
Received: 9 November 2018 / Accepted: 17 July 2019 / Published online: 3 September 2019
© The Author(s) 2019 This article is published with Open Access at www.bvl.de/lore

From Simulation to Real-World Robotic Mobile Fulfillment Systems

L. Xie1, H. Li2, N. Thieme1

ABSTRACT

In a new type of automated parts-to-picker warehouse
system – a Robotic Mobile Fulfillment System (RMFS)
– robots are sent to transport pods (movable shelves) to
human operators at stations to pick/put items from/to
pods. There are many operational decision problems in
such a system, and some of them are interdependent and
influence each other. In order to analyze the decision
problems and the relationships between them, there
are two open-source simulation frameworks in the
literature, Alphabet Soup and RAWSim-O. However,
the steps between simulation and real-world RMFS are
not clear in the literature. Therefore, this paper aims
to bridge this gap. The simulator is firstly transferred
as core software. The core software is connected with
an open-source ERP system, called Odoo, while it is
also connected with real robots and stations through
an XOR-bench. The XOR-bench enables the RMFS
to be integrated with several mini-robots and mobile
industrial robots in (removed) experiments for the
purpose of research and education.

KEYWORDS: ERP System · Simulation · Robotic
Mobile Fulfillment Systems · Warehousing Systems

1. INTRODUCTION

A Robotic Mobile Fulfillment System (RMFS) is a
new type of automated parts-to-picker warehousing
system, in which robots are used to transport movable
shelves (also called pods), containing the inventory
items, back and forth between the storage area and the
replenishment or picking stations. Human operators
work only at stations, either picking or replenishing
items. In the former, items are picked from pods to
fulfill customers’ orders, while items are refilled in
pods in the latter. An RMFS aims to keep human
workers at the stations busy while minimizing the
resources (e.g. robots, stations, pods) to fulfill the
incoming pick orders.
RMFS has received more attention in the last decade,

and some real-world RMFSs are currently in operation
(see Figure 1). There are numerous operational decision
problems in this system, such as the decisions as to
which robots will carry which pods to which station
to fulfill an incoming order. Most of the research
about such systems is focused on these problems
and algorithms to improve system performance (see
an overview in [16] and [9]). Also, some of them are
tested with a simulation framework (such as Alphabet
Soup of [7] or RAWSim-O of [16]). This simulates the
process of an RMFS, while it controls the resources.
However, the steps between simulation and real-world
RMFS are not clear in the literature, since these steps
are highly complex and require interdisciplinary work
between robotics engineering, software engineering
and management science / operations research. We can
also formulate the problem as this way: How can we
make sure that the algorithms we implement and test
in the simulator are still applicable for the real-world
scenarios? This is the question we focus on in this
paper. In order to answer this, four steps are required
from simulation to real-world RMFS as illustrated in
Figure 2. The first step is changing an RMFS simulator
into RMFS core software. We use here our developed
open-source simulator RAWSim-O. The second step
is connecting the RMFS core software with an ERP

Logistics Research (2019) 12:9
DOI_10.23773/2019_9

Lin Xie1 (corresponding author for proof copy)
xie@leuphana.de

Nils Thieme1

Hanyi Li2

1 Institute of Information Systems
Leuphana University of Lüneburg
Faculty of Business and Economics
Universitätsallee 1
21335 Lüneburg Germany
http://www.leuphana.de/iis

2 Beijing HANNING ZN Tech Co.,Ltd,
Beijing, China



2

– We designed a process which aims to provide a
seamless transition from the RMFS simulator to
real-world RMFS.

– We connect the RMFS core software with an
open-source ERP system (Odoo); moreover, the
developed station apps are connected as well.

– We designed an XOR-bench, which aims to
integrate the RMFS core software with the real
robot and test and validate the programs on a
mobile industrial robot.

We describe the RMFS and RAWSim-O in more
detail in Sections 2 and 3. After that we explain the four
steps of the transition process from RMFS simulator to
real-world RMFS shown in Figure 2 in Sections 4, 5, 6
and 7, respectively. Section 9 concludes our work and
provides directions for future research.

system and station apps. We use here an open-source
ERP system – Odoo. The third step is the integration
of the RMFS core software with mini-robots in
an XOR-bench. The XOR-bench is a teleoperated
platform for experiments. After the successful testing
with mini-robots, we use the XOR-bench to test amd
validate algorithms and programs remotely on a mobile
industrial robot. Moreover, it is worth to mention that
SAP provides extended warehousemanagement system
(EWM) for automated warehouses to connect SAP
ERP and robots (or conveyors systems, or automated
guided vehicles (AGVs)) using defined interfaces. The
applications are for example the AutoStore compact
warehouse system and the CarryPick mobile solution
of Swisslog (see [1]). Our RMFS core software shares
similar priciple of SAP EWM to connect ERP’s and
robot’s interfaces.
Therefore, there are three main contributions in this

work, which are summarized as follows:

Fig. 1: Real-world RMFSs.

Fig. 2: From simulation to real-world RMFS in four steps.

