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ABSTRACT

The mobile supply chain (MSC) is a new concept that
allows companies more adaptability and flexibility. In
MSCs, a product family can be produced, distributed,
and delivered by a mobile factory, carried by trucks,
and shared among different customers. In this paper,
to optimize production scheduling and the mobile
factory routing problem under uncertainty, a robust
decentralized decision-making approach (RDDMA)
based on the Analytical Target Cascading (ATC)
approach is developed. The RDDMA is a bi-level
hierarchical optimization method that divides an
all-in-one model into sub-problems and aims to
address each agent’s target. It is a 4-phase procedure,
including time window determination, robust mobile
factory routing, actual production scheduling, and
adjustment. In real-world applications, the service time
at each site is uncertain. Therefore, a scenario-based
robust optimization approach is utilized to manage
the uncertainties of the problem. Finally, the RDDMA
performance is evaluated using several instances. The
results suggest the proposed approach can provide
robust solutions for such a multi-agent problem.
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1. INTRODUCTION

The mobile supply chain (MSC) concept has its
origins in the Distributed Manufacturing System
(DMS) concept, which tries to produce a product
family locally. In MSCs, a truck can carry the so-
called mobile factory (MF) to provide on-site service
for geographically dispersed customers [1]. One of the
main advantages of this concept is the opportunity
to share (rent) expensive assets (machines), because
these machines have a low or temporary usage rate
at manufacturing sites (MS), and they are not needed
continuously.

The idea of a Shared Factory is built on the concept
of the sharing economy [2] and social manufacturing
[3], which aims to share manufacturing resources
and capabilities [4]. These concepts enable people to
share services and facilities in a coordinated Peer-to-
Peer (P2P) method. The best examples of this concept
are Uber in transportation and Airbnb in the hotel
industry. It can be expected that sharing resources (e.g.,
production machines) will lead to more sustainable and
productive supply chains [5].

Applications of the shared factory and mobile supply
chains can be found in various business sectors, from
humanitarian logistics to modular production units.
For example, blood from donors in remote areas
can be collected by mobile blood donation units [6].
Furthermore, mobile clinics [7] and laboratories are
utilized to deliver medical services and urgent services
in remote areas. Customers’ orders can be printed using
a shared 3D printing factory which can be moved via a
truck to the required location [8]. Finally, in chemical
industries, production machines (e.g., reactors) can be
carried in moveable containers by truck. A few grams
for very early research to hundreds of tons for mass-
produced goods [9] can be provided by mobile modular
production units locally.

The MSC is inherently a complex multi-agent
decentralized problem. The production processes at
MSs cannot be completed if an MF is not available
there. On the one hand, the mobile factory service
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provider (MFSP) aim to minimize transportation
and operating costs. On the other hand, production
managers at MSs try to deliver their own customers’
job orders in time. In many cases, these agents’ goals
can be in conflict, where the fleet manager cannot meet
the production managers’ demanded service in time.

In this paper, a robust decentralized decision-

making approach is proposed for MSCs under
uncertainty. In order to implement decentralization,
an ATC is utilized, which decomposes a centralized
model into sub-problems. Accordingly, the MF’s
fleet manager is chosen as the upper level agent, and
production managers are considered as lower level
agents. Furthermore, since service times at MSs are
uncertain, three uncertainty scenarios are developed to
address optimistic, realistic, and pessimistic scenarios
of data realization. Finally, a scenario-based robust
optimization approach is used to tackle the problem
uncertainties by reformulating a robust facility routing
problem. Using the proposed concept, all agents can
reap the benefits of decentralization, robustness, and
service flexibility provided by MFs. In this paper, some
gaps in the mobile supply chain scope are fulfilled,
with contributions as follows:

e Presentation of a robust optimization model in the
field of the shared/mobile factory.

e Proposal of a coordinated method for MSCs which
takes into account the MF routing and production
scheduling problem.

e Suggestion of a decentralized decision-making
approach for MSCs based on ATC.

e Contrary to simple production routing problems,
the production process is performed at the
customer’s location instead of the depot point.

The remainder of this paper is organized as follows.
Section 2 briefly reviews related works and efforts
and Section 3 explains the problem and discusses the
basis of the ideas proposed in this paper. In Section
4, the decentralized decision-making approach and
mathematical models are described and, in Section 5,
data generation and numerical results are presented. A
conclusion and recommendations for future research
are described in Section 6.

