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Scheduling Electric Buses in Public Transport:  
Modeling of the Charging Process and Analysis of Assumptions

Nils Olsen · Natalia Kliewer

ABSTRACT

The Electric Vehicle Scheduling Problem (E-VSP) 
complicates traditional bus scheduling for public 
transport by restricting the range of the buses. To 
compensate for these limitations, detours to charging 
stations become necessary in order to charge the 
vehicle batteries. Charging is a nonlinear process 
with regard to real conditions, especially when 
taking partial and opportunity charging into account. 
However, within most existing solution methods for 
the E-VSP, the work of charging a vehicle battery is 
substantially simplified. In most cases, charging is 
assumed to be performed within linear or even constant 
time windows. In this paper, we analyze the impact 
of simplifying assumptions about charging times of 
electric buses on solutions of the E-VSP. Therefore, 
we propose charging models reflecting the nonlinear 
charging process precisely. Furthermore, we enhance 
an existing solution method for the E-VSP and provide 
an algorithm for incorporating partial and opportunity 
charging. Through a comprehensive computational 
study using real-world bus timetables, we identify 
major discrepancies between model assumptions and 
real charging behaviours of electric buses. On the 
one hand, we show that the assumption of constant 
charging times generally leads to overestimated time 
windows for charging, which increases the total costs. 
On the other hand, we demonstrate that assuming 
linear charging times underestimates the time windows 
actually required for charging, widely leading to 
infeasible vehicle rotations. We investigate this issue by 
using the technical data of lithium-ion batteries, which 
are mainly used in practice at present.

KEYWORDS: Vehicle Scheduling · Public Transport · 
Electric Buses · Electric Battery · Charging Process

1. INTRODUCTION AND
PROBLEM DESCRIPTION

The electrification of public transport fleets and thus 
the deployment of electric buses brings many important 
advantages. First, electric engines have a much 
higher degree of efficiency compared to combustion 
engines. Second, electric buses are locally emission-
free, which means that almost no greenhouse gases, 
fine particles, and nitrogen oxides are being emitted 
during their operation. Nowadays, where thresholds 
for these emissions are largely exceeded, especially 
in urban areas, the use of electric buses represents a 
key component in order to reduce the negative effects 
on public health. Beyond that, electric buses enable 
a significant reduction of noise, which is especially 
important for urban areas (cf. Schallaböck (2012)).

As things stand, the term electric bus includes mainly 
three different types of electric propulsions: hybrid 
electric buses (HEB), fuel cell electric buses (FCEB), 
and fully electric buses (EB) (cf. Ogden et al. (1999) and 
Pihlatie et al. (2014)). A HEB contains a battery and an 
electric engine together with a traditional combustion 
engine, in order to extend its range. A FCEB contains 
an electric engine as well as a fuel cell that generates 
electric energy directly from hydrogen or methanol to 
power the engine. An EB merely contains an electric 
engine for movement. The electric energy needed for 
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the set of timetabled service trips at minimum cost. A 
vehicle can perform deadhead trips, which represent 
trips without carrying passengers, in order to change its 
location, which is especially important when the same 
bus can serve different bus lines (line-mixed planning). 
The set of all trips executed successively by a vehicle 
is described as its rotation. In turn, the set of vehicle 
rotations is denoted as the vehicle schedule. Vehicle 
rotations need to satisfy the following constraints: (1) 
A vehicle rotation consist of compatible trips, that is, 
the trips have to be executable in succession without 
time overlaps. (2) Every service trip is assigned exactly 
once, and (3) a vehicle begins and ends its rotation 
at the same depot. This basic optimization problem 
is widely known as the Vehicle Scheduling Problem 
(VSP). When deploying BEBs, additional restrictions 
have to be taken into account: (4) BEBs have limited 
ranges due to their limited battery capacities, and (5) 
the vehicle batteries can only be recharged at charging 
stations located within the route network. This problem 
is denoted as the Electric Vehicle Scheduling Problem 
(E-VSP) as an extension of the traditional VSP. A 
vehicle rotation is termed feasible for BEVs if all of 
the restrictions introduced are satisfied. Otherwise it is 
termed infeasible. While charging, a vehicle remains 
idle at a particular charging station for a certain time 
period. This time period generally depends on the 
remaining energy of a vehicle battery, often denoted 
as the State-of-Charge (SoC). Vehicle batteries can 
either be fully or partially charged. The consideration 
of partial charging procedures complicates the problem 
significantly but also enables further optimization 
potentials due to higher degrees of freedom.

While many authors have focused on developing 
solution approaches for the E-VSP, most solution 
methods presented do not incorporate the specific 
technical conditions of BEBs and charging stations 
sufficiently. Particularly worthwhile mentioning are 
predictions of energy consumption as well as the 
charging and discharging process of modern batteries. 
The discharging process is mainly determined by the 
energy consumption of an BEB. Factors that determine 
the consumption are line topologies, road gradients, 
weather and traffic conditions, or a vehicle’s air 
conditioning (cf. De Cauwer et al. (2015) and Deflorio 
and Castello (2017)). Furthermore, the functioning of 
a battery’s charging process has to be considered. As 
things stand, there are a number of different battery 
types that are used in practice such as lithium-ion, 
nickel zinc, or lithium metal polymer batteries. In 
most practical operations lithium-ion batteries are used 
and mainly charged by fast charging technologies (cf. 
Wang et al. (2016)). Generally, lithium-ion-batteries 
are charged with the widely used charging procedure 

powering the engine is provided either by an electric 
battery or by overhead wires distributed through the 
road network. The term used in the first case is battery 
electric bus (BEB) and in the second is trolley bus. 
Since BEBs involve the strictest restrictions for daily 
operations, we will focus on this type of bus in this 
paper and use the term electric bus and battery electric 
bus synonymously.

Despite significant research efforts in the area of 
battery technologies, modern battery buses merely 
reach a fraction of the ranges of buses with traditional 
combustion engines (cf. Ogden et al. (1999) or Felipe et 
al. (2014)). For example, the Berliner Verkehrsbetriebe 
(BVG) is carrying out the pilot project E-Bus Berlin1 

whereby electric buses (Solaris Urbino 12 electric), 
each equipped with a lithium-ion-battery capable of 
storing 90 kWh, operate on a single line. Measured in 
terms of their consumptions (1.5 – 1.8 kWh, depending 
on many influencing factors), this results in a range of 
approximately 54 km. By comparison, the same bus 
type with a traditional diesel engine (Solaris Urbino 12) 
is able to cover a distance of about 450 km2 . Apart from 
this, state-of-the-art buses like the Proterra Catalyst 
Transit Vehicle3 capable of storing about 300 kWh 
achieve longer but still not comparable ranges. In order 
to compensate for this disadvantage, BEBs perform 
detours to charging stations during their operations 
in order to recharge the vehicle batteries. Therefore, 
three main different options for recharging exist. First, 
a vehicle battery can be recharged overnight during 
longer idle times at the depot. Second, a battery can 
be recharged during smaller breaks within a vehicle’s 
operation, which is called opportunity charging. Lastly, 
a vehicle battery can be swapped for a fully charged 
battery. Different charging technologies are available 
for transferring energy into the batteries. Nowadays, 
this transfer is mainly performed either by a wire 
(conductively) or inductively. For instance, within the 
pilot project in Berlin, the buses deployed are charged 
inductively at intermediate stops and conductively 
at terminal stops of operated service trips, which is 
denoted as opportunity charging. Young (2018) gives 
an overview of the operation of wireless charging for 
electric vehicles.