(a)Amazon robots
(Source:Amazon Robotics)

(b) CarryPickTM

(Source: Swisslog, KUKA)
(c) ButlerTM

(Source: GreyOrange)

(d) Scallog SystemTM

(Source: Scallog)
(e) RacrewTM

(Source: Hitachi)

STEP 1 STEP 2 STEP 3 STEP 4

RMFS
Simulator

RMFS Core
Software

RMFS Core
Software

Odoo
ERP

Station
Apps

XOR-bench
(remote)

RMFS Core
Software

Odoo
ERP

Station
Apps

XOR-bench

RMFS Core
Software

Odoo
ERP

Station
Apps

Changing of RMFS
simulator into
core software

Connecting RMFS
core software with
station apps and ERP

Integration
RMFS core
software with
mini-robot

Test and validate
algorithms and
programs on a mobile
industrial robot



3From Simulation to Real-World Robotic Mobile Fulfillment Systems

– Storage process: After a pod has been processed
at one or more stations, it is brought back to a
storage location in the storage area. The retrieval
and storage processes are based on [8].

Then, after a pod has been processed at one or more
stations, it is brought back to the storage area.

2.1. Decision Problems
In an RMFS environment, three levels of decision

problems are required, namely the strategic, tactical
and operational levels. The decision problems at the
strategic level include storage area dimensioning and
workstation placement (see [11]), while the problems
at the tactical level include decisions regarding the
number of robots (see [22]), and the numbers of pods
and stations (see [12]). Our simulation concentrates
only on various operational decision problems for pods,
robots and stations that have to be solved in an online
e-commerce environment, including:

– Order Assignment (orders to stations)
– Replenishment Order Assignment (ROA):
assignment of replenishment orders to
replenishment stations

– Pick Order Assignment (POA): assignment of
pick orders to pick stations

– Task Creation (for pods)
– Pod Selection
• Replenishment Pod Selection (RPS):
selection of the pod to store one replenishment
order (see [17])

• Pick Pod Selection (PPS): selection of
the pods to use for picking the pick orders
assigned at a pick station (see [3] and [23])

– Pod Repositioning (PR): assignment of an
available storage location to a pod that needs
to be brought back to the storage area (see [14]
and [10])

2. THE ROBOTIC MOBILE
FULFILLMENT SYSTEM

Instead of using a system of shelves and conveyors as
in traditional parts-to-picker warehouses, the central
components of an RMFS are:
– movable shelves, called pods, on which the
inventory is stored

– storage area denoting the inventory area where
the pods are stored

– workstations, where the pick order items are
picked from pods (pick stations ) or replenishment
items are stored to pods (replenishment stations )

– mobile robots, which can move underneath pods
and carry them to workstations.

Firstly, we need to define some terms related to
orders before explaining the processes in an RMFS,
as follows:
– stock keeping unit (SKU )
– an order line including one SKU with number
– a pick order including a set of order lines from a
customer’s order

– a replenishment order consisting of a number of
physical units of one SKU

The process of an RMFS is illustrated in Figure 3.
The pods are transported by robots between the storage
area and workstations. Two processes are included:
– Retrieval process: After the arrival of a
replenishment order, robots carry selected pods
to a replenishment station to store units in pods.
Similarly, after receiving a pick order, robots
carry selected pods to a picking station, where the
items for the order lines are picked. We assume
it is unlikely that a pick order can be completed
with only one pod, unless there is only one order
line or the association policy was applied in the
replenishment process (in other words, all SKUs
are stored together in one pod, if they are often
ordered together by the same customer.)

Storage

Retrieval

Storage

Replenishment

Order picking

Retrieval

Fig. 3: The central process of an RMFS (see [8]).



4

the optimizers of ROA and RPS are responsible for
choosing a replenishment station and a pod. This
technically results in an insertion request, i.e. a
request for a robot to bring the selected pod to the
given workstation. A number of these requests are
then combined in an insertion task and assigned to
a robot by a TA optimizer. Similarly, after the POA
optimizer selects a pick order from the backlog and
assigns it to a pick station, an extraction request is
generated, i.e. a request to bring a suitable pod to the
chosen station. Up to this point, the physical units of
SKUs for fulfilling the pick order are not yet chosen.
Instead, the decision is postponed and taken just before
PPS combines different requests into extraction tasks
and TA assigns these tasks to robots. This allows the
implemented optimizers to exploit more information
when choosing a pod for picking. Hence, in this work
we consider PPS as a decision closely interlinked with
TA. Furthermore, the system generates store requests
each time a pod is required to be transported to a
storage location, and the PSA optimizer decides the
storage location for that pod. The idle robots are located
at dwelling points, which are located in the middle of
the storage area to avoid blocking prominent storage
locations next to the stations. Another possible type
of task is charging, if the battery of a robot runs low;
however, for this work we assume the battery capacity
to be infinite. All of the tasks result in trips, which are
planned by a PP algorithm. The only exception is when
a pod can be used for another task at the same station,
thus, not requiring the robot to move.