2. LITERATURE REVIEW

To the best of our knowledge, the idea of the MF was
presented first under the name Factory-in-a-Box [10].
However, similar ideas have developed following this
concept which are more or less different names for the
same concept. For example, plug and produce [11],
mobile on-site factory [12], location-independent [13],
and movable production systems [14]. These are simply
different names for the same concept.

Based on two well-known concepts, namely the
sharing economy [15] and collaborative consumption
[16], the shared factory idea was introduced by

[4]. Accordingly, manufacturers can share their
manufacturing resources without limitation. Similarly,
shared manufacturing was introduced by [17], whereby
they referred to it as SharedMfg. In their research,
the concept, definitions, and operation services of
SharedMfg were investigated and compared with
similar ideas.The shared factory performance was
studied from sustainability and efficiency points of
view [8]. In that paper, they proved shared factories
enhance resource productivity and manufacturing
sustainability. For this purpose, a 3D-printing mobile
prototype was used.

Some variants in the vehicle routing problem (VRP)
are similar to the MSC. Nevertheless, these variants do
not cover all aspects of the problem. The main focus
in VRP is the routing part of the problem and ignores
the other interconnected sections in the supply chain.
In the MSC, the production scheduling problem at
MSs plays an important role in finding a feasible and
optimal solution.

The mobile facility routing problem [18] has the
most similarity with the MSC concept among variants
of VRP, which aims to optimize routes for a fleet of
mobile facilities. Lei et al. [19] proposed a two-stage
stochastic optimization model for a mobile facility
routing problem. The first stage decision considers
the temporal movement of mobile facilities, and
the second stage addresses mobile facility service
at the manufacturer’s site. The model was solved
using an algorithm based on the L-shaped method.
A mathematical model was recently proposed
for the Factory-in-a-Box routing problem. The
proposed model was solved using an exact solver
and metaheuristics algorithms for large-scale
instances [20]. Finally, a centralized multi-objective
mixed-integer mathematical model was proposed to
address the MSC problem with mobile factories. The
objective function minimizes transportation costs
and delay costs considering the coordination of the
mobile factory movements and production plan at
manufacturing sites [21].

The production routing problem [22] and vehicle
routing problem with service time [23] are other
variants of the VRP which are similar to the MSC
concept. However, in these problems, the production
process is performed at starting points (depots), while
in the MSCs each customer has a production line that
depends on the mobile factory to start, continue, and
complete the process. Nevertheless, in the production
routing problem, the integration of production,
location, inventory, and distribution problems [24]; the
integration of a supply chain considering production,
inventory, and routing decisions [25]; and the
integration of disassembly line balancing and routing
problems [26] have been studied recently.

Decentralized decision-making approaches in the
supply chain have been investigated widely. Some of
the most well-known methods to apply decentralization
on optimization models in supply chain are as follows:
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multi-level optimization [27], game theory [28], and
ATC [29]. Furthermore, some authors present heuristic
methods which are designed for a particular context
[30]. To solve the resulting decentralized models, the
KKT conditions, kth-best, or metaheuristic algorithms
are used to solve bi-level models [31].

3. PROBLEM STATEMENT AND
THEORETICAL BACKGROUND

This section describes the problem, illustrates
the application of the MF, and introduces the
methodologies used in this paper. For this purpose,
we first explain the mobile factory and mobile supply
chain structure and components. After that, the ATC
method and its procedure and the scenario-based
robust optimization method are described.

The studied problem in this paper is inspired by a
real-world application in the chemical industry. As
illustrated in Fig. 1, some critical production equipment
(e.g., reactor) are embedded in an MF. The MF can be
carried by truck to produce a product family whenever
and wherever required. It can produce different
intermediate products which can be used in various
manufacturing steps in the semiconductor industry or
similar industries.

Because of the relatively low production rate, this
expensive and high-tech equipment is not needed
at production sites all the time. Hence, sharing this
equipment would be a wise decision by the main
supplier of the products. The supplier company (MF
owner), which is a chemical company, can control
the MF production remotely via controllers. Using
this idea, the supplier can enhance its service level,
minimize production costs, know-how leakage, and
avoid extra transportation costs.

