
would want to delve deeper into the realm of human-
drone interaction. This aspect deserves heightened
attention, as seamless collaboration between humans
and drones becomes increasingly integral across
various applications in industries.

integrate them into the supply chain. Thus, there
needs to be more easily reproducible research.

(c) Incorporating methods from the Sections 4.1 –
4.6 on a MAV swarm and testing the swarm in a
real industry would give a better understanding
of the shortcomings and feasibility of deploying
a fully autonomous MAV swarm.

(d) Dynamic environment conditions, dynamic
obstacle, human behavior, and their effect on
MAVs in real-time are challenging to recreate
in a laboratory or simulator. Further research
in creating a digital twin, replicating the exact
industrial environment, or experimenting in an
industry would give more realistic results.

(e) It is challenging to estimate the battery
consumption of a MAV when testing on
a simulator or laboratory. The reason is
that environmental effects such as wind,
temperature, and humidity could affect the UAV
dynamics, affecting battery consumption.
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A METHOD OF LITERATURE REVIEW

This SLR is based on the guidelines suggested by [37],
and the process followed is explained below and is
similar to [38]. The three-step pipeline of the method is
illustrated in Figure 7. Based on Inclusion Criteria, a list
of potentially relevant publications is created. During
the selection process, three experts from the robotics
domain at every stage either rejected a publication or
assigned it to the next stage based on the predefined
scope of this review. Publications that reached Stage
IV are considered relevant for the literature analysis.
Relevant tags are added to every publication, which
helps categorize the publications and answer the
guiding questions.

A.1 Inclusion criteria
This work includes all the published works from 1 Jan
2011 – 30 Dec 2021 that is available to researchers to
get a mental picture of the overall academic activity.
Moreover, we also included some relevant literature
from the year 2022. Google Scholar (GS) facilitates
literature discovery by indexing every scholarly
document it finds. A detailed list of the sources of
Google Scholar can be found in [39]. GS has a more
comprehensive coverage than Scopus, Web of Science
and also IEEE Explore, and includes the great majority
of the documents that they cover [40]. GS’s broad
coverage and fast indexing speed have made it one of
the most comprehensive academic search engines [261]
[39]. In addition, GS provides a comprehensive insight
into the impact publications have on their respective
academic communities [261]. Therefore, it is used for
querying literature in this work.
Harzing’s Publish or Perish (PoP) is used as the API

to perform a google scholar search for indexing. The
interface of PoP allows for writing queries, applying
filters, sorting, and exporting results to various formats

[262] Martín-Martín, A., Orduna-Malea, E., Thelwall,
M., López-Cózar, E.D.: Google scholar, web of
science, and scopus: A systematic comparison
of citations in 252 subject categories. Journal of
informetrics 12(4), 1160–1177 (2018)

[263] Purkayastha, A., Palmaro, E., Falk-Krzesinski,
H.J., Baas, J.: Comparison of two article-level,
field-independent citation metrics: Field-
weighted citation impact (fwci) and relative
citation ratio (rcr). Journal of Informetrics
13(2), 635–642 (2019)

[264] Goodfellow, I., Bengio, Y., Courville, A.:
Representation learning. Deep learning, 528–
559 (2016)

[265] Jassowski, M.A., Thirunahari, A.S.: Drone
swarm for increased cargo capacity. Google
Patents. US Patent 10,324,462 (2019)

[266] Huijun, G., Li, Z., Xidi, X., Weichao, S., Xuebo,
Y., Xinghu, Y.: Indoor monocular navigation
method based on cross-sensor transfer learning
and system thereof. Google Patents. US Patent
11,561,544 (2023)

[267] Ottenheimer, A.: Remote object capture.
Google Patents. US Patent App. 16/638,274
(2020)

[268] Salem, A.: Self charging lightweight drone
apparatus. Google Patents. US Patent
10,424,231 (2019)

[269] Rahmes, M.D., Chester, D.B.: Radio frequency
(RF) communication system providing
enhanced RF equipment configuration updates
for mobile vehicles based upon reward matrices
and related methods. Google Patents. US Patent
11,184,232 (2021)

[270] Arsenian, R.J., Fried-Gintis, A.M.: Control
system for autonomous locomotion devices.
Google Patents. US Patent 10,365,651 (2019)

[271] Dürr, P.: Concept for designing and using an
uav controller model for controlling an uav.
Google Patents. US Patent App. 16/824,720
(2020)

[272] Shattil, S.: Airborne relays in cooperative-
MIMO systems. Google Patents. US Patent
App. US10444766B2 (2019)
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generates 1997 articles from 1 January 2011 and 30
December 2021, which are then carefully examined in
the next stage. Additionally, we included some relevant
works from the year 2022.