– Task Allocation (TA) (for robots): assignment of
tasks from Task Creation and additional support
tasks like idling to robots

– Path Planning (PP) (for robots): planning of the
paths for the robots to execute (see [4] and [5])

3. SIMULATION FRAMEWORK –
RAWSIM-O

RAWSim-O is an agent-based discrete-event simulation
framework. It is designed to study the context of an
RMFS while evaluating multiple decision problems
jointly. Figure 4a shows an overview of our simulation
process, which is managed by the core simulator
instance. The tasks of the simulator include:

– Updating agents, which can resemble either real
entities, such as robots and stations, or virtual
entities like managers, e.g. for emulating order
processes.

– Passing decisions to optimizers, which can either
decide immediately or buffer multiple requests
and release the decision later.

– Exposing information to a visualizer, which allows
optional visual feedback in 2D or 3D. Figure 4b
illustrates a screenshot of our simulation in 3D.

In the following, we describe the hierarchy of all
core decision problems after new replenishment or
pick orders are submitted to the system (see Figure
5). If a new replenishment order is received, first

Start End

Initialize Simulator

Optimizer Visualizer

Framework

Dec
isio

n immine
nt

Dec
ide

Render

Output results

Fetch information

Agent

Update

Optimize

(a) Overview of the simulation process. (b) Visualization screenshot

In
se
rt

Ex
tr
ac
t

St
or
e

Requests:

Trips:

RPS

ROA

POA

TA PP

PR

PPS

Repl. order
received

Pick order
received

Fig. 4: RAWSim-O simulation framework.

Fig. 5: Order of decisions to be done triggered by receiving a pick or replenishment order.



5From Simulation to Real-World Robotic Mobile Fulfillment Systems

core software for processing. The API is designed for
handling a variety of XML-RPC requests and XML-
RPC responses (a remote procedure call (RPC) protocol
[13]), because theERP systemweused –Odoo – is easily
available over XML-RPC with Odoo’s external API.

Task message Meaning
Go execute move commands

Turn execute turning commands for a defined
number of degrees to the right or left

Rest immediately stop all actions and rest where
it is currently

Pickup pick up a pod at the current position
Setdown set down a pod at the current position
GetItem its carrying pod is currently used for

extraction
PutItem its carrying pod is currently used for

insertion

Table 1: Meanings of task messages sent to robots.

Status message Meaning
Error explains an error that has occurred

WaypointTag the current position of the robot
Orientation the orientation of the robot

PickupSuccess indicates whether the pickup operation
was successful

SetdownSuccess indicates whether the setdown operation
was successful

Table 2: Meanings of status messages
received from robots.

With an agent interface (see Figure 6) the core
software can receive the status information from the
robots. This includes the robot ID, the current robot
position information, the orientation of the robot
in radians, whether the pickup pod operation was

Figure 6 gives an overview of an RMFS, which
consists of an RMFS software system and robots. The
simplest RMFS software system includes the RMFS
core software, ERP and station apps. The numbers
in Figure 6 represent the four steps in the process for
transforming, which is described in Figure 2.

4. STEP 1: CHANGING RMFS
SIMULATOR INTO THE RMFS CORE
SOFTWARE

The RMFS core software has three main parts, the
inventory processing system (IPS), order processing
system (OPS) and robot control system (RCS). The IPS
functions as inventory management (the corresponding
optimizers are RPS, PPS and PR), the OPS does
transaction processing (the corresponding optimizers
are ROA and POA), and the RCS operates and directs
the robots (the corresponding optimizers are TA and
PP). In this step, we extend the RMFS simulator to the
RMFS core software. In total, there are two following
extensions:

– Implementation of application programming
interface (API) for integrating with ERP and other
enterprise systems.

– Implementation of the agent interface for robots
and station apps.

The API of the RMFS core software is used for
integrating with the ERP or other stand-alone systems,
such as WMS (warehouse management system) and
OMS (order management system).A simple description
of the relationship between the ERP and the RMFS core
software is that by using the API, the operational status
and transactions will be reported back to the ERP, and
the order information and the information of items
stored in pods are passed from the ERP to the RMFS

Robot Control
System (RCS)

Purchases

ERPERP

Sales
Inventory Processing

System (IPS)

Replenishment

Station
Apps

Picking

Robots
Status

Task

Transfers & Inventory

Update

Order Processing
System (OPS)

RMFS Core
Software

2 1

3 4

Test and
validate
algorithms and
programs on
mobile
industrial robot

Inventory API

Agent Interface

Fig. 6: Relationships between the RMFS core software and the ERP system, the station apps, robots.



6

First, we develop graphical user interfaces in the
programming language C# that can be used at the
input/output stations of the warehouse. To allow the
use of several input and output stations in an automated
warehouse, each station can be identified by its ID.
Second, both applications connect to the agent interface
via TCP and can receive, decode and display messages
containing all the necessary information for the picker/
replenisher. For example, as shown in the input station
app for the replenishers in Figure 7a, the selected pod
compartment is marked in green. Moreover, some other
possible compartments are marked in blue. Similar to
the picker, the selected pod compartment is marked
as shown in Figure 7b. Pickers and replenishers can
also send messages containing information about
the success or failure of the picking/replenishment
operation over the TCP connection by pressing the OK
or Error Button.