~
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Fig. I: Schematic of a mobile factory

The MS has a flow shop production line with several
production machines in a row, where the shared
production machine (SPM) can be located at any step
of production. When the MF is available at a MS, the
production process at a pre-determined SPM can start,
continue, and complete. In other words, the MF is a
temporary production resource at the MS. Therefore,
MSs (as the lower level agents, i.e. followers) and the
MEFSP (as an upper level agent, i.e. leader) should work
in a coordinated manner. Otherwise, the MF would

be available at the MS, and all job orders would be
delayed because it is too late, or there would be no job
order to process because it is too early.

The configuration of decision making in a supply
chain can be in a centralized or decentralized way.
The agents introduced in this problem have conflicting
goals, which makes the stated problem intrinsically
decentralized. Utilization of a decentralized decision
making approach not only decreases the problem
complexity but also takes into account information
security and agent autonomy. Therefore, the
decentralized decision-making approach fits better
with this problem.

3.1. ATC

ATC has at least two levels, and an optimization
problem exists for each level. Accordingly, coupling
variables connect these optimization problems
hierarchically, and it should be noted there is no link
between optimization models from the same level.
Although the coupling variables are called target
variables from the upper level perspective, they are
response variables from the lower level view. Values of
the target variables are determined by the upper level
and distributed down to the lower levels. Then, the
lower levels check how close they are to their targets.
According to a penalty cost function, the upper level
can revise its decision to help the lower levels reach
their targets [32].

As it was proven, bi-level models are NP-hard [33].
One of the most common approaches to solving these
models is the Karush—Kuhn-Tucker (KKT) condition,
which is based on reformulating an equivalent single-
level model [34]. Since classic bi-level optimization
methods increase the problem complexity, evolutionary
algorithms are used to handle this shortcoming [35].
Contrarily, ATC decreases the problem complexity by
decomposing the problem into several smaller sub-
problems.

A simple hierarchical model for the MSC is
demonstrated in Fig. 2 to explain the ATC procedure
generally. An all-in-one routing production problem is
reshaped to a bi-level problem. The MFSP represents
the upper level, which manages a couple of MFs and
indicates their presence period at MSs, while the
lower level contains production scheduling units at
different MSs. Firstly, they propose their desired time
window (TW) for the MF presence period based on
their job orders’ due dates. The upper level collects
all TW proposals from the MSs and evaluates its
transportation and operation costs accordingly. Then,
the upper level determines the period that they will
be available at each MS. After receiving the response
variable answer from the upper level (MF presence
period), the lower level checks to what extent they
can complete their orders in time. If it is far from their
desired TW and induces too many delayed orders, they
have to negotiate with the upper level to revise their
plan.
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Upper Level

MS(1) production
scheduling unit

Lower Level

MS(2) production
scheduling unit

MS(N) production
scheduling unit

Fig. 2: The MSC hierarchal structure

3.2. Scenario-based robust optimization method
In scenario-based robust optimization methods,
some uncertainty scenarios s € S are defined for the
uncertain parameter, which represents the parameter
values under different circumstances. Based on the
method proposed by [36], constraints and variables
are categorized into two major groups: structural and
control. Structural variables remain unchanged in all
probable scenarios, while control variables are adjusted
whenever the uncertain parameter is realized [37]. For
example, consider the following uncertain model:

Min Z = c"x+d"y 1)
Subject to:
Ax=b )
Bx+Cy=e 3)
X,y =0 @)

Where x and y are structural and control variables,
respectively. Constraints (2) and (3) represent
structural and control constraints. To reformulate the
uncertain model robust counterpart, a set of scenarios
S ={1,2,3, ..., S} with the probability ps (¥5_, ps = 1)
is defined. Moreover, {8;, 8, ..., 85} is the set of error
vectors and constraint (4) defines the domains of the
decision variables. The linear robust counterpart for
the abovementioned model is as follows:

Where objective function (5) has three terms that
aim to minimize the expected value of the objective
function, variance of the objective function, and
infeasibility costs. Constraint (6) was proposed by [38]
to linearize using an auxiliary variable ( 6, ) the robust
counterpart presented by [36]. Finally, constraint
(8) is the reformulation of control constraint (3), and
constraint (9) defines the domains of the decision
variables.

4. MATHEMATICAL FORMULATION

In this section, several mathematical models for the
MSC routing production problem are developed.
As explained in Section 3, to reformulate the
decentralized decision-making approach, at least two
levels exist, and each level has its own corresponding
mathematical model. Therefore, the mathematical
models and decision-making approaches are proposed
in the following.