Vehicle scheduling, as one essential planning 
task of public transport companies, is especially 
affected by the challenges of BEBs such as limited 
ranges and the need for charging. This task involves 
specifying the vehicle deployment for operating the 
timetable daily offered. A timetable contains service 
trips for transporting passengers from an origin via 
intermediate stops to a destination at specific times. 
The general objective of vehicle scheduling is to 
determine an assignment of a company’s vehicles to 

1 	 http://www.e-bus.berlin
2 	 http://www.busmagazin.de/fileadmin/user_upload/Busmagazin/Fahrzeugtests/Solaris-Urbino_03_2015.pdf
3 	 https://www.proterra.com/products/40-foot-catalyst

http://www.e-bus.berlin/
http://www.busmagazin.de/%EF%AC%81leadmin/user
http://www.proterra.com/products/40-foot-catalyst
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In this paper, we analyze the impact of simplifying 
assumptions about charging times of BEBs, in our 
case constant and linear time windows for charging, 
on solutions of the E-VSP. This involves examining 
impacts on cost-efficiency, feasibility, and the 
practical operations of BEBs. Therefore, we propose 
precise charging models to reflect the nonlinear 
charging process accurately, especially in regard to 
CC/CV. Towards solving the E-VSP, we enhance an 
existing solution method and provide an algorithm 
for incorporating partial and opportunity charging. 
Since a consideration of partial charging extends the 
problem significantly, we differentiate specifically 
between complete and partial charging procedures in 
the analysis of the solutions.

In order to arrive at these contributions, the paper 
is structured as follows: In Section 2 we give an 
overview of related work especially mentioning the 
consideration of technical conditions. In Section3 we 
define the E-VSP formally. Afterwards, we introduce 
the solution methodology in Section 4. Then, we 
present models for the charging procedure CC/CV 
in Section 5 and perform a computational study in 
Section 6. We conclude our contribution with Section 
7, providing a summary and a perspective for potential 
further research.

2.	 RELATED LITERATURE

In the following, we provide an overview of related 
literature. We discuss existing solution approaches 
to the E-VSP that focus on technical conditions in 
particular.

There is a lot of literature dealing with vehicle 
scheduling for public transport. For an overview, 
we refer to Bunte and Kliewer (2009). With regard 
to the issue to be investigated within this paper, 
solution approaches incorporating limited lengths of 
vehicle rotations are especially relevant. Desrosiers 
et al. (1995) and Haghani and Banihashemi (2002) 
extend the basic VSP by restricting the lengths and 
durations of the vehicle rotations. Therefore, they add 
constraints to the problem formulation that restrict 
fuel consumption. The possibility of recharging a 
vehicle battery at charging stations is not considered, 
though. A closer monitoring of any of the characterized 
technical aspects was dispensed with. The authors 
present an exact and two heuristic solution methods. In 
order to solve even larger-scale instances, they develop 
techniques for decreasing the problem size.

Chao and Xiaohong (2013) take into account the 
possibility of swapping a vehicle battery at specific stop 
points besides the restricted travel times of BEBs. The 
replacement is carried out within a constant time frame. 
After the removal, a fully charged battery is inserted. 
An approach based on a Non-dominated Sorting 
Genetic Algorithm (NSGA-II) is presented for solving 

constant current/constant voltage (CC/CV), which is 
characterized by two phases of charging (cf. Dearborn 
(2018)). Within the first phase, the battery is charged 
linearly, measured by its capacity, by applying a constant 
current. After exceeding a threshold of approximately 
65% of the maximum battery capacity – the actual 
percentage value depends on the C-rate of the battery – 
the battery is charged with a constant voltage. Within 
this second stage, the current decreases exponentially, 
leading to a nonlinear profile. Figure 1 illustrates this 
procedure. Within most existing solution methods for 
the E-VSP, the special feature of the nonlinear charging 
process of vehicle batteries has not been adequately 
incorporated. Instead, the functioning of charging has 
been substantially simplified by assuming linear or 
even constant time windows.

Figure 1: Profiles of the current, cell voltage, and 
SoC within the charging procedure CC/CV of 

lithium-ion-batteries (according to Dearborn (2018)).

With a view to other optimization problems in 
transportation, in particular vehicle routing with 
electric vehicles, when the departure and arrival 
times of trips to be assigned are not fixed, we can 
determine that aforementioned problem of simplified 
assumptions about charging times of EVs is also highly 
relevant. In this respect, Montoya et al. (2017) extend 
existing solution methods for the electric vehicle 
routing problem by incorporating nonlinear charging 
procedures. They evaluate resulting tours with regard 
to their feasibility and cost-efficiency using a piecewise 
linear approximation of the current. They disclose that 
an oversimplification of charging vehicle batteries 
generally leads to inconsistent solutions. However, due 
to the fact that vehicle routing has different prerequisites 
compared to vehicle scheduling and requires different 
solution methods, no direct conclusions regarding the 
E-VSP can be made.
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3.	 PROBLEM DESCRIPTION  
AND COST MODEL

In this section, we derive a formal model of the 
E-VSP. We consider a road network given by a set 

 of  stop points including the set 
of depots .

The service trips to be assigned are given by a set 
 with . Each service trip  is 

identified precisely by its departure time, arrival time, 
departure stop, and arrival stop. The distances and 
travel times between any two stop points  are 
each given by a matrix. Distances and travel times may 
differ between service and deadhead trips. We seek to 
serve the set T of service trips with a set of BEBs. BEBs 
are mainly characterized by their battery capacities, 
which denote the maximum amounts of energy that 
can be stored. In addition, there may be further vehicle 
properties like height, length or passenger capacity. 
An BEB can charge its battery at charging stations 
located within the road network. We assume that stop 
points of S can serve exclusively as charging stations. 
Therefore, a stop point can be equipped with charging 
technology. The charging technology primarily 
determines the time required for the intake of energy, 
the charging time. This is due to the current, which may 
differ between different charging technologies. We 
assume that charging procedures and deadhead trips 
start immediately on arrival ata stop point, without 
buffer times. Possible turning times at final stops and 
changeover times at charging stations are assumed to 
be already part of previous trips.

The use of an BEB incurs fixed costs  
independently of its rotation. A vehicle rotation may 
consist of deadhead trips, service trips, and charging 
procedures, each causing operational costs. We assume 
that an BEB causes costs per hour of operation  
independently of its rotation. A in order to reflect the 
drivers’ wages. To take into account maintenance and 
wear of the buses as well as energy consumption, we 
assume costs  per kilometer driven. Since 
energy costs may depend on external factors like the 
time of the day or the utilization of the energy grid, 
this parameter can be time-dependent. The overall 
objective of the E-VSP is to minimize the total costs for 
operating given timetabled service trips. This implies 
the minimization of fixed costs for buses used and costs 
for the operation of the buses. The total costs  
of a given solution for the E-VSP containing a set V of 
buses used and sets Tv each containing the set of trips 
that a bus  executes can be specified by

the problem. The solution method is being analyzed 
using real data taken from a project in Shanghai.

Li (2014) proposes a model with either battery 
swapping or fast charging. Both options are performed 
within constant time frames; however, the time for 
fast charging depends on the stop point. The solution 
approach is based on column generation. The vehicle 
batteries are always fully charged.