5.2 Connecting Odoo
Additionally, the API of IPS and the OPS in the RMFS
core software are defined and implemented to exchange
information with Odoo’s external API (https://odoo.
com/documentation/11.0/webservices/odoo.html),
which can send and receive information using XML-
RPC. We mainly use three parts of Odoo, namely
purchases, sales and inventory. We use the Inventory
module of Odoo to manage the location and contents
of all pods and all kinds of transfers (item movement
from a to b), whether incoming, outgoing or internal.
We also use the Sales and Purchase modules to create
sales orders and purchase orders.

Fig. 7: The GUI of the station apps.

successful and whether the setdown pod operation
was successful etc. The core software can send task
messages through the agent interface to the robots,
which are listed in Table 1, while it can receive some
status messages from robots as shown in Table 2.
The agent interface is also used for exchanging

various types of information between the core software
and station apps. Table 3 lists the important information
for input/output stations, which is passed from the
RMFS core software to the station apps for displaying
to the replenisher or picker. The confirmation or error
messages from the station apps are passed back to the
RMFS core software to notify the operations in the
input/output stations.

5. STEP 2: CONNECTING THE RMFS
CORE SOFTWAREWITH ERP AND
STATION APPS

5.1. Connecting station apps
In the automation of a real warehouse, the robot moves
and carries the pods to the specified input/output
stations. The pickers follow instructions on the output
station app, grabbing items off the pod, while the
replenishers follow instructions on the input station
app and stuff products onto the pods for replenishing
the inventory. Here, we explain how to connect station
apps with our RMFS core software.

Station
information Meaning

BundleID ID of current bundle for replenishment
(input station)

OrderID ID of current order for picking (output
station)

ItemID product ID (input/output station)
Name name of product/item (input/output station)

Quantity indicates quantity of product to put or get
(input/output station)

Pod Modeling Info vertical and horizontal compartment
placement within pod

Stock Level Info optimum stock level, maximum stock level
and minimum presentation quantity (input
station)

Compartment Info ID of product/item, filling rate or current
count in this compartment (input/output
station)

Compartment
to Pick indicates the compartment in the pod to

pick (output station)
Compartment
to Replenish indicates the best compartment in the pod

to replenish and the possible compartment
to replenish for the current item (input
station)

Table 3: Meaning of input/output station information
received from the core software.

(a) Input station GUI (b) Output station GUI

(b) Output station GUI



7From Simulation to Real-World Robotic Mobile Fulfillment Systems

the request and moves the pod to the designated output
station (8), unless it is already there because it was used
to fulfill the previous extract request. Once the pod
arrives at the output station, the RMFS core software
sends a message containing the ID of the output station
and information about the item and the affiliated order
over a previously established TCP/IP connection to
the agent interface (9). Once the interface receives a
message (10), it decodes the message (11) and identifies
its type. As in this case the type is “Pickinginfo”, it
then forwards the item’s name and ID and the order
ID to the output station that was specified in the
message (12). Once the output station app receives the
message (13), it displays the received information (14)
and waits for the picker to finish the picking operation
(15) and to respond with “OK” if it was successful (16)
or “Error” if the item could not be picked (17). The
information about the success of the picking operation
is then sent to the agent interface (18/19). The agent
interface forwards the output station’s response and ID
to the RMFS core software (10→11→20). If the output
station’s response (21) is an “OK”, the RMFS core
software moves the item from the pod to the station
in the visualization/simulation (22), sets the pod as the
move’s source location in Odoo and increments the
done quantity of the move by 1 (23). If this completes
the last move of a transfer, the transfer is marked as
done in Odoo. Odoo reacts to an increase of the done
quantity (24) by removing the same quantity of the
item from the source location (25). If the output station
has sent an error message, the RMFS core software
skips the extract request and moves it to the end of the
queue (26). Finally, the RMFS core software checks if
it can use the same pod again to fulfill the next extract
request. If the same pod cannot be used again, a storage
location will be chosen and the pod will be moved (27).
Once the robot sets the pod down, the RMFS core
software updates the pod’s location in Odoo (28).

5.2.1 Order to Picking
In this part we will describe the process of an order
passing through the system, from receiving an order
in Odoo to the package leaving the warehouse. We
describe this process firstly with a small example shown
in Figure 8. After an order is created with a demand for
five apples (Figure 8a) in Odoo, the sale is confirmed
for sale in Figure 8b. The RMFS core software then
recognizes the incoming order and selects a pod (or
several, if needed) containing at least five apples and
the pod is moved by a robot to the designated picking
station (Figure 8c). The picker then taks the items from
the pod and confirm the sucessful picking operations
by pressing the OK buttom in the output station app
(Figure 8d). The green marked position is the pod
compartment where the items are located in the pod.
The output station app gets this information from a
JSON (JavaScript Object Notation)-formatted message
from the RMFS core software agent interface. After a
successful picking operation, the core software adjusts
the inventory of the pod that was used.
We will now explain more about the technical

details, referring to Figure 9. We will use some Odoo-
specific terms, and some descriptions in the picking
process, such as enqueuing and dequeuing of extract
requests, are simplified. On startup, the RMFS core
software retrieves the current positions and contents of
all pods from Odoo. When an order is placed (1), Odoo
creates a new planned, outgoing transfer, from Stock
to Customer (2). Whenever the Update method in the
RMFS core software is called (3), it scans the Odoo
Transfer database for new planned, outgoing transfers
(4). The transfers are converted to orders (5), for which
the RMFS core software then generates and enqueues
extract requests (6). An extract request is a request to
pick a specific item belonging to a certain order at a
chosen output station. Concurrently, the RMFS core
software dequeues an extract request (7) whenever the
Update method is called (3), chooses a pod to fulfill

