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ABSTRACT

This paper introduces a new mixed integer model to
provide efficient distribution plans to route a set of
inbound/outbound heterogeneous vehicles in the cross-
docking systems that are used to transfer different
types of commodities from a manufacturing plant
to retail warehouses with allowed split deliveries.
The objectives are to minimize the total commodity
deviations and the overall distribution time or cost of
vehicles. Different data sets from different scales are
randomly generated and solved by CPLEX-Concert
Technology. As the proposed model is NP-hard; a
new heuristic is constructed to solve the problem in
reasonable computational efforts. Results show that
CPLEX can obtain optimal solutions for small-scale
sets and sub-optimal solutions for medium scale sets
with a six-hour time limit, while it fails to provide any
feasible solution for 35 out of 50 large scale sets. The
proposed heuristic provides very competitive results
compared to CPLEX in all scales in term of gaps and
computational times.
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1 INTRODUCTION

Recently, many industries have focused on improving
the efficiency of logistics and distribution systems of
material flow to satisfy more complicated customer
demands in terms of timing, cost and quality (Lee et
al. (2006) and Serrano et al. (2016)). For example, more
than 30% of sales is incurred in the distribution process
as stated by Apte and Viswanathan (2000). Therefore,
one of the most important things in controlling logistics
and distribution costs and reducing waste produced by
high inventories compared to traditional warechousing
systems while simultaneously maintaining the level
of customer satisfaction is CD system (Sung and
Song (2003)). Cross docking (CD) can be defined as
moving commodities from a manufacturing plant and
delivering them directly to a retail chain with little or
no material handling or storage time in between. CD
can decrease the warehousing costs up to 70 percent
due to the reduction in storage space and order picking
costs (Vahdani and Zandieh (2010)). Moreover, it can
decrease the transportation costs due to the use of full
trucks by consolidating different shipments (Apte and
Viswanathan (2000)). In CD, commodities transported
to the CD by inbound vehicles, are de-batched and re-
batched in different quantities and combinations and
then transported to their destinations by outbound
vehicles in a short time, usually less than 24 h (Apte
and Viswanathan (2000) and Kreng and Chen (2008)).
Two critical requirements of CD are simultaneous
arrival and consolidation. Simultaneous arrival of
the pickup vehicles fleet, consolidation can be easily
achieved in a supply chain physical flow. Vehicles can
leave the CD to distribute products to their destinations
without any interruptions, and thereby the lead-time
for delivery and the inventory level will be reduced.
On the contrary, if pickup vehicles fleet cannot arrive
at the CD simultaneously, the consolidation process is
delayed until all products are collected and classified
and then loaded to each vehicle in CD. Therefore, the
waiting time of some vehicles and the inventory level
is increased (Lee et al. (2006) and Liao et al. (2010)).
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Although many studies on CD and vehicle routing
problem (VRP) have considered them separately,
dealing with both simultaneously is very important and
common in practice, as proposed by Lee et al. (2006).
The integration of VRP with CD strategy (VRPCD)
has been increasingly appreciated and investigated in
recent studies as an effective strategy for distribution
management and logistics. Furthermore, most studies
on the VRPCD problem have assumed that pickup
and delivery tasks are sequentially carried out by
a homogeneous vehicle fleet. However, few of them
have assumed that the pickup and delivery tasks are
sequentially carried out by a heterogeneous vehicle
fleet. Since all the vehicles are non-identical, the
assignment of vehicles to routes is required (Dondo
and Cerda (2015)). In a distribution system with CD and
a heterogeneous fleet, with vehicles of different sizes
and capacities, large quantities of inbound commodities
are transported from plants using large vehicles to CDs
where small vehicles are awaiting to be replenished, and
then small vehicles transport outbound commodities
to customers. This enhances the speed of delivery by
avoiding large vehicles congestions inside cities and
hence improves the overall efficiency of the distribution
system.

This research effort aims to provide the following
contributions. First, this research effort provides a
realistic model that can be used efficiently in VRPCD
problems. A new optimization model is proposed to
provide detailed and efficient distribution plans for
vehicles that are used to transfer commodities from
manufacturing plants to retail warehouses. From
literature, it can be clearly noticed that research
that combines vehicle routing with different logistics
decisions in cross docking systems is not fully
investigated. The model in this research addresses
some of shortcomings appear in literature by providing
detailed optimal route and schedule for each vehicle
that minimizes the total commodities deviations and
the overall distribution cost alongside with quantities.
Deviations represent the difference between the
requested and delivered demand. Additionally, the
proposed model is developed with many extensions
from other models in the literature such as inbound/
outbound heterogeneous fleet of vehicles with different
capacities and speeds, multiple commodity types with
different masses and quantities, multiple inbound/
outbound (strip/stack) doors for CD with limited
capacity, multiple replenishment, split deliveries, and
deviation variable are added to represent the difference
between desired demand and actual delivered quantities.

The second contribution is to develop an efficient
solution approach that can provide high quality solutions
for the proposed model in acceptable computational
efforts. The developed solution approach will pass
through two phases. In the first phase, a route will
be constructed for each vehicle in a greedy manner.
Then, in the second phase, the commercial software,

i.e., CPLEX, will be used to solve other variables based
on the constructed routes (fixed binary variables).

The remainder of this paper is organized in the
following manner. In the following section, a review of
relevant literature is presented. The problem statement
and the mathematical formulation for parameters,
decision variables and constraints used in developing
the mixed integer linear programming formulation for
the model are clarified in Section 3. In Section 4, a
heuristic approach for solving the resulting model in
reasonable computational effort is explained. Section
5 includes a numerical analysis of the mathematical
model for different data sets. Finally, summarizing our
work with suggestions for future research directions are
given in Section 6.

2 RELATED LITERATURE

CD is an important strategy in logistics that benefits the
supply chain in managing the flow of materials from
suppliers to customers efficiently to improve customer
satisfaction. CD reduces warechouse space requirements,
reduces inventory handling risks, and hence reduces
associated inventory and transportation costs (Apte
and Viswanathan (2000)). Several CD problems were
studied in literature including operational, tactical and
strategic problems. Major decisions at the operational
level are related to truck scheduling at the CD, dock
door assignment and pickup/delivery vehicle routing
and scheduling; tactical decisions are concerned
with network flows, vehicle routing and distribution
planning; and strategic decisions are focused on
geographical location and shop-floor layout. The
scheduling problems at cross docks with multiple
doors were studied by (Song and Chen (2007)). The
problem was limited to one CD with multiple inbound
doors with a single outbound door. Larbi et al. (2009)
considered multiple inbound and outbound dock doors
as well as proposed heuristic methods to find the best
solution for transshipment operations scheduling,
hence, minimize the sum of inventory holding and
truck replacement costs. Serrano et al. (2016) focused
on operational and tactical issues in their research. The
authors proposed a mixed integer linear programming
model to treat the operation scheduling problem at the
CD platform. This involved scheduling truck arrivals,
shop-floor operation and truck departures to minimize
the internal operation and outbound transportation
costs. More review details of the latest research on CD
problems can be found in (Boysen and Fliedner (2010),
Agustina et al. (2010) and Van Belle et al. (2012))
articles. These articles reviewed what have been done
in improving the CD operation from operational to
strategic aspects in the previous researches.

There are many other problems in logistics, that
utilize the cross docking operations, were considered in
the past research. For example, the pickup and delivery
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with cross docking problem, which was formulated by
Cortés et al. (2010) and Santos et al. (2013). The model
of Santos et al. (2013) utilize a pre-defined routes that
should be selected by the set of vehicles the are used
to fulfill set of demand requests, i.e., single type of
demand is considered. In their proposed model, split
delivery is not allowed, homogeneous vehicles are
used, no capacity limitations for the cross dock are
considered, and branch and price is developed to solve
the problem. Similarly, Cortés et al. (2010) developed
pickup and delivery model for passengers transfer, but
not for goods. Grangier et al. (2017) provide solution
approach to the problem of pickup and delivery with
cross docking systems by large neighborhood search
and set partitioning based algorithm. The same
problem was solved by Bodnar et al. (2015) with the
same approach, but with addition of periodic calls.
Other problems in logistics are also considered, as in
Maknoon et al. (2017) who have provided a formulation
for an integer model to minimize the cost of cross
docking operations by making a proper schedule for
the trucks at the terminal doors, where each truck is
assigned for only one order (request).