Reuer et al. (2015) extend the traditional VSP by 
considering a mixed fleet of vehicles consisting of 
battery buses and traditional buses without range 
restrictions. To solve the problem, the authors use 
a time-space network based exact solution method 
for the VSP as introduced by Kliewer et al. (2006). 
As solutions to this problem comprise optimal flow 
values through the network, strategies for flow 
decomposition are necessary, in order to obtain vehicle 
rotations enabling additional degrees of freedom 
while generating multiple, all cost-minimal, vehicle 
rotations. Therefore, they develop strategies for flow 
decomposition which aim at maximizing the proportion 
of feasible vehicle rotations for BEBs. Constant time 
windows are assumed for charging the vehicle batteries 
ina very simplifying way.

Adler and Mirchandani (2016) present a column 
generation approach to the E-VSP incorporating both 
limited ranges and charging procedures at charging 
stations. The charging procedures are also greatly 
simplified, they are carried out in constant time, and 
the vehicle batteries are always charged to full capacity. 
To obtain initial solutions, a heuristic algorithm is 
proposed, which generates vehicle rotations according 
to a greedy algorithm with respect to range limitations 
and recharging. An incorporation of additional electric 
issues such predictions of energy consumptions or the 
discharging process of batteries was not made.

van Kooten Niekerk et al. (2017) develop a column 
generation approach, first incorporating partial 
chargings. Charging is assumed to be performed in 
linear time depending on the SoC. In addition, battery 
aging effects are incorporated by means of exponential 
modeling and costs for charging are assumed to be 
time-dependent. Due to runtime reasons, the charging 
procedures are, however, approximated by using 
discrete scenarios.

In summary, some first approaches exist that 
address the E-VSP. However, the question remains 
how assumptions made about technical aspects 
of BEBs effect the cost-efficiency, feasibility, and 
practicability of resulting vehicle rotations. Within 
this paper, we investigate the aspect of charging vehicle 
batteries within the scope of the E-VSP by proposing 
more precise models for the charging process and 
experimentally quantifying their impacts on solutions.
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from the depot to the departure stop of t1 and from 
the arrival stop of t1 to the depot (line 1). It is assumed 
that this kind of vehicle rotation is always feasible 
because otherwise the entire optimization problem is 
infeasible. After initialization, the remaining service 
trips of T are processed successively (line 2). For each 
service trip t the subset  of vehicles already 
used is determined, which are able to execute t (ine 
3). Therefore, the nearest charging station from the 
arrival stop of t is determined (line 4). Then, each 
vehicle already used is considered successively (line 
5). For each vehicle, we check whether t is compatible 
in terms of temporal restrictions (line 6). If this is not 
the case, the next vehicle is considered. If temporal 
restrictions are not violated, we check whether the 
SoC is sufficient for executing t and performing a 
potentially necessary deadhead trip from the arrival 
stop of t to the nearest charging station (line 7). This is 
to ensure the feasibility of all vehicle rotations. If these 
trips can be performed by the current vehicle it is added 
to Vu (line 8). If this is not the case, we check whether 
there is enough time to performe a charging procedure 
at the nearest charging station to the current vehicle’s 
latest position with the potentially necessary deadhead 
trips (line 9). This procedure is feasible with regard 
to the SoC due to the previous condition. Amounts of 
energy that may be charged by opportunity charging 
during the execution of t are considered. If the current 
vehicle rotation remains feasible in terms of time 
despite this detour, the vehicle is added to Vu (line 10). 
After processing each vehicle already used, the current 
service trip t is assigned to the vehicle that causes the 
smallest increase in operational costs arising from the 
assignment (line 17 & line 18). Amounts of energy 
charged by opportunity charging are added (line 19). 
If there is no vehicle able to execute t (line 14), a new 
vehicle rotation is added to V. It contains t together with 
the necessary deadhead trips from and to the depot. The 
algorithm terminates when all service trips have been 
processed and the set of vehicle rotations is returned. 
Note that algorithm ConstructVS always provides 
feasible solutions due to the previous assumption made 
about the feasibility of vehicle rotations containing 
only a single service trip.

Here,  denotes the duration and  the 
length of a vehicle’s trip. In this paper, we assume a 
given, fixed charging infrastructure. Hence, the set 
of charging stations is given in advance and is not 
included in the total costs.

4.	 SOLUTION METHOD

We now introduce the solution method that we use 
within our computational study to solve the E-VSP. As 
the VSP with route and time constraints is NP-hard 
(cf. Haghani and Banihashemi (2002)), the E-VSP 
is NP-hard as well because it is an extension of the 
basic problem. Due to the great complexity and in 
order to be able to solve also real-world instances 
with extremely large road networks and timetables 
as well, especially when taking partial charging into 
account, we first adapt a heuristic solution method 
from Adler and Mirchandani (2016). Afterwards, we 
present a backtracking-algorithm for the incorporation 
of partial charging procedures within the solution 
method. Within our computational study we consider 
the single-depot E-VSP, which is why the following 
solution method works for a unique depot. However, 
the algorithms can be easily adapted to multiple depots.

4.1.	 Basic Heuristic Solution Method for the 
E-VSP

Algorithm ConstructVS shows the procedure, 
which is principally based on a concurrent greedy 
algorithm. The basic procedure is to assign service 
trips consecutively to the set of BEBs already used 
with respect to limited ranges and the option to charge 
a vehicle battery at charging stations. The set T of 
timetabled service trips to be assigned, listed by their 
departure times in ascending order and a set  of 
charging stations distributed within the road network 
serve as the input.

The algorithm is initialized by an empty set V of 
vehicle rotations. Then, a new vehicle rotation is 
constructed that only contains the first service trip 

 together with the necessary deadhead trips 
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vehicle rotation we use the subsequent recursive 
algorithm AddPC, which is based on backtracking. 
The algorithm either returns the set of partial chargings 
that are needed within a vehicle rotation or indicates 
its infeasibility.

The basic procedure is to check iteratively, for the 
current and each already assigned service trip, whether 
a detour from the respective arrival stop to the nearest 
charging station is possible with regard to temporal 
restrictions. Each feasible detour is saved as a charging 
possibility. Charging procedures already established 
are not considered. If no charging possibilities exist, the 
algorithm returns the infeasibility of the vehicle rotation 
and the next vehicle is processed within algorithm 
AddPC. Among all charging possibilities found, the 
one that enables the greatest energy intake is selected. 
The intention of this procedure is to reduce the number 
of chargings and so minimize the operational costs. 
If the remaining vehicle rotation after inserting the 
charging procedure is feasible, the algorithm returns the 
vehicle rotation, all partial charging procedures, and its 
feasibility. Within this step, at the charging possibility 
the vehicle rotation is split into two subsequences 
containing the previous and subsequent trips. Then, the 
algorithm is applied to each subsequence with which it 
is recursive. If the remaining rotation is infeasible, the 
current charging possibility is removed and the next 
best one is considered. As this procedure processes 
already assigned service trips, the vehicle rotations 
may change after each application of the Algorithm. As 
in the original procedure of algorithm ConstructVS, the 

4.2.	 Incorporation of Partial Charging 
Procedures

Within our computational study, we consider both 
complete and partial chargings of the vehicle batteries. 
In the first case, a battery is always fully charged. In 
the latter case, however, partial energy intakes are 
allowed, depending on conditions given by the vehicle 
rotations such as, for example, waiting times between 
successive service trips. So far, full chargings can 
be implemented within algorithm ConstructVS 
(line 9 & line 18) without modifying the procedure. 
In this case, the waiting time at a charging station 
is determined by the SoC of the vehicle on arrival. 
However, the incorporation of partial chargings 
requires more algorithmic effort because the decision 
when and to what extent to charge a battery is very 
complex. To determine whether a vehicle rotation 
remains feasible after the assignment of a service trip 
considering partial chargings, we extend the present 
procedure of algorithm ConstructVS by considering 
the following cases: First, if the range restriction of 
a vehicle is not violated after assigning a service trip 
(line 7), the procedure remains unchanged. Second, 
if a charging procedure is needed, we check whether 
at least the amount of energy required to execute the 
current service trip and a possibly necessary deadhead 
trip from the arrival stop to the nearest charging station 
can be charged before executing the current service 
trip. If this is the case, the current vehicle is added to the 
set Vu of vehicles able to execute the service trip. Lastly, 
if the previous procedure does not lead to a feasible 

Algorithm 1 Computing a feasible Vehicle Schedule for BEBs (ConstructVS)
(according to Adler and Mirchandani (2016))

Input: service trips T = {t1, t2, . . . , tn} by ascending departure times, charging stations C
Output: feasible vehicle rotations V = {v1,v2, ...}.