(a) Create a sale order

(b) Sale information

(c) RAWSim-O view

(d) Picking station

Fig. 8: An example from generating a sale order in Odoo to picking.



8

experiments using a number of mini-robots. It offers a
controlled environment in which users can execute and
test the robot programs using real robots [20]. Similar
to Teleworkbench, we designed a teleoperated platform
(call XOR-bench), but its features are specially designed
for an RMFS. The XOR-bench includes the following
functionalities:

– Live video of experiment
– Program-download to robot
– Computer vision-based robot positioning system
– Events and messages logger
–Wireless communication system
– Internet connectivity

The real-time experiment video will be streamed
through an IP-based camera. The user can download
the developed robot program to the robots through
XOR-bench. The robots’ positions will be obtained by
using computer vision technology from the captured
live video. All events and messages from the RMFS
software system (including the RMFS core software,
ERP and station apps) are recorded and accessible.

5.2.2. Purchase Order to Replenishment
The replenishment process’s implementation is
rather similar to the picking process described above,
therefore only the main differences will be described.
The event triggering the start of the replenishment
process in the RMFS core software is the receipt of
the replenishment items. After that, an internal transfer
is automatically created to transfer the received items
from the receiving area into pods. When this transfer
is detected by the RMFS core software, this transfer
is split into its moves and they are converted to item
bundles (amount x of sku s). So an insert request for
each item bundle is generated (as opposed to an extract
request for each order line), which is then handled by
the RMFS core software.

6. STEP 3: INTEGRATING THE RMFS
CORE SOFTWAREWITH MINI-
ROBOTS IN XOR-BENCH

Teleworkbench [19] and [20] is a platform or an
infrastructure for conducting, analyzing and evaluating

Inventory ModuleOrder Module
Inventroy Processing System
Order Processing System

1
Order confirmed

New outgoing
transfer created

Created
Extractrequests

2
Create new
outgoing
transfer

3
Update

4
Fetch new
outgoing
transfers

5
Convert

transfers to
Orders

6
Create
Extract-
requests

Transfers
7

Take next
Extractrequest

8
Select&(Move
to Station):
Bot&Pod

11
Decode
Message

12
Send Msg to
Outputstation

o

9
Send

Pickinginfo to
Server & wait

10
Message received

Messagetype?

Pickinginfo for
Station o

20
Send Msg to
Controller

Pickingsuccess

Message sent

13
Message received

4
Show

Pickinginfo

15
Try Picking

Picking
successful?

Yes No

16
Fire OK Button

17
Fire ERROR
Button

19
Send

Pickingsuccess
FALSE

18
Send

Pickingsuccess
TRUE

Message sent
to Server

21
Message received

FALSE

22
Move Item:

Pod -> Station

26
Move Request

to end of
queue

23
Set

SourcePod &
done Quantity

24
Done Quantity

changed

Set done
Quantity in

Order

25
Remove done
items from

Pod

Orders

Inventory

Removed Items
from Inventory

Need same
Pod again27 & 28

Move Pod
to Storage
& update
Locations

YESNO

Locations

Extractrequest
processed

Success?

TRUE

Odoo RMFS Core Software Agent Interface Output Station App

Fig. 9: The process diagramm of an order passing through the system.



9From Simulation to Real-World Robotic Mobile Fulfillment Systems

work [16], we used the iRobot Create 2, a mobile robot
platform based on the Roomba vacuum cleaning robot.
The robots are equipped with ASUS Eee PCs through
serial-to-USB cables for processing capabilities, and
web-cams for line-following. The RFID tag reader
is mounted inside the former vacuum cleaning
compartment for waypoint recognition. The robot
program was written in C#. The main drawback of
using iRobot Create 2 for the RMFS experiment is that
the robot does not have the lifting mechanism to elevate
the pods off the floor when transporting them.
The new mini-robot (see Figure 11a) we use on the

XOR-bench is built by LEGOMindstorms EV3 (third-
generation robotics kit in LEGO’s Mindstorms line).
The robotics kit makes it easy to build the robot, with
ease of programming, low complexity and low costs
both for the research and teaching. The robot has three
motors, with one middle motor used for the lifting
mechanical structure (the robot can pick up or set down
the pod: see Figure 11b), while two large motors are
differential motors for the movement. We also program
the robot similar to typical RMFS robots, such as
line-following, turning right and turning left. A color
sensor is responsible for the function of line-following;
moreover, an ultrasonic sensor is used for avoiding
obstacle and distance detection. The program was
written in the EV3 Python programming language to