A.2 Selection Process
The selection process is performed for the entire
literature list obtained after the inclusion criteria. In
this stage, each of the three reviewers independently
reviews the publications first based on the title and
abstract. Publications that focus on military-based
research or designing drones or are specific to outdoor
applications such as disaster relief, search and rescue,
agriculture, construction monitoring, and UAV-assisted
wireless networks are rejected at this stage. Only the
newest contribution is considered when an author
wrote several papers with the same scope or refined
the applied methods. The contributions that reached
Stage IV and related surveys (see Section 3) served as
a starting point for further literature analysis.
Table 14 explains the four stages through which

the contributions could advance during the selection
process while adhering to the Selection criteria given
in Table 13. During the selection process, reviewers
encountered some publications that performed
experiments on a single MAV deployed indoors or
outdoors. However, the method used by the authors
can potentially be transferred to a swarm of MAVs
flying indoors. Therefore, such publications are also
analyzed in this review.

[262]. The search in PoP is carried out using the
following set of keywords in the keywords field:

• (“indoor”OR “ warehouse” OR “intralogistics”)
AND

• (“drone swarm” OR “UAV swarm” OR “MAV
swarm” OR “swarm behavior” OR “unmanned
aerial vehicle swarm” OR “aerial swarm” OR
“quadcopter swarm” OR “unmanned aerial
system swarm”)

This work focuses on UAV swarm in an indoor
industrial setting. Therefore, all publications focused
at industries would have the word indoor, warehouse
or intralogistics present in the text. Moreover popular
synonyms of UAVs are considered to include all related
publications.
The keywords used in title field:
• (-”agriculture” AND -”military” AND

-”outdoor”)
The ’-’ means NOT. Thus, the literature with

agriculture, military, and outdoor in the title field is
excluded. Moreover, the contributions in English
published between 1 January 2011 and 30 December
2021 are considered. Going back in time would be
challenging to capture state of the art in a rapidly
progressing field of research such as Micro UAV.
Moreover, student degree theses, patents, and paid
content are excluded from the reviewing process
to ensure the quality of the observed material. The
inclusion criteria are objective; therefore, reviewers
work individually without discussion to create an initial
literature list. Finally, the individual lists are merged,
and duplicates are removed. The search procedure

Table 13: Selection criteria

Selection Criteria Description

(1) UAV swarm Method is focused at a Micro UAV swarm or easily transferable.

(2) Experiments Experiments must be conducted on UAVs or easily transferable to UAVs.

(3) UGVs Methods and Experiments should not be specific for only unmanned ground
vehicles (UGVs).

(4) Applicationoriented Perspectives for deploying the proposed method in indoor industrial
environment is conceivable.

(5) No focus on hardware Selecting and assembling various hardware components to design a UAV or
explaining and comparing UAV components is not the focus of this review.

(6) Environment The publication should be relevant for a swarm of UAVs in an indoor logistic
environment.

(7) Clear Method Publications should have a clear method with relevant performance metrics to
test the results.
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the the following stage. The systematic review of the
literature is accompanied by continuous refinement
of the categorization scheme – ultimately leading to
the one illustrated in Table 15. Artificial intelligence
(AI) encompasses various techniques such as machine
learning (ML), deep learning (DL), reinforcement
learning (RL), imitation learning, and representation
learning [264]. After defining the categorization
scheme, all publications are allocated accordingly
in Stage VIII. Most publications focus on a single
technological area and are thus assigned to a specific
category, from localization, guidance system, safety and
security, UAV charging, AI, control, communications,
and applications. Few publications are a part of
multiple subcategories. For instance, a publication
can use machine learning with UWB technology to
achieve localization and RL to achieve optimal control.
Thus, it is analyzed in three categories: AI techniques,
localization, and control. Figure 1 visualizes the various
categories covered in this review.

B TECHNOLOGY READINESS LEVEL
(TRL)

The TRL scale typically ranges from TRL 1 to TRL
9, with each level representing a specific stage in the
technology’s development:

• TRL1: Basic principles observed and reported.
• TRL2: At this stage, the technology concept is

defined and its feasibility is assessed.
• TRL3: A proof of concept is created to

demonstrate the functionality of the technology
in a controlled environment.

• TRL4: Technology is validated in a laboratory
environment.

• TRL5: Technology is validated in relevant
environment such as an industrially relevant
environment.

A.3 Literature Analysis
Once the selection process is complete, a systematic
literature analysis is conducted for all publications
assigned to the fourth stage. In Stage V, the final list
of relevant publications is extended by including the
Field Weighted Citation Impact (FWCI): “FWCI is an
indicator of mean citation impact and compares the
actual number of citations received by a document
with the expected number of citations for documents
of the same document type (article, review, book, or
conference proceeding), publication year, and subject
area” [263]. FWCI is often used by researchers to
understand the impact of their work in a specific
research field. Therefore, recording the FWCI will
give valuable insights into the contribution’s relevance
for their respective domain. The metric is taken from
the Scopus Database www.scopus.com/sources on 15
Jan 2021. Once the general information is acquired,
each contribution’s striking features regarding this
review’s guiding questions are analyzed. Thus, Stage
VI required the reviewers to read all relevant literature
and briefly summarize based on the following:

• application area;
• technological scope to achieve autonomous UAV

behavior;
• specifications and characteristics of the UAV

and UAV swarm;
• testing environment;
• the methodology and empirical results; and
• further research demand.