1: v1 ←{t1}, V ←{v1};
2: for i ← 2 to n do
3: Vu ← /0;
4: Determine the nearest charging station c ∈C from the arrival stop of ti;
5: for all v ∈V do
6: if v is compatible with ti then
7: if SoC is sufficient to execute ti and perform a deadhead trip after ti to c then
8: Vu ←Vu ∪{v};
9: else if There is enough time for deadhead trips and charging before ti then

10: Vu ←Vu ∪{v};
11: end if
12: end if
13: end for
14: if Vu = /0 then
15: v ←{ti}, V ←V ∪{v};
16: else
17: Select v ∈Vu causing minimum additional costs when assigning ti to v;
18: Assign ti to v with necessary deadhead trips and charging procedure;
19: Add corresponding amounts of energy charged at intermediate stops during the execu-
20: tion of ti;
21: end if
22: end for
23: return V ;
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Figure 2: Temporal representation of an 
electric vehicle’s charging process.

To represent the nonlinear profile of the current 
within the charging procedure CC/CV of lithium-ion-
batteries, we assume a function

              	 (2)

which measures the amount of energy in kWh that can 
be fed into a battery per minute (kWh/min). For the 
following analysis, we focus on the SoC of a battery and 
disregard any additional influencing factors. Therefore, 
we denote the SoC as  with  
representing the battery capacity and the target energy 
as  has no impact on the charging 
ratio, we obtain  and . Then, 
if a vehicle arrives at a charging station with a specific 
SoC c, the required charging time F (c) in minutes for 
charging its battery to an extent  is given implicitly by

	 	 (3)

with  and . Depending on the 
shape of (2), the charging time F (c) may be computed 
analytically or may need to be approximated if the 
integral of (3) is not computable or does not exist. In 
these cases, we use Newton-Cotes formulas for the 
representation of the integral and Newton’s method for 
solving the equation (cf. Schwarz and Köckler (2006)).

current service trip is assigned to the vehicle causing 
the smallest increase in operational costs arising from 
the assignment (line 17 & line 18).

So far, we have specified when and to what extent a 
vehicle battery should be charged. Within the following 
section, we discuss the functionality of charging 
processes. This allows us to model charging procedures 
within the E-VSP precisely.

5.	 MODELING THE CHARGING PROCESS

In the following, we derive formal models for the 
charging process of vehicle batteries. When a vehicle 
arrives at a charging station in order to charge its 
battery, the required waiting time is influenced by 
several factors. Besides the SoC and the extent to which 
a battery should be charged, there are additional factors 
such as the condition of the battery, the charging 
technology used, and weather conditions that have to 
be considered (cf. Wu and Niu (2017)). In the following 
the extent to which a battery is charged is denoted as 
the target energy, which is especially required when 
considering partial chargings. In order to incorporate 
a variety of influencing factors, we assume a set of 
countable many factors  with  and an 
arbitrary charging function

	 	 (1)

that indicates the resulting charging time, for our 
purposes measured in minutes, depending on the 
specific input factors. The basic procedure of charging 
a battery is illustrated in a simplified form by Figure 
2, where a(v) denotes the arrival time of a vehicle, d(v) 
the departure time after charging, and  the 
charging time.

Algorithm 2 Adding Partial Charging Procedures to Vehicle Rotations (AddPC)

Input: vehicle rotation v = {t1, . . . , tn}, charging stations C
Output: vehicle rotation v, decision whether v is feasible or not

1: P ← /0
2: for i ← n to 1 do
3: if Charging can be performed after ti and is not already done then
4: Add charging possibility to P;
5: end if
6: end for
7: if P = /0 then
8: return v, false;
9: end if

10: Insert charging procedure with the greatest energy intake into v;
11: if Remaining vehicle rotation is feasible then
12: return v, true;
13: else
14: Remove charging procedure from P;
15: Go to 7;
16: end if

time

a(v) d(v) = a(v)+F(x1, . . . ,xn)

F(x1, . . . ,xn)



8

Figure 3: Schematic profiles of the derived charging 
function models with regard to CC/CV.

6.	 COMPUTATIONAL ANALYSIS

In this section, we present the results of our 
computational study. We start by introducing 
the instances to be s olved and our experimental 
parameters. Afterwards, we specify precise models 
for the current during a charging process based on 
Section 5. Then, we look at the results of two major 
experiments to evaluate constant and linear charging 
times of BEBs with regard to the proposed nonlinear 
charging process of lithium-ion-batteries. For both 
experiments, we use the solution method introduced 
in Section 3. Within the first experiment described 
in Section 6.3, we evaluate constant time windows 
as waiting times of BEBs at charging stations with 
regard to the charging times effectively required. 
In this context, we analyze impacts on BEBs’ cost-
efficiency and practical operations. Within the second 
experiment, we investigate impacts of BEBs’ assumed 
linear charging times on the feasibility of resulting 
vehicle rotations with respect to the nonlinear charging 
process. Here we differentiate specifically between 
complete and partial charging procedures.

6.1.	 Problem Instances and Parameter Settings
Within each experiment we solve five instances of 
the E-VSP that differ in the number of service trips, 
their distribution over the day, and numbers of stop 
points. The instances are based on real-world data from 
German public transport companies enriched with 
further parameters to address the use of BEBs, such 
as battery capacities and charging systems. The names 
of the instances contain the numbers of service trips 
and stop points. Figure4 comprises the distribution of 
the amounts of simultaneously performed, timetabled 
service trips over the day for each instance. As can 

As outlined above, the charging procedure CC/
CV of lithium-ion-batteries comprises a linear and a 
nonlinear stage with regard to the current. To model 
this property, we propose three different types of 
functions that gradually better approach the actual 
profile of the current outlined in figure 1. Each function 
entails a case distinction for the two stages of CC/CV. 
First, we use a linear approximation of the second stage 
in the form of

               	 (4)

with , and a lower bound , 
which specifies the threshold when entering the second 
stage of CC/CV. After the first phase of charging with 
constant current b, the current decreases linearly by 
the term a within this approximation. Thus, (4) can be 
considered as a strong simplification of the nonlinear 
charging profile. The parameters a and b must be 
chosen so that (4) always remains positive within its 
domain. With regard to existing literature presented in 
section 2, this kind of charging model is used within 
the work of van Kooten Niekerk et al. (2017).

As a slightly enhanced charging model, we propose a 
logarithmical function for the second stage in the form 
of

            	 (5)

with , and a lower bound for the 
transition from the first to the second stage of CC/CV. 
This type of charging model enables a disproportionate 
decrease in the current within the second stage of CC/
CV which is the most relevant difference compared to 
the linear approximation.