With the logger data the researchers and developers
can analyze the results of the experiments. The XOR-
bench provides wireless communication between the
robots and the RMFS core software. The XOR-bench
is connected to the Internet to enable easy access for
researchers and developers.
Figure 10 illustrates the general system architecture

of the XOR-bench system. The XOR-bench server
provides a TCP/IP service, which can be used to
connect the robots (the gray rectangles in the platform)
with the agent interface sever. The agent interface
server is connected with the RMFS core software
server and the station servers. The station apps and
ERP (including the database) are located in the station
servers and ERP & database server respectively. Each
station app is located in a station server.
In this step, we use mini-robots, because they are

affordable and support high programmability and
expandability in the research and teaching. Unlike
usingmobile industrial robots, usingmini-robots for the
RMFS system integration experiment, there are some
significant advantages, for instance, the experiment is
easy to set up, execute, monitor and analyze in a short
time. Several RMFS system integration experiments
can be done rapidly.
Two different mini robotic platforms are currently

used on the XOR-bench. In our previous research

ERP & database
server

Camera

Platform

Internet

XOR-bench

RMFS core software
server

Station server (1...N)

Agent interface
server

XOR-bench
server

Wireless

Fig. 10: The general system architecture of the XOR-bench system.

(a) Close-up of the robot (b) Robot carries the pod

Fig. 11: LEGO-RMFS robot.



10

they need a large place to execute the experiments.
Therefore, the test and validation of algorithms and
programs on them is highly complex. Ideally using
the Internet connectivity feature of the XOR-bench,
we can remotely perform experiments for industrial
robots by using real-time information streamed over
the Internet, such as video, and exchanged messages
between the robots and the RMFS core software. We
can do the robot tele-programming (in other words, we
can develop a robot program locally and it is possible
to download it to remote robots).

Fig. 13: LEGO-RMFS robot positioning by using of
computer vision technology.

Themobile industrial robot for the remote experiment
is the Xiellog-Z series from Hanning ZN Tech Beijing,
China. The payload of the robot is 650 kg; the speed of
the robot is 1.2 m/s. The robot measures about 830mm
× 650mm × 350mm and about 150 kg. The robot
mounts an advanced industrial positioning tracking
and control system on the base, which can be used
for data matrix-based code positioning tracking and
guiding the robot along a colored path. In other words,
the system looks down at the ground to recognize
matrixbased codes and color lines on the floor. Figure
14a shows a data matrix-based position tracking and
control system called PGV from the German sensor
manufacturing company Pepperl+Fuchs. Using an
industrial 2-D camera, the PGV can also guides a
robot along its colored path. Figure 14b shows a data
matrix tag containing position information in addition

control the robot, which runs on the EV3dev operating
system (a modified version of the Linux Debian Jessie
operating system).
We set the maximum velocity limit of each robot to

0.05 m/s, while the time it takes for each robot to do a
complete turn is set to 3 s. The time for the robot to set
down and pick up the pod is about 3 s. The commands
are sent to the robot via WiFi.
In the experiment as shown in Figure 12, we use

a 3 × 4 grid layout. One replenishment station is set
in the bottom-left corner and one pick station is set
on the bottom-right corner. Two robots are used; the
pods on the field are made with straight sticks. Figure
12b shows the visualization of the experiment in our
RMFS core software. The robot is in the green circle,
which carries the pod in the blue rectangle, while the
red rectangle is the output station and the yellow one
is the input station.
As shown in Figure 13a, the XOR-bench in the lab

has a computer visionbased multi-robot positioning
system similar to that in [18], so the robot position
information as well as identification of different
robots can be captured. The software components
of the robot positioning are written in Python with
OpenCV (Open Source Computer Vision Library). On
each pod and robot, an ArUco marker in Figure 13b is
used for localization. We use an open-source algorithm
for detecting the ArUco marker as in [6]. The robot
positioning software runs on XOR-bench server and
sends the robot position information to the RMFS core
software.

7. STEP 4: TEST AND VALIDATE
ALGORITHMS AND PROGRAMS ON A
MOBILE INDUSTRIAL ROBOT IN XOR-
BENCH

In the last step of the process from RMFS simulation
to the real world, we perform the experiment in the
XOR-bench for testing and validating the on-board
algorithms and programs of a mobile industrial robot.
The mobile industrial robots are expensive; moreover,

Fig. 12: Experiment with LEGO-RMFS robots.

(a) Robots in the experiment (b) Visualization in RMFS core software

(a) Robot positioning in the experiment
platform

(b) Example of
ArUco marker



11From Simulation to Real-World Robotic Mobile Fulfillment Systems

another part located in our lab in Germany, which has
the RMFS core software server agent interface server
and the station server. Note that the station server is
in the real world located with the station; however, it
is in our case located in the lab in Germany for the
experiment. The Odoo ERP system and databases are
hosted on the Tencent cloud.
As with the experiment layout in the previous

section, a 3 × 4 grid layout is used for performing the
experiment with a mobile industrial robot. Figures 16a
16b show the mobile industrial robot. Figure 16c gives
a view of the IP-based camera in the lab during the
experiments, while Figure 16d shows the visualization
of the information in the RMFS core software. Recall
that the robot is in the green circle, which carries the
pod in the blue rectangle, while the red rectangle is the
output station and the yellow one is the input station.