Most studies investigated CD and vehicle routing
problem VRP separately. However, the integration
of VRP with CD strategy (VRPCD) has been
increasingly appreciated and investigated in recent
studies as an effective strategy for distribution
management and logistics. The first study which took
into consideration the VRPCD integration model was
proposed by Lee et al. (2006). The authors investigated
a variant of the VRP with synchronous arrival times
of products and stable demand for consolidation. A
tabu search (TS) algorithm was proposed to find
the optimal number of vehicles and routing schedule
with minimum transportation cost. Results from the
proposed algorithm were compared to those obtained
by enumeration methods; attained results were near
optimal with an average percentage error of less
than 4% of total cost within a reasonable amount of
time. A new TS algorithm was proposed by Liao et
al. (2010) for the set of VRPCD problems that were
introduced by Lee et al. (2006) to minimize the sum of
transportationand operational costs. The results showed
improvements as high as 10-36% for various sizes of
problems compared to the results obtained by Lee et
al. (2006). Agustina et al. (2014) integrated routing,
CD and scheduling to the distribution of food products
to ensure that food products which are perishable with
a short shelf life can be delivered to customers just in
time to preserve their quality. A mixed integer linear
programming (MILP) model was formulated in CPLEX
software with the aim of minimizing inventory holding
and transportation costs, as well as penalty costs of
early and delayed deliveries. Dondo and Cerda (2014)
introduced a monolithic MILP formulation for VRPCD
problems that integrated pickup/delivery points for a
homogeneous fleet of vehicle routing and scheduling
with both the assignment of inbound/outbound vehicles

and the management of vehicle queues at strip/stack
dock-doors. Additionally, Wen et al. (2009) considered
the same VRPCD problem in (Lee et al. (2006)) with
asynchronous arrival times for all homogeneous
vehicles and an objective of minimizing the total
distance traveled. Also, Tarantilis (2013) addressed
the same problem presented by (Wen et al. (2009))
while considering the use of different inbound and
outbound vehicles for pickup and delivery processes.
An adaptive multi-restart procedure associated with
a TS algorithm was applied, where the results showed
better solution compared to the results obtained by Wen
et al. (2009). Moreover, Morais et al. (2014) proposed
three iterated local search solutions for (ILS) heuristics
to solve VRPCD. The ILS heuristics provided the best
solution and outperformed the TS heuristic and the
adaptive multi-restart TS heuristic with better solutions
than those of Wen et al. (2009) and Tarantilis (2013).
Other studies assumed that the pickup and delivery
tasks are sequentially carried out by a heterogeneous
vehicle fleet. As vehicles are not identical, the
assignment of vehicles to routes is required. Hasani-
Goodarziand Tavakkoli-Moghaddam (2012) considered
the vehicle fleet while splitting orders for deliveries and
pickups to different nodes in the network. Also, these
vehicles did not necessarily have the same capacity,
o capacity constraints were applied to multi-product
cross-docks. Dondo and Cerda (2015) presented new
solution approaches for VRPCD to determine truck
scheduling, vehicle routing dock assignment all at once
as well as the routing and scheduling of a heterogeneous
fleet. Ahmadizar et al. (2015) considered two-level
routing in a network, the first-level involved the routing
of heterogeneous inbound vehicles between CDs and
suppliers in the pickup process, and the second level
involved the routing of heterogeneous outbound vehicles
between CDs and retailers in the delivery process. The
problem was modeled considering multiple product
types while taking into consideration the possibility of
the total volume assigned to a supplier (or demanded by
aretailer) being greater than the capacity of inbound (or
outbound) vehicle, so each supplier (or retailer) might
be visited by several inbound (or outbound) vehicles.
Birim (2016) developed a VRPCD model in which a
heterogeneous fleet of vehicles without considering
splitting orders for pickup and delivery processes is
considered to find the routes that minimize the total
distribution costs including pickup and delivery.
Determining the optimal solution from VRP is an
NP-hard problem because of the combinatorial nature
and complexity of this problem and is usually solved by
heuristic approaches (Vincent et al. (2016)). Different
heuristics were proposed to solve such models,
including sweep-heuristic algorithm (Dondo and
Cerda’” (2013)), iterated local search (ILS) (Morais et
al. (2014)), tabu search (TS) (Lee et al. (2006)), particle
swarm optimization (PSO) (Kachitvichyanukul et al.
(2015)), simulated annealing (SA) (Wang et al. (2015)),
etc. Recently, some studies employed hybrid heuristic
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algorithms which provided optimal or near-optimal
solutions for large-scale NP-hard routing problems
within a competitive computational time as in (Al
Theeb and Murray (2017) and Kiigiikoglu and Oztiirk
(2015)).

Our proposed model is a mixed integer linear
programming model that builds on the classical NP-
hard vehicle routing problem with the incorporation
of other distribution decisions. Additionally, a new
heuristic, different than the approaches that were used
in literature, will be constructed to solve the resulting
model in a reasonable computational effort based on
solving the model iteratively and optimally in the last
phase according to some specific variable values which
are determined greedily a previous phase.

A summary of the previous studies which focused
on the integration of VRP with CD strategy appears
in Table 1, which also contrasts several key features of
these studied with the model proposed in this paper. For
more details about the warehouse research, including
CD, Davarzani and Norrman (2015) provided a review
article which includes the most recent research in this
field.

3 PROBLEM DESCRIPTION AND
MATHEMATICAL FORMULATION

The problem under consideration involves a distribution
system consisting of a single manufacturing plant,
one CD with multiple inbound and outbound doors,
a heterogeneous inbound fleet of vehicles (trucks), a
heterogeneous outbound fleet of vehicles, multiple
commodity types with different masses and quantities
and multiple customers. This distribution system can be
described as follows. Each customer orders a specific
quantity from each type of commodity at the beginning
of a time horizon, then the plant makes decisions of
how to fill out the available large vehicles and decides
on quantities. After this, filled large vehicles travel to
the CD where small vehicles wait to be replenished
by commodities. Filled out small vehicles deliver their
loads to customers warehouses and come back to CD
to get more loads, if needed.

Several realistic assumptions are made in the
proposed model. Large vehicles are used to transfer
commodities from plant store to CD which keeps
these large vehicles away from the congestions inside
cities where such vehicles have restricted access.
Because organizations always update and extend their
distribution fleets, heterogeneous vehicles are expected,
rather than homogeneous ones. The heterogeneity
of vehicles is represented by different speeds and
capacities. Each large vehicle is assumed to visit CD
once during the time horizon, to transfer commodities
picked up from the manufacturing plant. However, each

small vehicle can revisit CD to replenish commodities,
and thus deliver as many quantities as possible to
customer nodes, and it can visit the same customer
node more than once as well. This could reduce the
vehicle’s idle time and improve the overall efficiency of
a distribution system.

Split deliveries of commodities through multiple
vehicles at separate times are allowed in this system.
If a customer demand exceeds the capacity of a vehicle,
it is necessary to serve that customer more than once
by a fleet of outbound vehicles. In contrast, in most
VRP problems, it is assumed that the demand of each
customer is less than or equal to the vehicle capacity,
and thus each customer is served by exactly one vehicle.

Multiple types of commodities are available, such
that each type may have a unique mass. Additionally,
quantities of demanded commodity types that should
be picked up and delivered are determined. It is
important to note that not all demand can be satisfied
due to some factors in the logistic system that may
prevent the delivery of some units such as, vehicle
capacity limitations, lack of functional manufacturing
plants, CD availability issues, time window conflicts,
or time horizon limitations. Therefore, the quantity of
unsatisfied demand requested by a particular customer
is taken into consideration to be determined in this
system.

One of the crucial assumptions is that the commodities
must pass directly from inbound to outbound dock
doors. The reasons behind this is that the CD can not
hold any inventory because of limited storage area,
so both the inbound and outbound trucks must be
located at CD simultaneously, which ensures that the
appropriate quantities of commodities are transferred
at the proper time. Thus, commodities are picked up
by a fleet of heterogeneous inbound vehicles from the
plant, consolidated at CD and immediately delivered
to customers by a fleet of heterogeneous outbound
vehicles, without intermediate storage. Therefore, the
problem involves not only vehicle route design, but also
a consolidation decision at the CD.