Lastly, we use an exponential function for 
representing the second stage of CC/CV. Himoja et al. 
(2012) develop and discuss a calculation method for 
representing the profile of the current during charging 
processes precisely considering modern fast charging 
systems. Based on real-world data, they identify that 
a realistic mapping of the decreasing current within 
the second stage of CC/CV can only be carried out 
by using exponential function models. However, as 
the presented calculation method is very difficult to 
solve analytically, we use an approximation within 
this paper. Based on the findings of Himoja et al., we 
consider the following charging function model as the 
most realistic one that best reflects the actual descent 
in the current.

          	 (6)

with  , and a lower bound . The 
shapes of the derived charging function models are 
illustrated by figure 3, reflecting the actual profile of 
the current with regard to CC/CV given by figure 1 in 
the different ways.
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system. This assumption implies that each vehicle used 
can be charged at every stop point that is equipped 
with charging technology. We assume the capacities of 
charging stations to be unlimited. As this assumption 
represents a broad generalization, especially with 
regard to highly frequented traffic hubs, we investigate 
this issue in greater detail within our study.

Nowadays, public transport companies may choose 
among different battery sizes according to the different 
ranges of the BEBs available. To reflect this aspect, we 
use battery capacities of 90, 300, and 500 kWh. We 
use these battery capacities to incorporate the current 
project E-Bus Berlin using BEBs storing 90 kWh, state-
of-the-art buses such as the Proterra Catalyst Transit 
Vehicle storing 300 kWh, and future developments. It 
is expected that battery capacities will increase in the 
future. To incorporate battery degradation, we assume 
that the SoC of a battery ranges between 20% and 80% 

be observed, the distribution differs considerably 
from instances containing rather flat distributions to 
instances containing peak times during rush hours. 
Furthermore, the densities of the transport systems 
are different in respect to the numbers of stop points. 
Following these characteristics, the instances used 
cover the most popular patterns in public transport. 
Within the respective road networks, 5% of all stop 
points are equipped with charging technology and 
their distributions are sampled 20 times. Consequently, 
the following results comprise average values. The 
decision whether a stop point is equipped with charging 
technology or not is thus evenly distributed.

We now clarify the parameters of the E-VSP. For 
the purposes of this contribution we consider a single 
vehicle depot within the road network. Consequently, 
each vehicle in use begins and ends its rotation at the 
same depot. In addition, we assume a single charging 

Figure 4: Distributions of timetabled service trips over the day for each instance to be solved.
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are already included within the operational costs, 
no additional costs arise for performing a charging 
procedure.

6.2.	 Charging Models
We now specify the charging models of our study. 
Within the project in Berlin, modern fast charging 
systems are used, providing a charging capacity of 200 
kW with an efficiency of about 90% (cf. Laporte et al. 
(2019)). This leads to an effective charging capacity 
of 180 kW. Within the first stage of CC/CV a battery 
is charged linearly up to a threshold of approximately 
65% of the battery capacity, which is 58.5 kWh for a 
90 kWh-battery. Consequently, charging a battery from 
20% (18 kWh) up to 65% takes 13.5 minutes since (58.5 
kWh – 18 kWh)/180 kW = 0.225 h. To approximately 
meet the nonlinear profile of CC/CV after exceeding 
the 65%-threshold, we assume that charging from 65% 
up to 80% of the battery capacity takes twice as long 
as charging within the first phase. This leads to 27 
minutes for a 90 kWh-battery. In total, charging from 
20% to 80% takes 40.5 minutes, which we assume to be 
the constant charging time for our experiments. When 
we neglect the nonlinear second phase of CC/CV and 
assume a constant current during the entire charging 
process, we obtain 3 kW/min. In the following, we 
denote charging with a constant current as the linear 
charging time. A fast charging system is used for the 
operation of the Proterra Catalyst Transit bus equipped 
with a 300 kWh-battery, providing a charging capacity 
of 300 kW5 . Following the previous explanations, this 
leads to 27 minutes needed for charging from 20% up 
to 65% of the battery capacity with 5 kW/min, which 
is again used for computing linear charging times. 
Doubling the charging time of the first phase of CC/
CV for the second phase leads to a constant charging 
time of 81 minutes.

Following Pihlatie et al. (2014) and Pelletier et al. 
(2017), the higher the batteries’ capacities are, the 
higher capacities of charging systems can be applied 
for charging, especially with regard to battery aging 
effects. As we consider future developments in this 
contribution, such as the 500 kWh-battery, and we do 
not have the technical data of this battery size, we use a 
linear approximation for the current and charging time. 
Table 1 provides an overview of the technical data of 
the batteries used within our study.

The technical data enables us to specify precise 
models for the current during a charging process for 
each battery size. Based on the charging function 
models introduced in Section 5, we fit the functions 
so that the charging times of the first and second 
phase given in Table 1 are reflected exactly. Table 2 

of a battery’s capacity (cf. Jossen (2005) and Pelletier 
et al. (2017)). In the first experiment, we assume that 
a vehicle battery is always charged up to 80% of its 
capacity. In the second experiment, we also consider 
partial charging procedures as is mostly done within 
pilot projects.

In carrying out our computational study, we conduct 
the experiments for each battery capacity one after the 
other. Hence, we consider a homogeneous vehicle fleet 
at each run. For this it is assumed that each timetabled 
service trip can be executed by every available vehicle. 
Note that the findings generated within this paper can 
also be applied to heterogeneous vehicle fleets and 
to the multi-depot E-VSP without loss of generality. 
In our experiments, a vehicle always leaves its depot 
with a fully charged battery due to overnight charging. 
Therefore, we assume a sufficiently large number of 
charging systems in the depot. To reflect an BEB’s lower 
weight and consumption of an BEB when no passengers 
are being transported, we assume a consumption of 1.5 
kWh per driven kilometer on a deadhead trip and 1.8 
kWh per driven kilometer on a service trip, motivated 
by the technical data of the pilot project in Berlin. In 
our study we particularly consider chargings before 
the departure or after the arrival of service trips as 
well as opportunity chargings at intermediate stops. 
Opportunity chargings are determined by waiting 
times at the specific stops given by the timetable.

Within the subsequent study we use imputed 
costs measured in estimated cost units based on 
the particularly known relation of different cost 
components. To approximate fixed costs of vehicles in 
relation to operational costs we take into account the 
specifications presented in Pihlatie et al. (2014). Some 
sources explicitly state the currency units (e.g. USD in 
a study by McKinsey & Company4 from 2017), others 
generally speak of ”monetary units” (e.g. Chen et al. 
(2017)). We assume here that the units are roughly 
comparable – at least in terms of scale – and on this 
basis, in combination with values known to us, we 
form a system of imputed cost components. Based on 
Pihlatie et al. (2014), an BEB in use, equipped with 
a 90-kWh battery, causes fixed costs of 355.000 cost 
units. According to the previously mentioned study 
by McKinsey & Company, the costs per kWh of a 
vehicle battery amount to approximately 230 USD. As 
a result, this leads to fixed costs for the other vehicles 
with a battery size of 300 and 500 kWh of 405.000 
and 450.000 cost units. Depending on the trips of a 
vehicle rotation, operational costs arise consisting of 
0.5 units per kilometer driven (exemplary energy costs) 
and 50 units per hour of driving (exemplary personnel 
and maintenance costs incurred in deploying the 
buses). Since the costs for charging a vehicle battery 

4 	 https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/battery-storage-the-next-
disruptive-technology-in-the-power-sector

5 	 https://www.proterra.com/wp-content/uploads/2019/08/Proterra-Catalyst-35-Ft-Bus-Spec-Sheet-CANADA.pdf
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stations. However, we use the precise charging models 
introduced in the previous section for computing the 
charging times effectively required and compare the 
resulting vehicle rotations to the initial case. In this 
experiment, we specifically address different battery 
capacities. To consider opportunity charging, we use 
constant time windows for charging between subsequent 
service trips because waiting times at intermediate 
stops on service trips are determined by the timetable. 
Table 3 provides the average values of vehicles used, 
total and operational costs, and the effectively required 
charging times within generated vehicle rotations for 
each charging model and each battery capacity. For 
further analysis, the average maximum numbers of 
simultaneous charging procedures at a charging station 
are specified.

contains the exact parameters for each function model 
and battery capacity. In the most realistic model where 
we use an exponential function, we divide the SoC by 
the 80% threshold of the respective battery capacity to 
obtain considerable values.

