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ABSTRACT

Due to changes in individual demand, manufacturing
processes have become more complex and dynamic. To
cope with respective fluctuations as well as machine
breakdowns, capacity adjustment is one of the major
effective measures. Instead of labor-oriented methods,
we propose a machinery-based approach utilizing
the new type of reconfigurable machine tools for
adjusting capacities within a job shop system. To
economically maintain desired work in process levels
for all workstations, we impose a model predictive
control scheme. For this method we show stability of
the closed-loop for any feasible initial state of the job
shop system using a terminal condition argument. For
a practical application, this reduces the computation
of a suitable prediction horizon to controllability of
the initial state. To illustrate the effectiveness and
plug-and-play availability of the proposed method, we
analyze a numerical simulation of a four workstation
job shop system and compare it to a state-of-the-art
method.
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1 INTRODUCTION

Nowadays, consumers demand individualized
products in small quantities with short delivery
time. Consequently, manufacturers are confronted
with the challenge to react to demand and market
fluctuations quickly, efficiently and effectively. This
tendency renders manufacturing processes to be more
complex and dynamic. In general, such processes
are subject to external disturbances, e.g. rush orders,
and internal factors, e.g. machine breakdown or
intended adjustments by system design. The current
manufacturing paradigms, which aim at producing
products at low cost and high qualities, cannot deal with
this requirement in a satisfactory manner. To deal with
the resulting performance degradation and to achieve
a good shop floor performance, capacity adjustment is
one of the major effective tools [1]. Here, even small
modifications during a high load period may improve
performance significantly [2].

Typically, capacity adjustment is done by purchasing
new equipment, employing temporary workers,
extending working times and so forth. These options
offer flexibility, but are not long-term sustainable and
expensive especially in the western countries where the
labor cost is high [3]. In the perspective of sustainability,
reconfigurable machine systems (RMS) may fill this
gap. Similar to the mentioned alternatives, these are
flexible by construction but also allow to adapt capacity
and functionality within a certain range. The key
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characteristics of RMS include modularity, scalability,
convertibility, customization, and diagnosability [4].
Such systems show significant impact on sustainable
manufacturing to improve the responsiveness to market
changes while remaining cost-effective [S5]. On the
downside, the resulting planning problem is of mixed
integer nature, which calls for new methods to cost-
effectively utilize flexibility, capacity scalability and
functionality of RMS in the dynamic manufacturing
systems [6].

The main essential component rendering RMS
successful is the reconfigurable machine tool (RMT).
These machine tools are modularly designed for a
customized range of operation requirements, combining
the advantages of high productivity of dedicated
machine tools (DMT) with high flexibility of flexible
machine tools (FMT). Also, these tools are designed in
accordance with the concept of sustainability, such as
improving flexibility, shorting delivery times, reducing
material consumptions, and enhancing responsiveness
in the presence of demand fluctuation [7].

RMTs may be used to balance capacities and loads.
Yet, such an adaptation requires a short reconfiguration
time to adjust capacity and functionality [§]. Relying
on production capability of RMTs, the authors studied
a single product line to satisfy demand changes.
The production capacity was increased or decreased
through adding or removing auxiliary modules for
performing different operations. In [5], purchasing new
RMTs was used to increase capacity while minimizing
reconfiguration cost and capital investment cost. To
exploit the best configuration, a mixed integer linear
programming problem was formulated. Two cases
concerning cost management were presented to
demonstrate the efficiency of the proposed method.
Taking into account frequent reconfiguration cost, the
responsiveness of RMT was measured and evaluated by
operational capability and machine reconfigurability
metrics [9]. This reconfigurability and flexibility can
be exploited best within manufacturing systems with
high product diversity at small lot sizes, which is the
case, e.g., for job shop systems [1, 10]. In [11], the
recent development of RMTs was studied and results
indicated that the contributions were mainly derived
from configuration optimization, architecture design
and system integration and control.