The objective of the proposed model is to determine
the optimal routing and scheduling of inbound and
outbound vehicle fleets by minimizing the total
commodities deviations and the overall distribution
time while managing the number of movements for
each vehicle. In addition, it provides each outbound
vehicle a preference to serve a prior commodity type
customer combination to decrease the quantity of unmet
demand for such case as much as possible. Finally, as
the cost is considered as an important issue in such a
problem, the proposed objective can indirectly help to
cover this issue, as minimizing the unmet demands
requires the vehicles to visit more customers with
minimum distance to deliver more commodities, and
thus minimizing the traveled distance (cost).
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3.1  Notation — Parameters
In this subsection, the sets and parameter notations are
presented as follows. The time horizon T is partitioned
into discrete integer periods with equal length, such
that T = {1,2,...,|T]}. Denote the set of commodity
types by C and the amount of commodity type ¢ € C
demanded at node i € N by parameter d;.. Each
commodity type ¢ € C has a mass of m, and a priority
value denoted as p;., such that p;. is 2-dimensional
which represents the priority of both the customer
i € N and the commodity type ¢ € C. Parameter pjc
will have a higher value if a customeri € N has a high
priority for the organization and a specific commodity
type ¢ € C is of great importance for that customer.
Further, the set N represents all nodes in the network
including CD and the imaginary node, where N = {0,
1,2,...,N}. The CD is the first node in the N set and
denoted by 0 which has multiple inbound and outbound
doors given by D and D', respectively. Also, it has
a limited storage capacity which is determined by
the number of dock doors and the maximum loading
capacity at each time t € T, which is denoted by / and
depends on the handling system. The imaginary node
i’ is the last node in the N set which is considered
to facilitate the problem-solving process. It is used to
force outbound vehicles to return to CD after delivery
at the end of a planning period instead of performing
unnecessary movements, which makes them available
for reassignment in the next tour. The remaining nodes
in the N set are customer nodes i € N, where i # 0&i’.
Each customer is able to receive the maximum
unloading capacity at each time ¢ € 7.

A fleet of heterogeneous inbound vehicles, defined
by the set F, of different capacities wy, is available to
transfer commodities from manufacturing plant to CD.

In addition, the set of outbound vehicle fleet ¥ composed
by heterogeneous trucks v € V, of different capacities
wi, is available to distribute commodities from CD to
destinations. Note that inbound and outbound vehicles
have different speeds, where the parameters 7, and 77;;
represent the integer numbers of time periods required
by inbound vehicle f € F to travel from manufacturing
plant to CD or outbound vehicle v € V to travel from
node i € N to node je€ N. Table 2 summarizes the
aforementioned sets and parameters.

3.2 Notation — Decision Variables

Numerous decision variables are required to provide
the more detailed solutions provided by the proposed
VR-PCD. These variables may be categorized into four
main types: pickup, delivery, deviation, and binary
routing variables.

The pickup variable, O » determines the quantities
of loaded commodity type ¢ € C onto outbound vehicle
v € V from inbound vehicle f € F at dock doors for
each time ¢ € 7. Similarly, the delivery variable, 0%, ,,

determines the delivered quantity from outbound
vehicle v € V to customer nodei € N attimer € 7.
The deviation variable, v, depends on the values of
the pickup and delivery variables which captures the
quantity of unsatisfied demand requested by customer
i € N from commodity type ¢ € C. Finally, the binary
variables assign outbound vehicle routes and relate
them to other variables using big-M constraints, such
that the pickup and delivery variables for each vehicle
can have non-zero values only if a particular binary
routing variable equals one. This will be described
more clearly after the model is formulated. These
binary variables are x, y,, and x;;,. The definitions
of all decision variables are presented in Table 3.

Table 2: Summary of parameter notation

Notation  Description

F Set of inbound vehicles

Vv Set of outbound vehicles

T Set of time periods

C Set of commodity types

N Setof nodes i € {0,1,2,...,N}

0 CD

D Inbound doors of CD

D’ Outbound doors of CD

l Maximum loading capacity at each time r € T

r Maximum unloading capacity at each time t € T

wy Capacity of inbound vehicle f € F

wl, Capacity of outbound vehicle v € V

me Mass of commodity type ¢ € C

dic The amount of commodity type ¢ € C demanded by customer i € N
Dic Priority value of both customer i € N and commodity type ¢ € C

Ty Time periods required by inbound vehicle f € F to travel to CD from manufacturing plant

tonode j€ N

Time periods required by outbound vehicle v € V to travel from node i € N
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Table 3: Summary of decision variables, categorized by type
Notation Description
Pickup variable
Q‘:V 1 The quantity of commodity type ¢ € C picked up by outbound vehicle v € V from inbound vehicle f € F
attime r€ T
Delivery variable
ngt The quantity of commodity type ¢ € C delivered to node i € N by outbound vehicle v € V attime t € T
Deviation variable
Vi The amount of unsatisfied demand of commodity type ¢ € C at node i € N
Binary routing variables
X Binary variable, such that xy, = 1 if inbound vehicle f € F parks at CD at time ¢ € T'; x7, = 0 otherwise
Yor Binary variable, such that y,, = 1 if outbound vehicle v € V parks at CD at time ¢ € T, y,; = 0 otherwise
X jut Binary variable, such that x;;,; = 1 if outbound vehicle v € V reaches at node j € N, coming from node

i €N,i&j# i, attime € T; x;j,; = 0 otherwise

3.3 Mathematical Model

The MILP model of this problem is divided into
three categories of constraints. These include routing
constraints providing a detailed optimal route for each
inbound and outbound vehicle, pickup and delivery
constraints describing the appropriate pickup and
delivery of commodities from CD to customers, and
CD constraints addressing the coordination of inbound
and outbound vehicles at dock doors. The objective
function of this problem will be described after the
clarification of these constraints.

3.3.1 Routing Constraints

The following set of constraints ensure that each
outbound vehicle v is assigned to valid routes. However,
the inbound vehicles are assigned to one defined route,

ZZ)C,-/M:I YveV

beginning from manufacturing plant and ending with
CD and vice versa, which will be described later.

The first constraint prohibits multitasking by
ensuring that each outbound vehicle v cannot exist in
more than one place at each time ¢, and thus it may serve
only one customer at any given time ¢, as described in
constraint (1) below:

Zinjv,SI YveV,teT O

ieN jeN
i& j#i’

The constraints for scheduling and routing of
outbound vehicles between CD and customers over
time while maintaining the feasibility and continuity
of routes in the delivery process are as follows:

2
ieN teT ( )
i#i’
g;xiirwzl YveV (3)
i#i'
D xw=1 Vvev @
teT
Zxolvv, =1 VveV )
teT

D> Nz xuw VveV,jeN, keN, j#ior j&k# i, (€T

ieN reT (6)
& j#i T st

i+k ‘

DD Xz DL Y X VvEV, jEN, j#i, teT o)

seT ieN keN reT

S<t & j#I k& j#i’ rSH—‘r;fk
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Constraints (2) — (5) address the case that each
outbound vehicle v must leave and return to the
imaginary node i’ just once. As such, these leaving
and returning movements must be assigned to CD node
only, not the customer nodes. Specifically, constraint
(2) implies that each vehicle v should start from i” and
leave it just once in all time periods as well as it should
return to i’ only once in all time periods, as represented
in constraint (3). Similarly, constraints (4) and (5) are
used for the same purpose, which is to force outbound
vehicle v to leave i’ to CD and return from it to i’ also
once during the time horizon. In other words, each
vehicle v must be assigned to routes, starting (from i’
to CD) as an initial route for vehicle v at the beginning
of its time horizon and ending with a route (from CD
to ") at the end of its time horizon.

Constraints (6) is required to keep the continuity of
vehicle routes. It states that each vehicle v visits node
k coming from node j only if it comes from another
node i, given that it reaches j in a time less than or
equal (current time (7)) — (travel time between j and £,
(T;-k)). Similarly, constraint (7) informs that if vehicle v
visits customer j, it should leave it for another customer.
This constraint is used to maintain the feasibility of
routes and balance the model. Note that each vehicle
v is permitted to replenish commodities from CD and
deliver those commodities to customers more than once
within time horizon 7.