There is a set of job orders (n € N) with a due date
of du,, which are processed via a flow shop production
line with m € M production machines. Only when
an MF is present at the MS the production process
on a pre-defined SPM can be started, continued, and
finished. Hence, production planners at MSs should
take into account the MF presence time ( Z; ) and align

Min Z = ZSES Ds fs + AZSESPS[(ES - Zs’esps’gs’) + 295] + szES psas (5)

Subject to:

fs—ZpSIESr+9520 VseS (6)
s'es

Ax =Db (7

Bex + Csys + 85 = e Vs €S ®)

xz20y,206,20 Vs€ES )
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with the operation start time on SPM (STspy, ). Finally,
decision variables should be determined in such a way
that minimizes the total delayed job orders (DL,).

To optimize the MF routing problem, three main cost
drivers should be considered. Although transportation
costs are computed according to traveled distance,
operation costs (e.g., crew costs) are calculated based
on each MF’s tour duration. On the other hand, delay
costs refer to the TW violation penalty. The TW
proposed by each MS can be violated by paying a cost
rate § . It should be mentioned that each MS has raw
material demand size g; and the capacity of the MF is
restricted (dc).

Modeling indices, parameters, and decision variables
are defined below.

Sets

I Customer MSs, where i,j € |

N; Job order at MSi € I, where n € N;

M; Machines at MSi € I, where m,l € M;

K; Positions in sequence at MS i € I,
where k, b € K;

S Scenarios, where Vs € S

Parameters

Pnm Processing time of job n € N on the
machinem € M;at MSi € ]

q; Demand of MSi € 1

dc Capacity of MF

diyj Distance between site i and j € [

B Average transportation cost rate
of MF, €/ Km

a Average operating cost rate

for the MF, €/h
Uy Average speed of the MF
to cross arc (i,j)i,j €1
du, Due date of job ordern € N;at MSi € [
w Delay cost €/h from MFSP point of view
SE; MF service time duration at MSi € [
h Number of available MFs
u TW violation penalty, €/h
o Delay cost (€/h) from manufacturer
point of view

Ds Occurrence probability of each
scenario s € S
M A big number
A Weight of the objective function variance

dm; Demand of MSi € |

Variables

Xk A binary variable equals 1 if jobn € N
is assigned to the sequence k € K; at MS
i €1;0, otherwise

Yij A binary variable equals 1 if arc (i, j)
i,j € I appears in the solution; 0,
otherwise.

Tis Tour time duration of an MF which meets

MS i € I as the last customer in the tour
in each scenario s € S

Crm Completion time of kth job sequence on
the machinem € M;at MSi € |

ST, Start time of service on machine m € M
atMSi €l

Fy; Total amount of flow in arc (i,j) i,j € I

Zis Arrival time of the MF at sitei € [ in

each scenario s € S
DL, Delay time (hour) for job order n € N;

atMSi €l

Uss TW’s upper-bound violation at MSi € |
and each scenario s € S

& Objective function value in each
scenario s € S

ES Earliest time to start operation on SPM

LS Latest time to start operation on SPM

The problem assumptions are as follows:

* The MF fleet is homogenous.

* The MF can produce a product family.

* The MF has a fixed capacity.

e Each MS has a fixed demand.

e The MSs are homogenous.

* The SPM can be located on any step of the
production line.

e The number of job orders at each MS
can be different

» A penalty cost is determined on due date
violation.

* The production line type is flow shop.

 To start, continue, and finish operation on SPMs,
the presence of an MF is necessary.

» Each MF’s tour starts from and ends
at the depot node.

* Operation on SPM at MS has no stop (waiting)
between two consecutive orders. Hence, SE; is
equal with 211;’;1 DPnm» Where m=SPM.

e MF service time duration at MS i € I (SE;) is the
uncertain parameter whose value can change in
each individual scenario seS.

4.1. Robust decentralized decision-making
approach (RDDMA)

Now the RDDMA is presented based on the ATC
method and the scenario-based robust optimization
approach. This approach is designed based on
decentralizing the MSC routing production problem
under uncertainty. The decision-making approach
is utilized to create a link between lower and upper
levels efficiently. The overall 4-phase procedure is
demonstrated in Fig. 3, and each phase explained as
follows.
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Phase 1

Phase 2

Phase 3

Phase 4

Input data:
Processing time and due date

Solve Model ESM: Solve Model LSM:
For each customer site, find earliest For each customer site, find latest
start operation time (ES) on SPM to start operation time (LS) on SPM to
reach minimum delayed jobs reach minimum delayed job