However, in the above literature, RMTs are only
the source and enabler in terms of planning. To
effectively utilize these tools on the operational level,
we require control methods incorporating the dynamic
characteristics of RMTs and disturbances of the process.
As job shop systems offer high variability, researchers
focused on this type of manufacturing system and
studied the impact of RMTs and respective control
methods on performance measures of such systems.
Since job shop systems may suffer from high work in
process (WIP) levels and therefore unreliable due dates
and long lead times within a production network [12],
they have been mostly studied using discrete event

simulation (DES). However, this approach requires a
rather high modeling effort and is limited in the time
frame. On the other hand, a continuous time modeling
and simulation method may provide an additional
research possibility on manufacturing process control
[13, 14, 15]. This method has been evaluated via a state
space model setting and further compared with DES.
The results indicated that there was a subtle difference
in terms of mean and variation of WIP and lead time
[16]. Independent from the approach, stability of the
closed-loop is of utmost importance. Here, process
stability refers to performance indicators (e.g. WIP)
remaining bounded as converging to desired values or
an acceptable stability region. In [17], a comparison
regarding analysis of stability regions was conducted
from both perspectives (macroscopic and microscopic),
i.e. continuous modeling by mathematical theory and
simulation results from DES. The authors indicated
that such an approximation made by a mathematical
model is suitable and effective for stability analysis.
This method allows to determine control parameters to
ensure stability of a production network faster than a
repeated trial and error approach. However, only steady
state stability was discussed, the tracking control
problem was not taken into account.

In this paper, we consider job shop systems and first
follow the approach from [14] to directly control the
WIP level by adapting the number of RMTs within
the workstations separately. To balance capacities and
loads in the system, we then impose a model predictive
control (MPC) scheme, which is widely applied
for mechanical or chemical systems [18], inventory
management in supply chain [19] and has grown
mature over the last decades [20]. As the method allows
dealing with constraints explicitly while studying an
finite horizon optimization problem iteratively and
being inherently robust, it is readily applicable to assign
RMTs and achieve a good shop floor performance in
the presence of demand fluctuations. For this method,
we show stability of the MPC closed-loop system by
imposing equilibrium terminal conditions. Moreover,
we illustrate the effectiveness of our approach by a
numerical simulation subject to a range of order release
rates and limited available capacity.

The remainder of this paper is organized as follows:
The problem definition is given in Section 2. Thereafter,
the basic MPC algorithm with equilibrium terminal
conditions will be introduced in Section 3. In Section
4, an illustrative example of a job shop system with
RMTs and DMTs is investigated and simulation results
are presented. Last, conclusion and future research
directions are presented in Section 5.

Notation: Throughout this work we denote the natural
numbers including zero by Ny and the nonnegative reals
by R>o. The Euclidean norm is denoted by || - ||. For any
vectorz € R", n € N,||z|l, = “_, 3 represents the
2-norm. The 2-norm of matrix A € R"*" is denoted
as||Allz = VAmaz(ATA), where Mgz is the maximum
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Table 1: WIP control by means of control theory

Publications

Contributions

Methodology

J.-H. Kim et.al. [14]

Present a dynamic multi-workstation model with
closed-loop capacity control include disturbance

Transfer function and
proportional controller

Build up a discrete model of production
network with local capacity control
and compared with DES

N. Duffie et.al. [16]

State space and
proportional controller

Analyze dynamic behavior and performance

B. Scholz-Reiter et.al. [23]

of capacity control of production

Bio-inspired

network via Vensim DSS software

Investigate a class of production network for

H.R. Karimi et.al [24]

capacity changes with time-delay and

H.o control

show the stability

J.K. Sagawa and M.S. Nagano [25]

Present a model of multi-product job shop
system to maintain a desired WIP level

Bond graph
proportional controller

eigenvalue of the matrix A, ||Azl2 < ||A|2]|z]2-
Furthermore, we call a continuous function
7 : Rsq — Rsg of class Koo if it is zero at zero, strictly
increasing and unbounded. Similarly,a continuous
function 8 : R>¢ x Ny — R is said to be of class L
if for each n > 0 it satisfies 3(-,n) € Ko and for each
r > 0 it is strictly decreasing in its second argument

with lim,, o S(r,n) = 0.