Fig. 16: Remote experiment with mobile
industrial robot.

to a specific number (https://www.pepperl-fuchs.com/
global/en/classid_3334.htm). Because of the robot’s on-
board positioning system, for this remote experiment,
we do not need the video-based positioning system in
the XOR-bench. Moreover, a multiray LED scanner
(2-D LiDAR Sensor) from Pepperl+Fuchs is installed
in each robot to detect potential obstacles and to avoid
the collisions between robots.
The robot hasa scissor-lift mechanism to lift the pods.

Moreover, they have an industrial WiFi module, which
can be connected with the application server through
the TCP/IP protocol. The controller on the robot is a
Lenze C300 PLC (Programmable Logic Controller),
which requires high reliability control. The program on
the robot was written in high-level-language-structured
text under the IEC 61131-3 standard.
The infrastructure we designed allows people around

the world to remotely test and benchmark the robot
programs, without spending a lot of effort on handling
communication and experiment settings. Figure 15
shows the system architecture of the XOR-bench
system in the remote test situation. The XOR-bench
is split into two parts: one part located in the robotics
lab in Beijing, China, which includes the XOR-bench
server, four IP-based cameras and mobile industrial
robots;

Fig. 14: Real robot positioning by using of position
tracking and control system.

Fig. 15: The system architecture of the XOR-bench
system in remote testing situation.

(a) Pepperl+Fuchs PGV
position tracking and con-
trol system

(b) Data Matrix tag with
the number 99999999 and
position information

Platform

Internet

XOR-bench

Robotics Lab in China Lab in
Germany

Internet

XOR-bench

XOR-bench
server

Wireless

Camera

ERP & database server

Station server (1...N)

RMFS core software
server

Agent interface
server

(a) Close-up of the robot

(c) Robot in the experiment

(d) Visualization in RMFS core
software

(b) Robot carries the pod



12

or LEGO robots) or industrial robots. This is beneficial
for both research and teaching.
Due to the existing interfaces with the ERP system

and the robots, we can use the XOR-bench in the future
to test other types of automated warehousing systems,
such as an automated system [2], where humans work
in zones, and robots are sent to humans to load items
from zones to input/output stations; in this case, robots
work alongside humans (traveling in the same space
with humans).

10. ACKNOWLEDGEMENTS

We would like to thank Beijing Hanning ZN Tech for
providing the robots and robotics research lab and
performing the RMFS system experiment with us.

REFERENCES

1. SAP EWM: Integrated Warehouse Management
Solution by Swisslog. URL https:// www.
swisslog.com/en-us/warehouse-logist ics-
dist r ibut ion-center-automat ion /sof tware-
inventory-management/sap-ewm-extended-
warehouse-management

2. Ackerman, E.: How locus robotics plans to build
a successor to Amazon’s Kiva robots (2016). URL
https://spectrum.ieee.org/automaton/robotics/
industrial-robots/locus-robotics-warehouse-
automation-robots

3. Boysen, N., Briskorn, D., Emde, S.: Parts-to-
picker based order processing in a rackmoving
mobile robots environment. European Journal
of Operational Research 262(2), 550–562 (2017).
DOI 10.1016/j.ejor.2017.03.053

4. Cohen, L., Uras, T., Koenig, S.: Feasibility study:
Using highways for bounded-suboptimal multi-
agent path finding. In: Eighth Annual Symposium
on Combinatorial Search (2015)

5. Cohen, L., Wagner, G., Satish Kumar, T.K.,
Choset, H., Koenig, S.: Rapid randomized
restarts for multi-agent path finding solvers.
ArXiv e-prints (2017)

6. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-
Cuevas, F.J., Mar ı́n-Jim énez, M.J.: Automatic
generation and detection of highly reliable fiducial
markers under occlusion. Pattern Recognition
47(6), 2280–2292 (2014)

7. Hazard, C.J., Wurman, P.R., D’Andrea,
R.: Alphabet Soup: A testbed for studying
resource allocation in multi-vehicle systems. In:
Proceedings of AAAI Workshop on Auction
Mechanisms for Robot Coordination, pp. 23-30.
Citeseer (2006)

8. Hoffman, A.E., Mountz, M.C., Barbehenn, M.T.,
Allard, J.R., Kimmel, M.E., Santini, F., Decker,
M.H., D’Andrea, R., Wurman, P.R.: System and

8. AN EXAMPLE – PATH PLANNING
OPTIMIZER

In order to answer the question at the beginning of this
paper: “how can we make sure that the algorithms we
implement and test in the simulator are still applicable
for the real-world scenarios?”, we give you in this
section an example of an optimizer we developed in the
simulation, the path planning optimizer. And we will
explain shortly how we make this optimizer applicable
for the real-world scenarios.
The path planning algorithm is called Multi-Agent