The last constraint, (8) below, enforces vehicle v to
return to CD before the ending of time horizon 7" and
this constraint allows vehicles to work within part of 7,
with no need to consume all 7.

tzxk0vt§|T| VveV,teT ®)
keN

3.3.2  Pickup and Delivery Constraints

The following pickup and delivery constraints ensure
that the appropriate quantity of commodities is
transferred from CD to customers at a proper time.
The first four constraints are concerned with demand
and flow of both picked and delivered quantities of
commodities.

LEDIPWPIYes

veV 1T jeN
J#O&:

YceC Q)

vie=die= Y > 00, YceC, jeN, j#0&  (10)

veV teT

DIPNTED I

VveV,ceC teT (1)

€T feF seT  jeN
s<t-1 SSEj208&1
P _ D
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teT feF teT  jeN

J0&T

Constraint (9) states that the quantity of a commodity
delivered to all customers by all vehicles at all times
should not exceed the available supply of such a
commodity at CD. Constraint (10) captures the fact
that each customer expects to receive the required
quantity of demand. However, in some cases it is
infeasible to satisfy the desired quantity of customers
due to time window conflicts, vehicle capacity
limitations, lack of functional manufacturing plants, or
service of more equitable numbers of customers such
that an outbound vehicle v may distribute its load to
meet multiple customer needs in the same trip. Thus,
this constraint addresses the deviation in quantity
ordered by a particular customer which is defined as the
difference between desired demand level and the total
actual delivered quantities. Constraints (11) and (12)
balance the flow of both picked and delivered quantities
of commodities between CD and customers, such that
the quantity of commodities delivered to customers is
restricted by the quantity that is picked up at CD. In
other words, constraint (11) states that the quantity of
commodity type ¢ picked up from inbound vehicles at
the inbound dock to be loaded into outbound vehicle
v at the outbound dock should be greater than the
delivered quantity to all customers at all pickup or
delivery times s, where s < 7. Furthermore, Constraint
(12) ensuresthat total picked up quantities are equal to
the delivered ones at the end of time horizon 7 for that
vehicle.

Additional constraints are required to check the
capacity feasibility of inbound and outbound vehicles
as well as the unloading rate of commodities at each
customer node, as described in constraints (13), (14)
and (15) below:

Z Z ch Qg,ﬂ <w; VfeF (13)

teT ceC veV

ZZZm”QZ’fS_ZZchQfmSW:, YveV, teT
ceC ;g feF ceC ;E/[ jiggf (14)
ZchQﬁwﬁl' YieN,i+0&', teT 15)
veV ceC

Constraint (13) implies that the total mass of
commodities transferred to CD by inbound vehicle f
does not exceed its capacity. Similarly, constraint (14)
ensures that the difference between masses of picked
up quantities and the delivered ones at any time ¢ to
all customers by outbound vehicle v does not exceed
its capacity at each pickup or delivery time s, where
s < t. Also, the maximum unloading rate of delivered
commodities at customers warehouses is taken into
consideration by constraint (15).
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Finally, the following three constraints, which
are defined by big-M constraints complete the
requirements for valid pickup and delivery processes:

> 0%, <Mig Y xuy VveVikeN k#i, teT (16)

ceC ieN

k#0 i&k#i’

Z Z vaf; <Myxy VfeF teT 17)
veV ceC

ZZQZU‘?SMIS}’W VYveV,teT (18)

feF ceC

These big-M constraints address the case that all
pickup and delivery processes give a value to a node
only if a vehicle visits that node. Specifically, constraint
(16) ensures that vehicle v can deliver a quantity of
commodity c to customer & only if it reaches customer
k at time ¢ from any node 7. In this constraint, M¢ is
a sufficiently large number, and it may be calculated

as Mg = Z dg., ¥ k € N. Note that the maximum
ceC

quantity of commodity ¢ that may be delivered to any
customer k should only be his demand, and thus this
is the best value for Mjs. Constraint (17) states that
the quantity of commodity ¢ picked up from inbound
vehicle f at the inbound dock by outbound vehicles at the
outbound dock can be greater than zero only if inbound
vehicle f parks at inbound dock at time ¢. Additionally,
constraint (18) allows vehicle v to pick up a quantity
of commodity ¢ from CD only if it parks at outbound
dock at time ¢. The big-M values in constraints (17) and
(18) may be chosen such that M7 = w; and Mg = wr,
where w and w, are the capacities of inbound vehicle f
and outbound vehicle v, respectively.

3.3.3 Cross Dock Constraints

The final set of constraints shows the scheduling of
inbound and outbound vehicles to dock-doors over time
and the capacity feasibility of CD as follows:

txy<|T| VfeF teT 19)
xftzo V[<Tf,f€F,l€T (20)
Yt < Z-xiO\/t Vve V’ teT (21)
ieN
fo,sD VieT (22)
feF
S ywsD VieT 23)
veV
ZZZmCvaﬂsl VieT 24

feF veV ceC

Constraint (19) states that each inbound vehicle f can
park at CD during any time in 7. However, constraint
(20) ensures that each inbound vehicle f cannot park
at CD unless it passes from manufacturing plant to
CD. This process should be performed during time
horizon T to prevent any delivery process by outbound
vehicle v from being started unless the travel time
7 for that inbound vehicle f from plant to CD is
finished; otherwise, the value of xy,= 0 at any time is
less than that required for travelling by inbound vehicle
f. Similarly, constraint (21) prohibits outbound vehicle
v from being parked at CD unless it reaches CD at
time 7. Moreover, constraints (22) and (23) manage the
inbound/outbound vehicle queues at inbound/outbound
dock doors to ensure that the number of vehicles parked
at CD at time ¢ does not exceed the number of dock
doors.

Once inbound vehicle f is coordinated at CD,
constraint (24) ensures that the total mass of
commodities transferred to CD at time ¢ does not
exceed the maximum loading rate of commodities,
since its maximum storage area for temporary storage
of commodities is limited, and the maximum capacity
of the handling system is also limited.

3.3.4 Objective Function

The objective of this problem is to provide efficient
distribution plans by better scheduling the routings
of the heterogeneous trucks in the CD system which
minimize the total commodities deviations and the
overall distribution time and cost for vehicles, subject to
the aforementioned constraints. The MILP formulation
of the VRPCD is presented as follows.

DI RPN L IDIDIPILTE

ieN ceC veV tel ieN jeN veV teT
i#0 & j#i’ (25)
s.t. Constraints (1) — (24)

The objective function consists of three terms. The
first term is the major part in the objective function
which provides the outbound vehicle v a preference
pic to serve a specific commodity type ¢ for a
specific customer 7. This term is related to constraint
(10), it decreases the deviation v, in quantity ordered
by a particular customer as much as possible, hence
constraint (10) addresses the unsatisfied demand of
the commodities. The second term is to force vehicle
v to return to its depot (the imaginary node) after
delivery as early as possible, instead of performing
unnecessary movements. This can minimize the total
traveling time for a whole tour of vehicle v and can be
a great help in reassigning vehicle v in the next tours.
Similarly, the third term is to prohibit extra tours of
v to any node such that v may visit customer i for
delivering commodities, or visit a customer i if this
offers a shorter travel time and allows more deliveries
to the next customer in the tour. As such, v may
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return to CD only for replenishing commodities. The
second and third terms are considered as auxiliary
terms in the objective function which are added to
manage the number of movements for vehicles, and
ensures that they only perform the needed movements,
and thus minimize excessive movements and reduce
wasted time and cost. Additionally, if v returns to CD
to replenish commodities but the outbound dock-doors
are booked up by other vehicles or there is no inbound
vehicle f parked at CD at the same time, it should wait
in the queue at dock-door for a specific time instead of
performing unnecessary visits to customers.

Values of y; and p, should be small portion from
the maximum (worst) possible value of the first term,
and thus do not effect the first term which is the
main objective. Accordingly, if the size of a data set
increases (number of customers increases and demand
increases), the value of u; and w, increases. To make
this clear, the maximum possible value of the first term
is shown in Equation 26, where no demand is delivered.