6.3.	 Cost-Efficiency of Vehicle Rotations using 
Constant Charging Time Models

In this section, we present the results of the first 
experiment. At this point, we evaluate the assumption 
of constant charging times within the E-VSP with 
regard to the cost-efficiency of the resulting vehicle 
rotations. Therefore, we solve the instances of the 
E-VSP by algorithm ConstructVS using constant 
time windows as BEBs’ waiting times at charging 

Table 1: Charging parameters for each battery size.

battery cap. 65% thresh. charg. cap. kW/min charg. time charg. time constant charg.
(kWh) (kWh) (kW) 1st phase (min) 2nd phase (min) time (min)

90 58.5 180 3 13.5 27 40.5
300 195 300 5 27 54 81
500 325 414 6.9 32.5 65 97.5

charging function model battery cap. lb cmax a b

e(x) =
a · x+b , lb ≤ x ≤ cmax
b , otherwise

90 58.5 72 -0.035 3
300 195 240 -0.009 5
500 325 400 -0.005 6.9

e(x) =
a · log(x)+b , lb ≤ x ≤ cmax
b , otherwise

90 58.5 72 -0.585 3
300 195 240 -0.401 5
500 325 400 -0.314 6.9

e(x) =
a · exp( x

α )+b , lb ≤ x ≤ cmax
b , otherwise

90 58.5 72 -42.338 3
300 195 240 -134.900 5
500 325 400 -199.390 6.9

Table 2: Parameters for each charging function model and battery capacity.
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instance battery charging veh. tot. costs operat. charging avg. max.
capacity model used (mio) costs (mio) time (min) sim. charg.

t876 s207

90

constant time 95.2 35.71 1.91 40.5 5.8
real. curr. 83.8 31.93 2.18 27.36 4.2
log. curr. 82.4 31.43 2.18 23.82 4.1
lin. curr. 80.8 30.95 2.27 23.19 3.4

300

constant time 80.4 34.18 1.62 81 4.2
real. curr. 78.3 33.52 1.81 57.34 3.6
log. curr. 75.8 32.59 1.89 51.18 3.4
lin. curr. 72.1 31.32 2.12 49.74 2.8

500

constant time 73.6 34.66 1.54 97.5 3.8
real. curr. 71.9 34.07 1.71 61.74 3.2
log. curr. 70.4 33.46 1.78 55.63 2.7
lin. curr. 69.3 33.23 2.04 54.27 2.4

t1135 s101

90

constant time 110.8 42.15 2.82 40.5 6.2
real. curr. 95.1 37.08 3.32 27.308 5.8
log. curr. 91.4 34.73 3.28 25.422 5.6
lin. curr. 87.8 34.46 3.29 27.286 5.1

300

constant time 86.3 37.38 2.43 81 5.6
real. curr. 84.7 37.08 2.78 58.28 5.1
log. curr. 81.8 36.07 2.94 54.92 4.8
lin. curr. 79.1 35.25 3.21 51.12 4.2

500

constant time 78.9 37.82 2.31 97.5 4.7
real. curr. 77.8 37.73 2.72 62.04 4.1
log. curr. 76.2 37.10 2.81 59.81 3.8
lin. curr. 75.1 36.96 3.16 60.43 3.5

t2633 s67

90

constant time 191.2 75.61 7.73 40.5 6.7
real. curr. 183.2 73.59 8.55 32.108 6.1
log. curr. 176.6 71.55 8.86 25.13 5.7
lin. curr. 173.4 70.87 9.31 23.598 5.5

300

constant time 153.7 69.08 6.83 81 6.2
real. curr. 144.8 65.82 7.18 57.57 5.7
log. curr. 136.2 62.50 7.34 53.49 5.2
lin. curr. 131.9 61.58 8.16 51.91 4.8

500

constant time 138.6 68.60 6.23 97.5 5.6
real. curr. 131.7 66.08 6.81 63.41 5.1
log. curr. 128.1 64.62 6.97 61.78 4.3
lin. curr. 126.6 64.11 7.14 60.07 3.9

t3067 s209

90

constant time 225.8 86.43 6.27 40.5 6.2
real. curr. 204.2 80.58 8.09 27.052 5.7
log. curr. 199.8 79.08 8.15 25.288 5.2
lin. curr. 197.4 78.31 8.23 25.276 4.5

300

constant time 207.3 89.80 5.84 81 5.8
real. curr. 189.6 83.22 6.43 58.81 5.1
log. curr. 176.1 77.93 6.61 53.49 4.7
lin. curr. 170.3 76.40 7.43 52.27 4.1

500

constant time 197.8 94.22 5.21 97.5 4.6
real. curr. 184.4 88.72 5.74 64.71 4.1
log. curr. 171.7 83.23 5.96 63.29 3.5
lin. curr. 166.8 81.55 6.49 61.83 2.8

t10710 s140

90

constant time 448.3 173.02 13.87 40.5 7.4
real. curr. 426.1 165.75 14.48 28.07 6.1
log. curr. 401.5 157.72 15.19 27.31 5.7
lin. curr. 382.7 153.35 17.49 26.98 5.6

300

constant time 411.9 178.98 12.16 81 6.5
real. curr. 398.1 174.70 13.47 59.78 5.7
log. curr. 379.3 167.60 13.98 52.91 5.4
lin. curr. 364.5 163.09 15.47 51.46 5.1

500

constant time 391.8 188.05 11.74 97.5 4.3
real. curr. 379.6 183.10 12.28 66.86 3.8
log. curr. 366.2 177.73 12.94 65.31 3.2
lin. curr. 357.8 175.19 14.18 46.29 2.1

Table 3: Average values of vehicles used, total and operational costs, charging times, and maximum 
numbers of simultaneous chargings at the same charging station generated by algorithm ConstructVS 

for each instance, battery capacity, and charging model.
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Regarding the linear, logarithmic and realistic 
charging model, we see that the more precisely the 
nonlinear charging process of CC/CV is represented, 
the more vehicles are needed. This can be observed for 
all instances and battery capacities, mainly resulting 
from the shape of the proposed models. The linear 
charging model does not consider the nonlinear 
coherence between the SoC and the current after 
exceeding the 65%-threshold, as it approximates this 
connection in a linear way. Consequently, the assumed 
amounts of charged energy generally exceed the actual 
amounts. This leads to shorter waiting times at charging 
stations and to less vehicles in use by comparison to 
more precise models. In contrast, the charging models 
based on a logarithmical, respectively realistic function 
both enable a disproportionate modeling of the current 
within the second stage of CC/CV, which leads to 
higher vehicle demands. However, the logarithmical 
function still overestimates the actual profile when 
getting closer to the 80%-threshold of the SoC, caused 
by its significantly flatter tail compared to the realistic 
model using an exponential function. This explains the 
additional need for vehicles when using the realistic 
charging model. However, the use of a realistic model 
still leads to considerably fewer vehicles needed 
compared to the use of constant charging times. Figure 
5 illustrates this observation by containing averages 
percentages of vehicles needed overall all instances by 
comparison to constant charging times for each battery 
capacity and charging function model. In practice, 
it may be the case that realiatic models cannot be 
calculated analytically. Following Figure 5, at least an 
approximation based on logarithmical functions should 
be incorporated.