Pathfinding (MAPF) in the literature. This is a
challenging problem with many applications such as
robotics, disaster rescue and video games (see [21]).
The goal in MAPF is to compute collision-free paths
along a grid-based graph for all agents from their
start to their unique destination nodes. There are
many MAPF solvers from artificial intelligence which
typically work for agents, but they do not consider
kinematic constraints, such as maximum velocity
limits, maximum acceleration and deceleration, and
turning times. Moreover, they consider the movement
of robots only in discretized environments. It is a
similar case with the existing path planning algorithms
for an RMFS (see [4] and [5]). However, we can not
use those MAPF solvers directly if we want to test the
path planning algorithms with real robots. Moreover,
there are MAPF solvers from robotics, which consider
the kinematic constraints, but they work only for a
small number of robots; therefore, they are too slow
for a massive search like in an RMFS. In order to make
path planning algorithms work for real robots, we have
implemented new MAPF solvers in our path planning
optimizer that consider kinematic constraints in a
continuous environment for the RMFS. More details
can be found in [15]. It is worth to mention that if there
are delays of robots during the execution of the planned
routes, the collisions of robots might occur. In such
cases, the sensor installed in the robot will detect that,
and one robot will stop and wait until another robot go
through and continue its path.

9. SUMMARY AND OUTLOOK

In order tomake it easy to test the developed algorithms,
such as the ones in the previous section, in the simulator
with real-world data and robots, we have presented in
this work a novel development process flow by using
our XOR-bench. This process flow includes changing
the RMFS simulator into core software and integrating
the RMFS core software with Odoo ERP and input/
output station app.
Moreover, we have shown that geographically

distributed users can use our designed XOR-bench to
test and validate the RMFS system and algorithms on
real robots, either educational robots (such as iRobots



13From Simulation to Real-World Robotic Mobile Fulfillment Systems

17. Nigam, S., Roy, D., de Koster, R., Adan, I.:
Analysis of class-based storage strategies for the
mobile shelf-based order pick system (2014)

18. Tanoto, A., Li, H., Rückert, U., Sitte, J.: Scalable
and flexible vision-based multi-robot tracking
system. In: 2012 IEEE International Symposium
on Intelligent Control (ISIC), pp. 19–24. IEEE
(2012)

19. Tanoto, A., Rückert, U., Witkowski, U.:
Teleworkbench: A teleoperated platform for
experiments in multi-robotics. In: Web-Based
Control and Robotics Education, pp.267–296.
Springer (2009)

20. Tanoto, A., Werner, F., Rückert, U., Li, H.:
Teleworkbench: validating robot programs from
simulation to prototyping with minirobots.
In: The 10th International Conference on
Autonomous Agents and Multiagent Systems,
vol. 3, pp. 1303–1304. International Foundation
for Autonomous Agents and Multiagent Systems
(2011)

21. Wang, K.H.C., Botea, A.: MAPP: a scalable
multi-agent path planning algorithm with
tractability and completeness guarantees. Journal
of Artificial Intelligence Research 42, 55–90
(2011)

22. Yuan, Z., Gong, Y.Y.: Bot-in-time delivery
for robotic mobile fulfillment systems. IEEE
Transactions on Engineering Management 64(1),
83–93 (2017)

23. Zou, B., Gong, Y., Xu, X., Yuan, Z.: Assignment
rules in robotic mobile fulfilment systems
for online retailers. International Journal of
Production Research 55(20), 6175–6192 (2017)

method for inventorymanagement using mobile
drive units (2013). URL https://www.google.
com/patents/US20130103552

9. de Koster, R., Le-Duc, T., Roodbergen, K.J.:
Design and control of warehouse order picking:
A literature review. European Journal of
Operational Research 182(2),481–501 (2007).
DOI https://doi.org/10.1016/j.ejor.2006.07.009.
URL http://www.sciencedirect.com/science/
article/pii/S0377221706006473

10. Krenzler, R., Xie, L., Li, H.: Deteministic
pod repositioning problem in robotic mobile
fulfillment systems (2018)

11. Lamballais, T., Roy,D., DeKoster,M.: Estimating
performance in a robotic mobile fulfillment
system. European Journal of Operational
Research 256(3), 976–990 (2017)

12. Lamballais, T., Roy, D., De Koster, M.: Inventory
allocation in robotic mobile fulfillment systems
(2017)

13. Laurent, S.S., Johnston, J., Wilder-James, E.,
Winer, D.: Programming Web Services with
XML-RPC: CreatingWeb Application Gateways.
O’Reilly Media, Inc. (2001)

14. Merschformann, M.: Active repositioning of
storage units in robotic mobile fulfillment
systems. In: Operations Research Proceedings
2017, pp. 379–385. Springer (2018)

15. Merschformann, M., Xie, L., Erdmann, D.: Path
planning for robotic mobile fulfillment systems.
arXiv preprint arXiv:1706.09347

16. Merschformann, M., Xie, L., Li, H.: RAWSim-O:
A simulation framework for robotic mobile
fulfillment systems. Logistics Research 11(1)
(2018). DOI doi:10.23773/2018 8