Maximum possible total deviations = Z Z dic Pic
lil(\), ceC (26)

The maximum possible value of the summation part
in the second term is |V| X |T|, if we assume that all
vehicles return to the depot at the last time period.
Similarly, the maximum possible value of summation
in the third term is |V| X |T|, if we assume that each
vehicle make a move at each time slot. According to
this, and based on some experimental work, the values
of u; and uy are taken to make the maximum possible
value of the second and third term equal at most 5% of
the first term, as in the next equation:

DieN Dcec dic Pic
i#0

5% 27
E @7

25 and U2 =

In literature, most of studies consider traditional
objective functions such minimizing cost or distance.
In the results section, short experimental analysis
is performed to show some possible advantages to
consider objective function of minimizing the total
prioritized deviation variables, as in this research.

4 HEURISTIC SOLUTION APPROACH

Finding an optimal solution for any data set in
the VRPCD model is extremely hard by using
exact solution procedures, and sometime it becomes
impossible to find any feasible solution for large scale
sets. Thus, in this section, the greedy randomized
adaptive search procedure (GRASP) is proposed to find
feasible solutions for the problems with different scales.
During the validation stage, it is found that small-scale
problems might be solved optimally using CPLEX.
However, larger-scale problems require the use of a

customized heuristic to obtain solutions with high
quality in reasonable computational time compared to
the time needed by CPLEX. There are two phases in
the proposed iterative heuristic for the VRPCD. In the
first phase, vehicle routes are constructed in a greedy
construction procedure. In the second phase, CPLEX—
Concert Technology is used to determine the optimal
values of the other variables used in the model based
on the predefined routes which are found in Phase
I. Additionally, an iterative procedure is applied to
generate different routes at each iteration. At the end
of Phase II, the best solution over all iterations is kept
as the final result.

4.1  Phase I: Route Construction

The major purpose of the route construction is to set the
values of the original x;;, binary decision variables to
zeros or kept them without setting. The pseudo-code of
the Construction functionis providedin Algorithm 1.
The route-construction procedure produces a proper
route for each outbound vehicle, starting from and
ending with its initial depot (imaginary node), such that
each vehicle could decide whether to go through such
route or not.

The heuristic approach begins by calculating the
total priority value (TP;) and the total mass of the
requested commodity types (7 M;) for each customer
nodei € N,as in equations 28 and 29. Then, these nodes
are arranged in descending order based on their total
priority value. Similarly, the importance value (Imp,)
of each outbound vehicle v € V is calculated based on
their capacities, as in equation 30. Then, these vehicles
are arranged in descending order based on their total
priority value. Value of parameter R that appears in
Equations 28 and 30 is a uniform random number
generated within a range of [0.8,1.2]. The benefit
of using R is to add randomness to the calculations
and to get slightly different results in each iteration.
The range of R is selected based on experiments to
be around 1, it provides some randomness without
violating the role of equations producing priority and
importance values of nodes and vehicles.

ic Xdic
ZCGC [ pT]

TP; = YieN,i+CD 2
; R rep] ieEN, i+ (28)
T™; = Z mexde VieN (29)
ceC
Imp, = Rxw, (30)

After that, the movement of the selected outbound
vehicles can be performed at a given time (start,), by
satisfying two conditions. The first condition is to
check if the inbound vehicle f € F reaches CD coming
from the manufacturing plant in a time that equals its
travel time (7). This means that such a vehicle can
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park at the inbound door of CD and deliver quantities
to an outbound vehicle which is already parked at the
outbound door at the same time, thus the starting time
of the selected outbound vehicle v € arranged, equals
the travel time of that inbound vehicle. The second
condition is to synchronize the number of parked
inbound/outbound vehicles with the inbound/outbound
doors, which also determines the earliest starting time
of pick up from each inbound vehicle.

Next, in line 7, the outbound vehicle loop begins
considering the maximum number of visits for the
current selected vehicle before ending its tour and
returning to its depot or returning to CD for resupply
again. The number of visits is represented by factor
(des), and is mainly determined by vehicle capacity
w, and the loading capacity I’ with some slight
randomness, as in Equation 31. The maximum number
of visits performed by such vehicle equals the number
of nodes, while the minimum number of visits equals
1. The value of R is an integer and is randomly selected
from a uniform range of [-1,1].

After that, the time loop begins for such vehicle
considering the feasibility condition of visiting the
selected customer node i € arranged; by satisfying
many sub-conditions, such as testing if this node is
feasible to be visited before the end of time horizon, if
it is reachable by the selected vehicle v at time ¢, and
if v can return to CD before the end of time horizon
time |T'|. If these conditions are satisfied, the visit for
the highest prioritized customer node is accomplished.

des =R + ceil(%) 31)

When a customer node is visited, this implies that
it received all (or some) of the requested demand.
Hence, the mass value of the requested demand for the
visited node should be reduced based on four cases.
The first case, if the capacity of the selected vehicle
(wy) s less than the total commodity masses requested
by the visited customer node (7'M, ), and less than or
equal to the unloading rate of commodities at this node
(). This implies that the visited node cannot receive
the whole demand and can only receive the truckload of
commodities at the visiting time. Thus, T M;is decreased
by subtracting w), where w/, is slightly randomized by
multiplying it by a random number between [0.6, 1],
as in line 22. The second case, if the capacity of the
selected v is greater than or equal to the total commodity
masses requested by this node, but less than or equal to
the unloading rate of commodities at this node. This
means that the visited node can receive its full demand
by the visiting time, and 7'M, is decreased by dividing
by 3, as in line 25.

The third case, if the unloading rate of commodities
at the visiting node is less than the total commodity
masses requested by such node, and less than the
capacity of the selected v as well. So that the visited
node cannot receive the whole demand and can only
receive the amount of unloaded commodities by the

visiting time. Thus, T'M; is decreased by subtracting 7,
where I’ is slightly randomized by multiplying it by a
random number between [0.6, 1], as in line 28. Finally,
if the unloading capacity of commodities at the visiting
node is greater than or equal to the total commodity
masses requested by such node, but less than the
unloading capacity of commodities at this node. This
implies that the visited node can receive its full demand
by the visiting time, and 7'M, is decreased by dividing
by 3, as in line 31. Note that the visiting node in the
second and fourth cases may be served later by one or
more vehicles to deliver its remaining demand, since
split deliveries are permitted.

After reducing the mass value of the requested
demand for the visited customer node, the total priority
value for that customer node should be decreased. This
is because each time a customer node is visited, the
importance of such node is decreased to avoid being
revisited by other vehicles in the same period of time
unless its priority justifies multiple visits. The new
reduced value T P; can be calculated as in Equation 32.

_ TM;xXRx Avgp
AVgM X R, X rcurrent,i

VieN (32)

In equation 32, the average (not the total) priority
for both customer nodes and commodity types and the
average commodity masses requested by the customer
nodes are used. This is because the reduction was in
the total mass of commodities, regardless the types
of these commodities and their specific masses. The
Avgp and Avgy values are calculated in Equations 33
and 34, respectively. The numerator and denominator
are slightly randomized by multiplying it by a random
number R between [0.8, 1.2]. Then, these nodes are re-
arranged again in descending order based on their new
total priority value (7 P;).

The whole process is repeated for the same vehicle
until the vehicle performs the predetermined number
of visits. Then, it should go back to its depot (i), or
return to CD to resupply commodities again in case
there is still available time slots in horizon to perform
new set of visits. If the vehicle visits the CD, the total
priority value for each customer node 7'P; should be
recalculated, nodes are arranged again in descending
order based on their new total priority value, the number
of time periods that the vehicle should park to replenish
commodities from it should be determined based on
free doors availability and based on loading capability,
and the number of customer nodes might be visited,
as discussed before. This procedure continues until the
time horizon ends.

ZieN ) -cC Pic
Aven = ‘ (33)
V8P Z TN xC

Avgy = —Zceg T (34)

After that, a route for the selected vehicle

v € arranged, is constructed from the variables x;77,
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such that the value of x;;; is updated to 1 after each
visit, even the visit is to customer nodes or to CD.