This procedure enabled the reviewers to get a quick
overview of a publication. Based on the contribution
analysis, a categorization scheme is derived by the
reviewers in the stage. VII. This scheme consists of
two layers–root categories and subcategories. The
reviewers create the initial categories. Then, the points
of disagreement are discussed among the reviewers.
Based on the discussion, the initial categories are
subject to change when allocating the contributions in

Table 14: Stages I–IV of selection process.

Stage Description

(I) Keywords The Keywords of the publication match with the Inclusion Criteria. The reviewers have
not yet examined the publications at this point.

(II) Title The reviewers read the title of every publication, and the publication whose title did not
conflict with the Selection Criteria or it is ambiguous reached this stage. In addition,
duplicates are removed, and the publications from 2011-2018 having 0 citations are
excluded from the list as they have not had a significant impact in their respective
domain.

(III) Abstract The publications whose abstract did not conflict with the Selection Criteria or it is
challenging to comprehend the abstract reached this stage.

(IV) Full Text Reading the full text confirms compliance with all Selection Criteria. Relevant tags and
comments are recorded for each publication in Excel.
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Table 15: Categorization scheme.

Root Category
Subcategory Description

Localization
Optical Includes Infrared and light detection and ranging sensor based localization
Vision Based Use a single or multiple cameras
RF Radio Frequency: Includes Ultra Wide Band and RFID based localization
INS Inertial Navigation System: employ an inertial measuring unit
Sound Based Ultrasonic and acoustic based localization

Control
Single UAV Control Linear, non-linear and Intelligent controllers
Collaborative Control
Formation Control Leader-follower, virtual structure, behavior-based, consensus-based

Guidance System
Path Planning
Collision Avoidance Categorizes collision avoidance algorithms into Geometric Methods,

Force Field Methods and Optimization Based Methods

Safety and Security Categorizes based on sensor faults, actuator faults and process faults

UAV charging Energy requirement management and charging stations

Communication Implicit communication, explicit communication and passive action
recognition

Artificial Intelligence
AI techniques Machine learning, reinforcement learning, deep learning, imitation

learning, representation learning

Application in Indoor Logistics Transportation, exploration, target search, gas seeking, inspection,
inventory management, search and rescue

Testing Environment
Indoor Testing hall or a laboratory
Simulator Using a UAV simulator or software simulations
Industry Tested in a real industry or factory or a warehouse

UAV Characteristics
Weight The weight of individual UAV
Number How many UAVs constitute the swarm

• TRL6: Technology is demonstrated in a relevant
environment.

• TRL7: A fully functional prototype is
demonstrated in an operational environment.

• TRL8: This stage focuses on verifying the
technology’s readiness for production and
deployment.

• TRL9: The technology is fully developed,
tested, and proven to work successfully in
its intended operational environment. It has
been deployed and is being used in real-world
applications [36].
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C PATENT

Table 16 lists all patents that were obtained in the review process that hold significance within the context of this
study.

Table 16 lists all the patents that are relevant in the scope of this work.

Pub. Company Year Title Focus Point

[265] Intel 2019 Drone swarm for increased cargo
capacity

Transportation of objects using two or
more drones.

[266] Harbin
Institute of
Technology

2021 Indoor Monocular Navigation Method
Based on Cross-Sensor Transfer
Learning and System Thereof

Uses a deterministic policy gradient
deep reinforcement learning method.

[267] Ottenheimers
Inc

2020 Remote object capture Drone swarm detects remote objects
using vision or detecting signals emitted
from objects.

[268] Mores Inc. 2019 Self-charging lightweight drone
apparatus

Drones collectively position a surface
apparatus to a desired location.

[269] Eagle
Technology
LLC

2020 Radio frequency (RF) communication
system providing enhanced RF
equipment configuration updates for
mobile vehicles based upon reward
matrices and related methods

RF communication between mobile
nodes in an RF network.

[270] Nutanix Inc 2019 Control system for autonomous
locomotion devices

The authors use a virtual environment.

[271] Sony Corp 2020 Concept for designing and using a
UAV controller model for controlling
a UAV

The authors use a wind generator to
replicate a real environment for UAV
flight.

[272] Tybalt LLC 2019 Airborne relays in cooperative-MIMO
systems.

[273] Foundation
Productions
LLC

2019 Apparatus, systems, and methods for
unmanned aerial vehicles

Authors propose universal docking
ports that can be incorporated on
stationary and mobile objects.