Another important aspect that is closely linked 
to charging procedures is their implementation in 
practice. It is particularly important that the numbers 
of simultaneous charging procedures at each charging 
station within the road network remain within a 
reasonable range because building sites for charging 
systems are usually restricted. This is particularly 
true for densely built urban areas. To investigate this 
issue, the average maximum numbers of simultaneous 
chargings at a single charging station are specified for 
all instances, charging models, and battery capacities 
in the last column of Table 3. Across all instances and 
battery capacities, we see that the maximum numbers 
of simultaneous chargings are always higher when 
using constant charging times compared to any other 
charging model. For example, within instance t876 
s207 a maximum of 5.8 simultaneous chargings on 
average are performed when using constant charging 
times, and the use of the realistic model already 
achieves a significantly lower maximum number of 
4.2 chargings at the same time and location. Again, 
this can be justified by the longer idle times of the 
vehicles used at charging stations. The assumption of 
constant charging times thus also leads to problems 
in the practical operation of BEBs, as the number of 

Figure 5: Average percentages of vehicles needed 
over all instances by comparison to constant 
charging times for each battery capacity and 

charging function model.

In the table, we see that the total costs of generated 
solutions for the E-VSP when using constant charging 
times are significantly higher than in those cases where 
more accurate models are considered. This holds true 
for all instances and battery capacities. The cost 
increases are mainly caused by the higher numbers of 
vehicles used, which in turn results from overestimated 
waiting times at charging stations. Because constant 
time frames for charging do not consider the batteries’ 
residual energies, vehicles remain idle at charging 
stations although their charging process has actually 
ended. This is mainly based on the first stage of CC/
CV within which vehicles are charged in linear time 
depending on their SoC. This aspect is reinforced by 
the omitted possibility of partial charging when using 
constant charging times. The temporal differences 
between assumed and actually required charging 
times lead to unused time frames, which cause higher 
demands for vehicles because subsequent connections 
may be missed. Among the different instances and 
battery sizes, we see that the more vehicles are needed, 
the higher is the additional demand for vehicles when 
using constant charging times compared to the precise 
models. For example, within instance t876 s207 and a 
90 kWh-battery, the average difference between the 
use of constant charging times and a realistic modeling 
is 11.4, while the average difference within instance 
t10710 s140 and a 90 kWh-battery is 22.2.

Due to the higher numbers of vehicles used, the 
operational costs are lower when using constant 
charging times compared to any other charging model. 
This observation can be justified by fewer charging 
procedures and deadhead trips needed within the 
vehicle rotations, as each vehicle executes fewer trips 
on average. As the savings in operational costs are 
well below the increase in costs for additional vehicles, 
solutions entail significantly higher total costs when 
using constant charging times.
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for each instance, battery capacity, and charging model 
in both complete and partial charging procedures.

Looking at the detailed results, we see that the 
feasibility of generated vehicle rotations for each 
instance and battery capacity is violated independently 
of the charging model used. This is because linear 
time windows for charging generally underestimate 
the charging times actually required as they do not 
consider the nonlinear profile of the current during 
the second phase of CC/CV. As a consequence, lower 
amounts of energy than originally planned are charged 
during the vehicle rotations when considering more 
realistic models for charging. These gaps occur within 
charging procedures at terminal stops as well as at 
intermediate stops. Further on, we can conclude that 
the proportion of infeasible vehicle rotations in relation 
to their total numbers increase when approximating 
the actual nonlinear profile of the current more 
precisely with the proposed charging models. This 
is because a consideration of more realistic models 
leads to less amounts of energy effectively charged 
compared to planned amounts of energy computed 
under the assumption of linear time windows. The 
gaps between the actual and the planned amounts of 
energy being charged mainly result from the fact that 
the disproportionate decrease in the current within the 
second phase of CC/CV is reflected within nonlinear 
models. However, linear time windows for charging do 
not consider this crucial aspect. The better the actual 
profile of the current is reflected, the less energy is 
actually charged within a specific time window. 
Consequently, the proportion of infeasible vehicle 
rotations increases when considering charging models 
that approximate the actual nonlinear profile of the 
current more closely. This effect is being intensified 
by opportunity chargings at intermediate stops during 
a service trip when the SoC of a battery is higher than 
the 65%-threshold.

In regard to the different battery capacities, we see 
that the proportion of feasible vehicle rotations grows 
with increasing battery capacities. As longer ranges 
of BEBs given by higher battery capacities lead to 
fewer charging procedures being needed within the 
rotations, the effects of an inaccurate modeling of 
the charging process are less serious. However, in 
none of the cases is a feasibility of 100% achieved. 
Similarly to the first experiment, as the 500 kWh-
battery can be considered as a future development 
and does not yet exist, the issues described cannot 
be ignored. Moreover, we observe that incorporating 
partial charging procedures within vehicle rotations 
has a positive influence on the solutions’ feasibility. 
Table 4 shows that enabling partial charging leads to a 
significantly higher proportion of feasible rotations for 
each instance, charging model, and battery capacity. As 
partial charging leads to considerably more charging 
procedures within a vehicle rotation, fewer amounts 
of energy are charged on average. Since the effects of 
inaccurate models for charging are alleviated in this 

charging systems available at each charging station 
is generally restricted. With a view to the different 
battery capacities, we can conclude that all statements 
made hold true, independent of the specific capacity. 
However, the impacts of the effects detected on 
solutions to the E-VSP are less serious when the battery 
capacities grow because less charging procedures are 
needed within the vehicle rotations. However, since the 
500 kWh-battery in particular can be considered as a 
future development in the scope of battery technology 
and does not yet exist, the issues described will 
certainly not be overcome in the foreseeable future.

In conclusion, constant charging times of BEBs 
overestimate the time windows actually required for 
charging and lead to unused waiting times at charging 
stations, causing higher demands for vehicles and 
thus higher total costs. This follows from the fact that 
constant charging times do not consider a battery’s SoC 
when starting a charging process and do not provide 
any conclusions about the time windows actually 
required for charging. According to these findings, 
optimization potentials for vehicle scheduling of BEBs 
enabled by partial charging remain largely untapped. 
Furthermore, additional problems arise for the practical 
implementation of BEBs, since higher numbers of 
simultaneous chargings at the same location are 
achieved when using constant charging times.