Save
Service time, earliest start time, and latest
start time in each production site (i)

Inputdata:
Time window: ES, LS
Distance matrix
Speed matrix, costrates

Solve Model RMFRP:
Find MFS routes to min time-
window violation, transportation
costs, and operation costs

Save:
Actual start time at each
production site (i)

Inputdata:
Due date, Processing time,
Actual start time (Zi), and
Service time

Solve Model ASPM:
For each customer site,
minimize actual delayed job

Update

Is it
robustness .
satisfactory
parameters

YES

Fig. 3: The proposed decentralized decision-making approach
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4.1.1. Phase 1: Time window determination

In this phase, each MS should propose its desired TW
to reach minimum delayed orders. For this purpose,
each MS should calculate the earliest (ES) and latest
time to start (LS) operation on the SPM. Then, they
inform the MFSP of their preferred TW. They perform
orders with a minimum delay if an MF shows up at
the MS in the proposed TW. Otherwise, they cannot
meet their targets entirely. Hence, two mathematical
models are required, namely the earliest start time

ESM:

MinZ =Y., oDL, + ES

Subject to:

Ki
Zk:1Xnk =1
Z{,Vli:1Xnk =1

I<
Clm 2 lerln Pni an

Cim = Cimo1 + Prum&Xna

Cia = X0 Pui X

Cim 2 Ck—1,m + Pnm&Xnk

Ciem 2 Ciym—1 + Pnm&Xnk

SE = Cppy — ES

ES = Cim — X0=1Pnm Xn1

M1 = X)) + duy X — Ciom + DLy, = 0

Xin € {0,1} | Ciom ES, and DL = 0

The objective function (10) minimizes delay and ES,
while o adds more weight to reduce the delay term in
the objective function. Constraints (11) & (12) ensure
that each job is assigned to only one sequence and
more than one job order is not given to each sequence,
respectively. The processing times of the job orders

(ESM) and latest start time (LSM) models, to calculate
the TW information. These models are solved for
each MS in parallel and the results are collected by
the MFSP. Although in ESM the start time on SPM
is minimized, it should be maximized in LSM. It is
worth mentioning that these models are solved locally
by each MS. Therefore, some sets (e.g. Vi ) depend on
index i, which addresses the MS(i). Finally, in both
models the minimum delay is the main term in the
objective function.

(10)
vn € N; (11)
VkEK; (12)
vm € M;,n €N; (13)
vm>1€M;n €N; (14)
vk €K (15)
Vk >1€K;,me M, (16)
Vk eK,m>1€M; (17)
Vm=SPMEM,; Vk €K, (18)
vm = SPM € M; (19)
Vk € K;,n € N;,and m = |M;| (20)

@

and their completion time are calculated in constraints
(13)-(17). Constraint (18) ensures that operation on
SPM has no stop (waiting) between two consecutive
orders. Constraint (19) computes ES, constraint (20)
calculates the delay value, and constraint (21) defines
the domains of the decision variables.
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LSM:

MinZ =¥N_, oDL, — LS

Subject to (11)-(17), (20)-(21), and:

SE = Cypy — LS

LS = Cipy — 211\1]:1 Pnm Xn1

Where (22) is the objective function that minimizes
delay while maximizing LS and constraints (23)-(24)
compute the latest start time.

4.1.2. Phase 2: Robust mobile factory routing
(RMFR)
Now the RMFR problem is formulated, which is a

(22)
Vm=SPM € M, (24)

capacitated time-windowed vehicle routing problem
with service time. Considering the initial information
for the TW from the MSs, the fleet manager
should trade off between time window violation,
transportation, and operating costs. The RMFR
problem is formulated as follows:

Min Z = Zses Ds fs + A ZSES Ps[(Es - ZS'ES ps'Es') + 265] +w ZseS Zie[ psUis (25)

Subject to:

&s — ZS’ES ps’Es’ +0,=0

& =Xy Z§:1 Bdi;Y;;+ Ni, aTj

{:1 Yij =1
Z§:1 V=1
Yjo1Yoj < h
je1 Fji — Xieq Fyy = dmy

Fij < (dC - dml) X Yl]

Fi]' > dm] X YU
di;Y;;
Zis— Zjs + SEis + % <M(1-Y;)
ij
VZi + SEYiy + Hin¥is g

Vi1

ES; < Zis < LS; + Uy

Y, € 0,1} . Tis) STmi, Fij R Zis s Uissand DLy 2 0

V seS (26)
V seS 27)
Vjiel (28)
Vi el 29)