2 PROBLEM DEFINITION

Job shop manufacturing systems provide high
flexibility in conjunction with cross-link information
and multi-directional flow, which is indispensable for
high customization with low repetition rates. These
properties are beneficial for often changing products
but may lead to bottlenecks in one or multiple machines
or workstations. Because it may contain reentrant lines
to complete products in the process, the orders may
return to the same machine many times to perform
different steps of the process. Meanwhile, some
machines or workstations may lay idle. The resulting
bottlenecks, in turn, will cause high work in process
(WIP), long lead time, low machine utilization, and low
due date reliability for the overall system [1]. Generally,
the decisions for planning and control can be classified
into three categories: strategic, tactical and operational.
Here, we specifically focus on the operational layer,
which considers shortterm decisions and is related to
optimally controlling the manufacturing process. In
particular, we assume that the sequence of orders to be
processed is fixed.

In order to shorten lead time and improve the
reliability of delivery time, one could release orders
earlier, which is intended to increase output rates.
Doing so may destabilize the system, cause unbounded
growth of WIP, additional inventory cost, requirement
of large storage space and even loss of consumers [21].
Since the WIP level is essential for all key performance
indicators [22], we propose to control the WIP level

directly through utilizing capacity adjustments to
eliminate or periodically shift bottlenecks within the
process. An overview on typical investigations on the
control of WIP is given in Tab. 1.

The mentioned works significantly improved the
control performance. However, they mainly focused
on labor-oriented approaches. Here, we consider
machinery-based capacity adjustment via RMTs, i.e.
we adapt the number of RMTs assigned to specific
tasks on the shop floor. Hence, our aim is to design
a feedback to allocate the RMTs within the job shop
such that a certain WIP level is tracked and then show
the stability of the controlled system. Within [15],
the authors modeled a job shop system with RMTs
and decomposed it into two operators for the design
of robust stabilizing controllers. Afterwards, they
designed a PI tracking controller with respect to WIP.
The tracking performance could be ensured even in
the presence of bounded uncertainty by robust right
coprime factorization. Yet, the feedback cannot handle
constraints explicitly and effectively.

Within this paper, we consider a simple flow model
of a job shop system with p workstations. The job
shop is given by a fully connected graph G = (V. P),
where the set of vertexes V := {1,..., p} represents the
workstations and

P11 P12 - Pip

P .= P21 - D2p

pl Pp2 *** Ppp,

the flow probability matrix between the workstations.
As shown in Figure 1,4y, - - - i represent the input rates
of each workstation to workstation j, where io; denotes
the order release rate to workstation j. Moreover,
0j0,0j1 - - - 0j, represent the respective output rates and
ojo the output rate of final products of workstation
J. We like to note that this procedure requires that
knowledge of flow of products is digitalized and not
expert knowledge of workers on the shop floor.
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i0j(n)

l

jth workstation (j=1,2,3...p)

!

0jo(n)

i15(n) — —> 0;1(n)
iQJ' (n) —>

—> OJ'Q.(TL)

—>

ips (1) > 0,(n)

Fig. I: jth workstation in multi-workstation
production system

To avoid order-machine specialties — e.g. certain
manufacturing steps for a product can be executed on
one machine only — we suppose that each of the
workstations features nPM7T identical DM Ts, which may
operate with production rate [0, 7°MT]. The number of
RMTs is controlled by our input variable u# and each
RMT may operate with production rate [0, 7%MT]. The
work in process level WIP; is defined as the number of
orders waiting to be processed at workstation j, hence
its rate of change is given by the difference between
rates of input and output orders / and O. Based on Fig.
1, we obtain

P P
I = E i and  Oj: = E 0ji-
=0 =0

Therefore, time dependent dynamics of WIP; can be
computed via its previous value, the inputs from other
workstations, the difference between self-loop input
with output of itself, and the external input, i.e.