6.4.	 Feasibility of Vehicle Rotations using 
Linear Charging Time Models

We now discuss the results of the second experiment. 
We evaluate the assumption of linear charging times 
within the E-VSP with regard to the feasibility of 
the vehicle rotations generated. Therefore, we again 
solve the instances of the E-VSP using algorithm 
ConstructVS but now using linear time windows 
for the charging of BEBs at charging stations. 
Simultaneously, we compute the amounts of energy 
being effectively charged using the proposed precise 
charging models. Then, we analyze whether range 
restrictions within computed vehicle rotations are 
violated, especially considering different battery 
sizes. Following Section 1, a vehicle rotation is termed 
feasible if all restrictions of the E-VSP are satisfied, 
in particular range restrictions. Linear time windows 
for charging assume a constant current during the 
entire charging process, independently of a battery’s 
SoC. It is assumed that the second stage of CC/CV is 
similar to the first. In this experiment, we incorporate 
opportunity charging at intermediate stops on service 
trips as well as chargings at terminal stops between 
two successive service trips. Here, we specifically 
analyze the impact of considering partial charging 
procedures among complete chargings on resulting 
vehicle rotations. To incorporate partial chargings, we 
use algorithm AddPC within the solution procedure. 
Table 4 shows average percentages of feasible vehicle 
rotations and average amounts of energy being charged 
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instance
battery
capacity

charging
model

complete chargings partial chargings
feas. veh. charging energy feas. veh. charging energy
rotation time (min) charged rotation time (min) charged

t876 s207

90

linear time - 15.24 45.72 kWh - 11.46 34.38 kWh
real. curr. 53.23% - 23.79 kWh 66.74% - 19.87 kWh
log. curr. 57.42% - 25.89 kWh 72.81% - 21.43 kWh
lin. curr. 80.19% - 27.14 kWh 86.12% - 24.91 kWh

300

linear time - 32.46 162.3 kWh - 27.43 137.15 kWh
real. curr. 61.73% - 101.12 kWh 72.37% - 93.46 kWh
log. curr. 67.14% - 104.75 kWh 79.81% - 97.81 kWh
lin. curr. 69.92% - 106.31 kWh 82.75% - 102.43 kWh

500

linear time - 40.81 281.59 kWh - 36.09 249.02 kWh
real. curr. 75.69% - 212.75 kWh 93.76% - 193.57 kWh
log. curr. 83.76% - 218.63 kWh 96.17% - 202.43 kWh
lin. curr. 85.12% - 202.01 kWh 97.83% - 204.16 kWh

t1135 s101

90

linear time - 15.49 46.47 kWh - 10.41 31.23 kWh
real. curr. 42.95% - 26.21 kWh 48.17% - 21.76 kWh
log. curr. 48.91% - 30.97 kWh 61.43% - 23.87 kWh
lin. curr. 70.43% - 31.67 kWh 85.96% - 26.48 kWh

300

linear time - 33.81 169.05 kWh - 25.14 125.7 kWh
real. curr. 53.36% - 90.74 kWh 61.43% - 78.61 kWh
log. curr. 59.82% - 93.81 kWh 69.71% - 82.14 kWh
lin. curr. 64.79% - 97.18 kWh 78.46% - 84.51 kWh

500

linear time - 41.46 286.07 kWh - 32.16 221.91 kWh
real. curr. 68.74% - 188.43 kWh 79.43% - 157.33 kWh
log. curr. 72.19% - 191.56 kWh 84.71% - 165.27 kWh
lin. curr. 74.57% - 193.16 kWh 87.91% - 171.49 kWh

t2633 s67

90

linear time - 14.12 42.35kWh - 9.76 29.28 kWh
real. curr. 12.04% - 29.91 kWh 28.76% - 23.41 kWh
log. curr. 30.41% - 32.34 kWh 51.64% - 24.86 kWh
lin. curr. 40.73% - 33.16 kWh 64.81% - 25.81 kWh

300

linear time - 31.46 157.3 kWh - 23.95 119.75 kWh
real. curr. 33.46% - 62.12 kWh 47.16% - 49.57 kWh
log. curr. 43.81% - 74.84 kWh 59.87% - 57.43 kWh
lin. curr. 45.93% - 76.91 kWh 67.14% - 59.88 kWh

500

linear time - 39.35 271.52 kWh - 30.71 211.9 kWh
real. curr. 57.18% - 186.73 kWh 67.13% - 134.17 kWh
log. curr. 66.14% - 192.81 kWh 75.87% - 141.87 kWh
lin. curr. 68.39% - 197.43 kWh 82.14% - 153.47 kWh

t3067 s209

90

linear time - 13.01 39.03 kWh - 8.13 24.39 kWh
real. curr. 37.91% - 24.55 kWh 57.91% - 17.43 kWh
log. curr. 43.07% - 28.21 kWh 67.01% - 20.14 kWh
lin. curr. 47.38% - 28.67 kWh 72.13% - 22.07 kWh

300

linear time - 30.18 150.9 kWh - 21.94 109.7 kWh
real. curr. 51.48% - 78.41 kWh 72.57% - 62.14 kWh
log. curr. 57.23% - 84.68 kWh 84.57% - 71.99 kWh
lin. curr. 59.12% - 89.41 kWh 86.31% - 73.41 kWh

500

linear time - 38.71 267.1 kWh - 29.76 205.34 kWh
real. curr. 78.45% - 210.41 kWh 84.27% - 157.98 kWh
log. curr. 83.54% - 221.68 kWh 91.26% - 166.12 kWh
lin. curr. 84.39% - 224.12 kWh 93.46% - 181.46 kWh

t10710 s140

90

linear time - 12.74 38.22 kWh - 7.81 23.43 kWh
real. curr. 22.93% - 10.14 kWh 31.94% - 8.71 kWh
log. curr. 28.47% - 14.98 kWh 39.71% - 11.38 kWh
lin. curr. 30.01% - 17.43 kWh 41.23% - 13.46 kWh

300

linear time - 28.74 143.7 kWh - 20.39 101.95 kWh
real. curr. 33.46% - 51.07 kWh 47.65% - 43.96 kWh
log. curr. 39.64% - 50.71 kWh 54.41% - 45.14 kWh
lin. curr. 40.01% - 52.17 kWh 56.09% - 47.88 kWh

500

linear time - 36.91 254.68 kWh - 27.88 192.37 kWh
real. curr. 49.75% - 128.04 kWh 63.81% - 74.53 kWh
log. curr. 54.71% - 137.53 kWh 78.03% - 81.46 kWh
lin. curr. 56.19% - 141.09 kWh 80.41% - 84.01 kWh

Table 4: Average percentages of feasible vehicle rotations and average amounts of energy being charged for 
each instance, battery capacity, and charging model for both complete and partial charging procedures.
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the numbers of charging procedures needed decrease. 
However, both problems remain relevant, as the largest 
battery capacity within our study is not yet available 
and battery research will, in all likelihood, not be 
sufficiently advanced in the foreseeable future. In 
conclusion, more precise charging models need to be 
incorporated into solution methods for the E-VSP. If 
this does not happen, solutions may either not utilize 
the available resources sufficiently or comprise non-
executable vehicle rotations. In cases where realistic 
models for charging processes cannot be calculated 
analytically approximations should be used. Therefore, 
charging models based at least on logarithmical 
functions should be used. It is worth mentioning that 
the statements provided hold true no matter what 
solution method is chosen because we focused on the 
charging process as part of the general problem and 
not on the solutions’ quality. Similar results are to be 
expected when solving the problem by exact solution 
methods.

There are a number of interesting future research 
avenues. Similar to the charging process, it would be 
interesting to see how more accurate models for the 
discharging process of vehicle batteries might affect 
the solutions of the E-VSP. Precise models for the 
energy consumption would be especially significant. 
It could be reasonable to assume, for example, that 
energy consumption depends on the traffic volume or 
weather conditions. Furthermore, as mentioned earlier, 
the charging and aging effects of vehicle batteries are 
closely linked. One important aspect to consider may 
be how to solve the E-VSP under such considerations. 
Finally, the solution method proposed within this 
contribution solves the E-VSP heuristically. In that 
respect, it would be interesting to know how and if 
the effects described within this paper possibly change 
when using exact solution methods.
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