The whole procedure is repeated until all vehicles
have been selected. After the end of the time horizon for
each vehicle, binary variables are known and set to zeros
or kept as defined. If the value of the binary variable
x5 equals zero, then the value of the original binary

1

variable x;;,, which is defined in the existing VRPCD

model is added as a constraint to such a model, such
that (xju =0 Vi&jeN, i&j#i,veV,teT).
This facilitates coding, because x;,; is excluded from
the solution process. However, if the value of xjj7
equals one, then the value of x;j,, is kept either zero or
one. This approach yields highly competitive solutions
in a short computation time, as demonstrated in the next

section.

AvLGorITHM 1: Construction Function

AN A > s

Calculate T P; per Equation (28) // Total priority for all customer nodes.

Calculate Imp, per Equation (30) // Importance for each outbound vehicle.

Calculate T M; per Equation (29) // Total masses of requested commodities by customer nodes.

Arrange customer nodes in descending order based on their 7' P; to get arranged;.

Arrange outbound vehicles in descending order based on their Imp, to get arranged,.

Set starting time for each outbound vehicle start, based on the travel time of inbound vehicles, the number

of inbound doors of CD, and the number of inbound vehicles.

% 3

in Equation (31).
9: if des > N — 1 then

10: des =N

11:  endif

12:  if des < 0 then
13: des =1

14:  end if

15: "% = start,

for all v € arranged, do // Start v of arranged, loop
Calculate the maximum number of v visits to customer nodes (des) before returning to its depot or CD, as

// Set the current time of the v to zero

16: forallfre T do // Starttloop for each V of arranged,, such that t starts at start,

17: if it is feasible to visit customer node i of arranged; then

18: ‘xgel_v)vﬁi,v,t =1

19: Set " =1t

20: Update current =i [/ i € arranged;

21: Reduce T M; value for the visited node i based on vehicle capacity and unloading rate of commodities
ati.

22: if '’ >w, And w, < TM;) then

23: TM; =TM; - Rx*w, [/Random number [0.6, 1]

24: end if

25: if (' 2w, And w; > TM;) then

26: TM; =TM;/3

27: end if

28: if '’ <w, And I' < TM,) then

29: TM; =TM; - R=«!'" //Random number [0.6, 1]

30: end if

31: if ('’ <w, And I' > TM,) then

32: TM; =TM;/3

33: end if

34: Recalculate T P; for all customer nodes per Equation (32) to avoid revisiting by other vehicles in the
same period of time.

35: Rearrange customer nodes in descending order based on their new 7 P; to get new arranged,;.

36: end if // End if feasible to visit i

37: if Customer node visits are finished then // to decide the next visit

38: if it is feasible to visit CD then

% Xy, = 1

40: Set " =1

41: Update current = CD

42 Recalculate 7' P; for all customer nodes per Equation (32).
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43: Rearrange customer nodes in descending order based on their new 7T P; to get new arranged;.

44: Decide if v should park at CD for other time periods to replenish more commodities or not.

45: end if // End if park time

46: end if // End if feasible to visit CD

47:  end for // End for  loop

48: end for // End for v loop

49: Set the binary variable values to zeros and ones
50: if x7<" == 0 then

i,jiv,t

51:  Add x;,, = 0 as a constraint to the existing model, V i&j € N, i&j # i',veV, teT.

52: end if

53 if xi’jt, == 1 then

54:  Returnx;, Vi&jeN, i&j#i,veV,teT
55: end if

4.2  Phase II: Model Solution Based on
Predefined Routes

When all binary variables are set to zeros or kept as
defined using the construction function, the model is
solved optimally using CPLEX optimizer to determine
the other variables values such as pickup quantities,
delivery quantities, unsatisfied quantities, and other
binary variables which control the parking time of each
inbound-outbound vehicle at CD. Then, the solution
process is repeated fifty times to generate different
vehicle routes at each run by changing specific
parameters, and finally, the best solution found over all
runs is selected and saved as the final result.

5 NUMERICAL ANALYSIS

In this section, numerical experiments on various
data sets are performed using CPLEX within a six-
hour time limit to evaluate the effectiveness of the
suggested mathematical model. Then, an analysis is
conducted on these data sets with the incorporation
of the proposed heuristic. This can help compare the
solutions generated using CPLEX against the proposed
heuristic in terms of solution quality and the required
computation time.

All experiments are implemented on an HP-Tower
workstation 7240 with a Xeon-Intel processor

running Ubuntu Linux 16.04.1 LTS in 64-bit mode.
As the proposed model is new and no similar models
or benchmarks are available in literature, the input
parameters are programmed to be randomly generated
using C++ programming language and follow a
uniform distribution. Data sets are classified as
small, medium, and large scale. Each scale consists
of 50 generated data sets to test the proposed model
and heuristic under different scenarios. Specifically,
small-scale sets are randomly generated to compare the
optimal results produced by CPLEX with the proposed
heuristic results, such that the proposed approach will
be fairly evaluated. Whereas, medium-scale sets are
randomly generated to compare them with sub-optimal
results. For large-scale sets, CPLEX produces sub-
optimal results for 15 out of 50 sets, however, it fails
to provide feasible solutions for the remaining ones
within a 6-hour time limit. Therefore, large-scale sets
are randomly generated to evaluate the performance
and scalability of the proposed heuristic.

The parameter values for the number of inbound/
outbound vehicles, time periods, commodity types,
nodes, and inbound/outbound dock doors have a
significant effect on the computation time, and thus
are used to classify the data sets into different scales.
Table 4 shows these input parameters along with their
suggested values.

Table 4: Design of experiments

Small-scale

Medium-scale  Large-scale

Parameter Range Range Range

No. of inbound vehicles, |F| ~Unif(1,2) ~Unif(3,5) ~Unif(6,12)
No. of outbound vehicles, |V| ~Unif(3,5) ~Unif(6,9) ~Unif(10,18)
No. of time periods, |7| ~Unif(7,13)  ~Unif(14,20) ~Unif(21,36)
No. of commodity types, |C| ~Unif(1,2) ~Unif(3,5) ~Unif(6,10)
No. of customer nodes, |N| ~Unif(3,5) ~Unif(6,12) ~Unif(13,25)
No. of inbound doors of CD, |D| ~Unif(1, 2) ~Unif(3.,4) ~Unif(5,10)
No. of outbound doors of CD, |[D’|  ~Unif(2,4) ~Unif(5,7) ~Unif(8,16)
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Other parameters are considered as fixed parameters.
These parameters have less effect on computation time
and are independent of the VRPCD scale, such as the
capacity of each inbound/outbound vehicle which is
generated in the range of 1200 to 3400 kg and 500 to
1500 kg, respectively, to cover most available vehicles
suitable for CD system. The mass of commodities is
selected to be between 1 and 6 kg, which covers most
food and drink commodities. The maximum loading
rate at CD and unloading rate at each customer node
are generated in the range of 800 to 1800 kg and 300
to 1000 kg, respectively, in each time period based on
some measurements done on handling systems in some
locations, while considering the number of operators,
equipment for loading, unloading and movement in
the warehouse such as forklifts and hand trucks, etc.,
that are available at CD or customer nodes at each
time period. Also, the demand of commodities at each
customer node is selected in the range between 100
and 400 units for each commodity type. Moreover,
it is assumed that the range of priority value for both
customer and commodity type is between 1 and 4.

In the next section, analysis is conducted on the
different sizes of data sets to compare the solutions
generated using CPLEX against the proposed heuristic
approach in terms of solution quality and the required
computational effort and thus show the effectiveness of
the proposed approach.

5.1  Small-scale Problems

In this subsection, CPLEX is able to produce optimal
solutions for all small sets in a mean computation
time of 602 seconds (about 10 minutes). These sets are
used to test the optimal results produced by CPLEX
versus heuristic. Therefore, a gap between the objective
function value (OF V) obtained from the CPLEX solution
and the OFV obtained from the heuristic solution is
used for the sake of comparison. Mathematically, it can
be calculated as follows.

Heuristic OFV - CPLEX OFV
CPLEX OFV

gap = x100%  (35)

Figure 1 compares the performance of CPLEX
against the proposed heuristic for small sets. It shows
the bar-plot of OFV produced by CPLEX solution
and OFV produced by heuristic solution with their
gaps and the bar-plot of the computation time. From
figure, it can be inferred that the proposed heuristic
provides very competitive results because in a time less
than 2 seconds, it can give solutions for all sets with
a mean gap of 0.84%. As such, it can give the same
results compared to CPLEX for 42 out of 50 sets.
Furthermore, for the gaps, there is a small spread of
all data points which ranges from 0% to 7.83%.