(30)
Vi el (31)
Vij €l (32)
vij el (33)
Vi, jeli#jandj>0,seS (34)
Vi el (35)
Vi€l (36)

(37)
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Where the objective function (25) expected MF
costs and TW violation. Constraints (28) and (29)
enforce that each MS should be visited only once,
and constraint (30) states that the number of hired
vehicles should not exceed h. Constraints (31)-(33) not
only ensure flow balance but also eliminate sub-tours.
Constraint (34) computes arrival time at each MS, and
constraint (35) computes tour time duration. Finally,
constraint (36) enforces the time window limitation,
and constraint (37) defines the domains of the decision
variables.

MinZ =YN_, DL,
Subject to (28)-(35), (37)-(38), and:

SE = Ckm - Zis

Zis =Cim — ZrAllzl Pnm Xn1

4.1.4. Phase 4: Adjustment

The time window violation cost rate (w) and
coefficient of objective function variance (1) play a
significant role in solution quality. To find solutions
with lower TW violations, the value of w should be
increased. On the other hand, to reach solutions with
a smaller variation, the value of A should be raised.
Finding the best value for the penalty rates depends on
decision makers’ preferences and sensitivity analysis
results for the parameter.

5. EXPERIMENTAL EVALUATION

This section introduces the input data generation
procedure and the optimization approach’s
implementation results. To see the decision-making
algorithm’s performance, several instances are solved

4.1.3. Phase 3: Actual production scheduling
RMFR returns actual presence time (Z;5), which
gives different values for each scenario. Now, in each
MS, production schedulers can solve their production
scheduling problem using the values of Z;s . For this
purpose, an actual scheduling problem model (ASPM)
should be solved to produce actual results for each
scenario. This model can be solved in a parallel way
foreach MSi €1, Z;, seS. Therefore, the actual delay
for each scenario is different because arrival time is
a scenario-based parameter. ASPM is formulated as
follows:

(39)
vm=SPMeM,Vk €K (39)
Vvm=SPMeM (40)

using CPLEX exact solver embedded in the GAMS
31.1.1 (General Algebraic Modeling System) software
[39].

As a notation utilized in the paper, AiBnCmDh
corresponds to a test problem with A maximum
number of jobs in each MS, B number of potential MSs,
C number of machines, and D number of available
MFs. It is worth mentioning that each instance has a
maximum of 4xB job orders across all MSs in total.
The formation of these scenarios is shown in Table 1,
and it means that uncertainty parameter, service time
(SE;), could be less, equal, and higher than estimated
value (SE,) . Three uncertainty scenarios are defined,
which represent optimistic (S1), realistic (S2), and
pessimistic (S3) scenarios with a probability of 30%,
40%, and 30%, respectively. Table 2, the randomly
generated distribution of different parameters of the
proposed model is reported.

Table 1: Scenario generation

Scenario Uncertain parameter (SE;) value Probability
S1 0.75 x SE, 30%
S2 SE, 40%
S3 1.25 % SE, 30%
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Table 2: Parameters of the model
Parameter Value Parameter Value
Pnm ~U(2,6) B 6 €/Km
dn ~U(10,20) a 10 €/Km
dc 100 123, ~U(10,70)
diyj ~U(100,1000) du, ~U(50,250)
W 150 €/h A 10
M 1000 h {2,3}

In order to show the RDDMA performance, three
instances were solved. In Table 3, the results of the
implementation of Phase 1 is reported. The most

important output of this phase is the TW proposal for ~ MS.

Table 3: Results of Phase 1

each MS. As can be seen in this table, expected service
time (SE), earliest start (ES), and (LS) are reported,
which reveal the desired TW to start operation at each

Instance MS No. of jobs SPM position SE (h) ES (h) LS(h)
1 3 2 9 4 97
2 5 2 20 3 48
5i5n3m2v 3 4 1 16 0 57
4 2 3 8 8 57
5 5 2 25 2 44
1 4 2 20 2 79
2 8 3 38 4 51
3 10 2 39 2 67
7i10n4m2v 4 6 4 24 14 51
5 8 1 30 0 79
6 9 2 34 2 66
7 7 3 34 4 67
1 7 2 24 2 103
2 10 3 47 6 49
3 6 2 29 3 44
4 6 3 22 6 97
10i10n3m3v > ’ ! 30 0 %
6 8 2 37 2 69
7 9 3 34 5 46
8 7 2 26 2 68
9 10 2 32 2 47
10 8 1 30 0 38
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After receiving the results of Phase 1, the RMFR
problem can be solved using the desired TW
proposed by each MS to reveal the response variable
values. In Table 3, the results of Phases 2 and 3 are
reported. As shown in Table 4, arrival time, delay,

and actual delay may change in each scenario, but
the robust optimization approach tries to minimize
their variation. On the other hand, since routing is a
structural decision variable, routes remain unchanged
in different scenarios (see Table 5).