In some instances, gaps are considered to be high.
As only 3 instances out of 50 instances have gaps

greater than 7% and the proposed heuristic provides
solution with 0% gap for 42 instances, it can not
be concluded that the trapping in local optima is a
common for the proposed heuristic. Making more
investigation on these instances, it is found that there is
a possible reason for the high gaps for some instances
which is that they need more solution time (higher
number of iterations). For example, set number 29 can
be solved by the proposed solution approach to get
objective function value of 2491 with gap of 2.38%,
but in 4.21 seconds instead of 1.3 seconds. Similarly,
in set number 40, we can get objective function value
of 3962 with gap of 4.07% in 6.72 sec instead of 4.08
sec. For consistency, results are not changed for these
sets, as all the results were taken at the same number
of iterations.

As small scale sets are solved optimally is short time,
some of them are randomly selected to investigate the
effect of using different objective functions, as in
section 5.1.1.

5.1.1 Effect of Objective Function

As briefly discussed in the formulation section, objective
function plays a great role in the results of the model. In
this section, some small sets are randomly selected to
investigate the effect of the objective function. The first
issue of the objective function is that most of research
in the literature use traditional objective function such
as minimizing the cost or minimizing the distance.
In the model proposed in this research, minimizing
the total cost (distance) will not work without extra
constraints to enforce vehicles to supply the demand.
In our problem, there are many limitations that prevent
vehicles from supplying the whole requested demand.
First limitation could be the short time horizon
(allowable working hours) which limit the vehicles
from performing more routes. The second limitation
could be the available supply which is sometimes less
than the requested demand. The third limitation could
be the vehicle capacities or the cross dock capacity.
In this case, time horizon is long enough and there is
too much supplies but the vehicles are small to deliver
all demand, or the handling system in the cross dock
is not able to transfer high quantities from inbound to
outbound vehicles.

Because all of the previous limitations, the objective
function is used to be minimize the total prioritized
deviation variables. In case of the minimizing the total
cost is used as in 36, new constraints should be used,
as the constraint set 37.

Min Z Z szij Xijut (36)

ieN jeN veV teT
i& j#i’

> 00, 2 Lide VeeC, jeN, j#0& (37)
veV teT (38)
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Figure 1: Gap and computation time produced by heuristic for small data sets

Constraints 37 enforce vehicle to supply portion
of demand for each customer, where . is a portion
of demand type c that is expected to be supplied to
customer j. The problem with such constraints is
the value of {;. which if it is selected to be high, the
possibility of getting infeasible solution increases. If
it is selected to be small, deviation variables will be
large; giving that the objective function is to minimize
the total cost. If the available supply is greater than
the requested demand and the resources (time and
capacities) are available, {;. can be given a value of 1.

Other possible solution to make the objective
function of minimizing the cost works well in the

model is to penalize the deviation variables in the
objective function without using constraints 37, as in
39. To investigate the effect of changing the objective
function, sets solved with considering constraints 37 and
{ equal to 50%. Then, they are solved with penalizing
the deviation variables in the objective function. The
last issue to be investigated here is to solve the model
with using the two auxiliary terms to show the effect of
upand u,. Results are shown in table 5.

Min Z Z Z Z d,‘_,' Xijvr + ,u/ Z Z V;ﬁc Pic

ieN jeN veV teT ieN ceC

i& j#i i#0 (39)
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Table 5: Results with different objective functions
Results with the Results with the Results with the Results with the
original function Min total distance Min total distance original function
and penalized deviations | and constraints 37 without penalizing
Set Total Total Total Total Total Total Total Total
Number | deviation Traveled | deviation Traveled deviation Traveled | deviation Traveled
variables Distance | variables Distance variables Distance | variables Distance
1 1338 70 1338 70 Infeasible Infeasible 110 1338
2 53 70 127 70 480 70 110 53
3 380 160 726 100 696 160 320 380
4 1484 90 1484 90 Infeasible Infeasible 210 1484
5 253 160 713 110 1440 160 250 253
6 1556 50 1556 50 Infeasible Infeasible 250 1556
7 2147 80 2147 80 Infeasible Infeasible 270 2147
8 658 100 856 60 Infeasible Infeasible 210 658

It can be observed that minimizing the total
prioritized deviations with penalized distance (original
objective function) will provide solution with the least
deviation variables. However, using the objective
function to minimize the total distance or cost can
provide solution with less total traveled distance, but
with greater undelivered demand, as in sets 3, 5, and
8. Some of sets have the same results regardless which
function is used, as in 1, 4, and 6. Using the objective
function of minimizing the total distance beside using
the constraints 37 is not preferable because value of
should be accurately defined or many infeasible cases
will be produced as shown in the table. This analysis
leads to an excellent potential for future work which is
considering multiple objective optimization.

Solving model without penalizing the traveled
distance in the objective function provides the same
deviation variables, but with noticeable greater distance,
as there is no anything to enforce the vehicles to take the
short distances and return back early, as sown in the last
two columns in Table 5.

5.2  Medium-scale Problems

In this subsection, larger instances and the same
definition of the gap as in Equation 35 are used.
Figure 3 shows the performance of CPLEX against the
proposed heuristic in terms of both resulting solutions
and running time.

As shown, the proposed heuristic produces the same
or better results compared to CPLEX for 21 sets out of
50, with a mean gap of 2.21% in a mean time less than
24 seconds for all medium sets. Conversely, CPLEX
takes about 6 hours to determine sub-optimal solutions

for these sets. Additionally, for the gaps, there is a small
spread of all data points which ranges from -1.75% to
11.78%.

From this, it can be concluded that the proposed
heuristic is highly recommended for medium-scale
sets in both solution quality and computational effort.
However, because the heuristic results are compared
with sub-optimal solutions, further analysis is done to
evaluate them more fairly, as in section 5.2.1.

5.2.1 Relative LP gap analysis for medium scale
sets

Figure 3 shows the gap and relative LP gap values.
Some examples are taken here with different values
of gaps and relative LP gaps to explain the issues, as in
Figure 3. Note that the medium sets are independent of
each other, but they are arranged in ascending order in
Figure 3 based on the gap values to make the comparison
easier to understand.

Some sets with high value of gaps, such as sets
47-50, have small relative gaps which means that if
they are compared with optimal solutions, they will
not potentially get worst, or will get worser by small
percentage less than 1%. Some sets with gap of 0%
have relative gap ranging from 0.03% to around
6%. Thus, we can claim that the heuristics provide
solutions very close to the optimal solutions for sets
15-21. In the other hand, we can claim that heuristic
will provide solutions that are not worser than 2-6% if
they compared to the optimal solutions, as in sets 6, 9,
and 33. All sets with negative gaps have small relative
gaps, except set number 2. This means that heuristic
provide excellent solutions for these sets, even if we get
the optimal solutions of them.
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5.3  Large-scale Problems
For large scale problems, CPLEX is unable to find
feasible solutions for many instances within 6 hours.
Therefore, large-scale data sets are considered to
evaluate the performance and scalability of the proposed
heuristic in this subsection. The same definition of the
gap as in Equation 35 is used. Figure 4 shows the
performance of CPLEX against the proposed heuristic
in terms of both resulting solutions and running time.
Note that the gap is not applicable for many sets, since
these sets have no feasible integer solutions obtained
from CPLEX. Thus, these sets are excluded from the
gap plot in Figure 4.

From results, it can be inferred that CPLEX takes
the allowable 6 hours to produce sub-optimal solutions

o
I
3.47%

®*
<
@

Gap relative to CPLEX result

for only 15 out of 50 sets, and fails to find feasible
solutions for the remaining ones. On the contrary,
the proposed heuristic is able to produce solutions for
all large-scale sets with a mean computation time of
about 332 seconds (about 6 minutes). As such, it shows
better results than that of CPLEX for 11 out of 15 sets,
with a mean gap of -5.53% and a variability in data
points, ranging from -18.60% to 3.47%. Therefore, the
proposed heuristic results outperform CPLEX results
in both solution quality and computation time. Similar
to the further analysis done in medium scale section,
more experimental analysis is performed to evaluate
the results of large scale sets with considering the LP
relative gaps, as in section 5.3.1.
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Figure 4: Gap and computation time produced by heuristic for large data sets
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5.3.1 Relative LP gap analysis for large scale sets
For the large scale sets, more experimentally work is
performed by repeating the run with time limit of 12
hours and get the results in the Table 6. With this time
limit, CPLEX provides solutions for 22 sets. It can
be can noticed that heuristic provides solution with
gap range 3-6% away from the best possible solution
that could be achieved by CPLEX. For example, in set
number 1, the LP gap with 6 hour time limit is 23.32%,
and with 12 hours time limit is 8.14%. Whereas the
gap between the heuristic results and these results are
-18.6%, -3.7%, respectively. Accordingly, if the optimal
solution of this set is better than the CPLEX solution
with 6 hours limit by 23.32%, which the maximum
possible improvement, the heuristic solution will be
4.75% away from the optimal solutions. The same
analysis can be done for many sets such as sets 2-4, 9,
11, 13-15, and 21-22.

Some other sets, heuristic finds almost the optimal
solution, as in sets 16, 19, and 20. In these sets, the
absolute value of the negative gaps almost equal to
the relative LP gaps, which means that if the optimal
solutions are found by giving the CPLEX very long time
limit, they will be approximately equal to the heuristic

solutions. The last type of sets is the sets with gaps
greater than the LP relative gap by 7-15%, as in sets
6, 7, and 12. These sets are expected to have the worst
gaps in case the optimal solutions can be found. Again,
this analysis is just an expectation, as optimal solutions
could equal the current incumbent solutions where the
current gaps will be the best gaps can be found.

It is worth to mention that solution of the set number
6 provided by CPLEX in 6 hours is better than the
solution provided in 12 hours, this could happen
because of the branching procedure followed by
CPLEX and it can not be justified. As conclusion, it
can be claimed that the suggested solution approach
is expected to produce optimal solutions, near optimal
with low gaps, and near optimal with acceptable gaps
to large scale problems.

At the end of the numerical analysis, it can be
concluded that CPLEX and the proposed heuristic
approach work well for small problem sizes. However,
as the problem size increases, then the challenge
in finding solutions with high quality in reasonable
computational time also increases. Therefore, the
proposed heuristic outperforms CPLEX for many
instances.

Table 6: Large Scale sets results

CPLEX Results CPLEX Results
6 hours time limit 12 hours time limit Heuristic Results Gaps results
Set Objective Objective Objective | Gap Compared Gap Compared
Number | Function Relative | Function Relative | Computational Function | to 6 hours time to 12 hours time
value gap value Gap time value limit results limit results
1 29662 23.32 25072 8.14 241.34 15540 -18.6 -3.7
2 81768 14.25 71703 22 290.9 73121 -10.58 1.98
3 60912 10.21 58326 9.43 153.16 63028 3.47 8.06
4 26948 11.52 25738 7.36 44.24 25665 -4.76 -0.28
5 46414 10.81 44112 6.23 96.69 47313 1.94 7.26
6 82807 13.02 88588 18.82 218.71 79950 -3.45 -9.75
7 97592 26.22 91584 21.65 547.41 87677 -10.16 -4.27
8 36574 18.22 36193 17.78 1025.23 32564 -10.96 -10.03
9 100799 10.52 97380 7.44 192.14 91897 -8.83 -5.63
10 23042 21.43 22782 18.55 134.1 21017 -8.79 -1.75
11 102831 9.1 98539 4.72 142.76 103933 1.07 5.47
12 42306 16.32 39420 10.54 519.14 41022 -3.04 4.06
13 59988 14.56 53549 431 135.82 52660 -12.22 -1.66
14 62090 13.76 57031 6.1 99.89 62013 -0.12 8.74
15 12659 9.74 12242 6.6 73.21 12913 2.01 5.48
16 No Soln — 34570 40.69 603.79 20547 NA -40.56
17 No Soln — 87091 23.49 52.77 70426 NA -19.14
18 No Soln 57322 51.19 61.37 33516 NA -41.53
19 No Soln — 110117 19.12 72.85 89137 NA -19.05
20 No Soln — 76569 28.63 83.13 54755 NA -28.49
21 No Soln — 79094 22.15 35.52 62760 NA -20.65
22 No Soln — 68607 27.3 10.77 52022 NA -24.17
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6 CONCLUSION

In this research, the integration of VRP with CD
strategy is presented. A new optimization model is
introduced to provide detailed and efficient distribution
plans for vehicles that are used to transfer commodities
from a manufacturing plant to retail warechouses. The
proposed MILP model provides a detailed optimal route
for each outbound vehicle that minimize the amount of
unsatisfied quantities requested by customers, and the
overall distribution cost. The entire problem is based
on a CD environment with allowable split deliveries
and replenishment of multiple commodity types with
different masses and quantities, using a heterogeneous
fleet of inbound/outbound vehicles with different
capacities and speeds. The research work carried out
to date addresses the VRPCD with only a subset of the
different logistics decisions mentioned above.

The proposed model is validated using CPLEX.
During the validation stage, it is found that as the
size of the problem increased, the complexity of the
problemincreased. Thus, CPLEX is not able to generate
at least one feasible integer solution. Furthermore,
CPLEX consumes longer run times to produce
any feasible solution to the problem (although not
optimal). Hence, CPLEX cannot produce solutions to
realistically sized problems within a reasonable time.
This motivated the need to develop a heuristic solution
approach, which provides high quality solutions within
a short computation time. The proposed heuristic
consists of two phases. In the first phase, a greedy
route construction procedure is used to determine the
values of binary decision variable x;j,, in the existing
model, which are added as constraints to the existing
constraints in the model or kept as defined (binary
variables). In the second phase, CPLEX is used to
determine the values of pickup quantities, delivery
quantities, unsatisfied quantities, and other binary
variables for a given collection of vehicle routes.

Numerical analysis is conducted on different scale
data sets. Each scale consists of 50 generated data sets
to test the performance of the proposed model and
heuristic under different scenarios. All of test data
sets are first solved by CPLEX within a maximum
time limit of six hours. Then, all of these sets are
solved using CPLEX with the incorporation of the
proposed heuristic. For small scale sets, CPLEX
produces optimal results in an average time of 602

seconds (about 10 minutes), while the proposed
heuristic provides results with an average time of less
than 2 seconds and a mean gap of 0.84%. For medium
scale sets, CPLEX produces sub-optimal results in an
average time of 6 hours, while the proposed heuristic
is highly recommended because it produces the same
or better results for many sets, with an average time of
less than 24 seconds and a mean gap of 2.21% for all
of these sets. For large scale sets, CPLEX fails to find
feasible solutions for 35 out of 50 sets and it produces
sub-optimal results for only 15 sets in an average time
of 6 hours. However, the proposed heuristic provides
results for all large sets with an average time of about
332 seconds (about 6 minutes) and a mean gap of -5.53%
At the end of the numerical analysis, it is concluded
that CPLEX and the proposed heuristic approach work
well for small problem sizes. However, for larger sizes,
the challenge in finding solutions with high quality in
reasonable computational time is increased. Therefore,
the proposed heuristic outperforms CPLEX for many
instances.

Finally, the research work can be extended by
developing a mathematical model which allows
multiple manufacturing plants, multiple CD
platforms, and a time window for each customer node.
Additionally, allowing storage of inventory at the CD
by addressing the constraints that limit the quantity
of stored commodities and limit the time interval that
the commodities remain in the CD. Furthermore, a
transfer time of commodities from the inbound to the
outbound doors of the CD can be introduced alongside
with the limits introduced in this research. Different
objective functions can be used besides minimizing
the deviations, and multiple objective function models
can also be used. Suggested objective functions are
minimizing the total distribution time, the number
of vehicles used, and the maximum tour duration.
Additionally, although the presented heuristic approach
is capable of providing quality solutions in a reasonable
computation time for different problem sizes, local
search can be incorporated as a third phase of such
an approach because of its potential to enhance the
performance of the solution approach to find higher
quality solutions in a short computation time, and
some of parameters that are used in this heuristics
can be calibrated in statistical experimental design to
provide better results.
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