Table 4: Results of Phases 2 and 3

Z;s (arrival time) Uss Actual delay (Avg.)
Instance CPU
MS S1 S2 S3 S1 S2 S3 S1 S2 S3
1 8 8 8 0 0 0 0 0 0
2 45 56 67 0 8 19 0 8 28
5i5n3m2v 3 20 22 24 0 0 0 0 0 0 3s
4 36 45 54 0 0 0 0 0 0
5 7 7 7 0 0 0 0 0 0
1 42 52 62 0 0 0 0 0 0
2 74 88 103 23 37 52 36 82 142
3 7 7 7 0 0 0 0 0 0
7i10n4m2v 4 16 16 16 0 0 0 0 0 0 8s
5 74 89 104 0 10 25 0 10 25
6 43 49 55 0 0 0 0 0 0
7 118 141 166 51 74 99 46 113 219
1 34 42 48 0 0 0 0 0 0
2 69 84 100 20 35 51 47 107 197
3 7 7 7 0 0 0 0 0 0
4 16 16 16 0 0 0 0 0
) 5 70 83 96 0
10110n3m3v 59s
6 42 47 53 0 0
7 119 146 174 73 99 128 288 523 775
8 85 99 114 17 31 46 17 31 51
9 40 47 55 1 15
10 9 9 9 0 0 0
Table 5: Results of Phase 2
Instance Routes ¢s (Objective function)
S1 (€) S2 (€) S3 (€)
5i5n3m2v MF1: 0-1-3-0
12865 13085 13305
MF2:0-5-4-2-0
7i10n4m2v MF1:0-3-1-5-0
18916 19446 20016
MF2:0-4-6-2-7-0
10i10n3m3v MF1:0-3-1-5-0
MF2:0-4-6-8-0 28223 28973 29773

MF3:0-10-9-2-7-0
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In order to complete phase 4, a trade-off between
TW violation (Y45 Yie; psU;s) and the MF fleet costs
(Yseaps &) should be performed using a sensitivity on
the value of w (TW violation cost rate). Figures 4,5 and
6 demonstrate the results of adapting various values
of w for different instances. Setting higher values of w
results in more robust solution and guarantees lower

delay even in the pessimistic scenarios. For example,
in Fig 6 (10110n3m3v) the results show that reaching
less than 118h TW violation is not possible and,
considering the fleet costs, it is better to set w between
50 to 150 €/h to find an acceptable decision for both
main agents of the problem. Furthermore, almost the
same pattern can be seen in the other instances.

10 18000
9 C C C C < ® ® ® 16000
8 14000
7 C < S < S
12000
S 6 )
= 10000 +
S 5 8
> 8000 %
= 4 R
. 6000
3
2 4000
1 2000
0 4 4 L 0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
TW violation cost rate ()
==@==TW Violation ==@=F|eet Cost
Fig. 4: Results of Phase 4 (5i5n3m2v)
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Fig. 5: Results of Phase 4 (7i10n4m2v)
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Fig. 6: Results of Phase 4 (10i10n3m3v)

6. CONCLUSIONS

In this paper, a robust decentralized decision-making
approach for the MSC routing production problem
was presented. The decentralization approach was
developed using a well-known method, namely
ATC. Accordingly, four mathematical models were
developed to link the created models via the suggested
procedure. The RDDMA consists of four phases:
Time window determination, robust mobile factory
routing, actual production scheduling, and adjustment.
Furthermore, to tackle the problem uncertainty, a
scenario-based robust optimization method was
utilized, which can consider different probable values
of the uncertain parameter (service time) in realization.
Finally, RDDMA performance was evaluated by
several instances and experimental results. The outputs
show that using sensitivity analysis on TW violation
cost rate, a Pareto frontier can be provided for decision
makers to find their preferred solution. For future
research, solving large-scale instances and using an
adjustable robust optimization method are suggested.
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