WIPj(n +1) = WIP;(n) + I;(n) — O;(n)

To link outputs to the inputs, we impose the following:

Assumption 1 (Flow conservation) The job
shop system is mass conservative, that is for given flow
probability matrix P we have

D

Li(n) = pOi(n)
=1

for each workstation j.

We like to note that Assumption 1 is appropriate here
for two reasons: First, loss of products within the job
shop system can be included by modifying the flow
probabilities between the workstations. And secondly,
the assumption rules out dissipation, which similar
to friction in a mechanical system eases the task of
stabilizing a system. Hence, Assumption 1 represents
the more difficult case and all following results also
apply to the case with dissipation.

Here, we additionally focus on the operational layer
only. As a consequence, we cannot determine the order
release rates to any of the workstations.

Assumption 2 (Operational layer) The order release
rates igj(n) to each workstation j are determined

externally and must therefore be considered as
disturbances d;(n) = ig;(n).

Utilizing Assumptions 1 and 2 allows us to simplify
WIP; to

= WIP;(n) + ioj(n) + »_ pi;Oi(n) — O;(n) )
=1

= WIP;(n) + Y pi;O0u(n) + (pj; — 1) - O;(n) + d;(n).
=1
1#j

As we want to include RMTs into the workstations,
we link system (1) to number of machine tools
operating within the workstations. Note that from an
economic point of view it only makes sense to buy new
machinery if the current capacity is insufficient to deal
with all orders. This typically leads to high WIP levels,
which allow us to rewrite the output as

Oj (n) _ nDMTTDMT + u(n)rRMT (2)

At low levels or other extreme operating conditions,
however, different capacity adjustments may be
required [26].

Our idea, which we follow in this paper, is to
ensure fidelity of a feedback, i.e. to guarantee that all
workstations operate close to predefined WIP levels.
If this property can be shown for a feedback at hand,
then the assumption of a high WIP level can be shown
to hold.

More formally, the latter assumption reads:

Assumption 3 (High WIP level) At any time instant n,
the WIP levels in all workstations are at least as high
as the total machine capacity, i.e. (2) holds.

One way to prove that Assumption 3 holds is to
show that (1) is asymptotically stable for a feedback at
hand. To this end, let x = (WIPy,..., WIP,) e X C X
represent the WIP level of all workstations and
u = (uy,...,u,) € U C U denote the vector of RMTs
assigned to all workstations. Here, the sets X and U
allow us to incorporate possibly wanted constraints on
the WIP level and the total number of RMTs. Utilizing
Assumption 3, then from (1) we obtain

a(n+1) = a(n) + P (PPN u(n)r ™) + d(n)
=: f(a(n), u(n),d(n)), (3)

see also [27] for further modelling details. Using the
latter-notation, we can define the concept of asymptotic
stability formally:

Definition 1 Suppose a system (3), a predefined
reference value x* and a control u(+) to be given such
there exists a forward invariant set Y C X . If there
exists function 8 € KL such that
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l2(n) — " < B(llwo — 2", n) @

holds for all zg € Y and all n € N, then the control
u(-) asymptotically stabilizes x*.

Bllzo —z*[|,n)

—p 71

Fig. 2: Illustrate example of definition 1

Now we directly obtain the following.

Corollary 1 Consider system (1) and a predefined
reference value x3. If for the control u(-) a setY C X
is forward invariant such that

y > nPMIEDMT o () BMT vy ey, e N )

holds, then Assumption 3 holds.

In practical terms, inequality (5) ensures that for any
chosen time instant n the WIP level is high enough such
that all machine tools within a workstation work at full
capacity. Forward invariance in turn means the control
u ensures, that the buffers of all workstations will be
refilled such that full capacity utilization in the next
time step is guaranteed.

We like to note that in practice perfect tracking
(Definition 1) is almost surely impossible, but needs
to be extended to practical stability , cf. [20, Chapter
2]. Apart from workers, who may interfere with the
processes, the latter is due to two facts: For one, any
reconfiguration requires time, which results in a time
delayed process. And secondly, only an integer number
of RMTs can be assigned to a workstation, whereas
typical feedbacks consider convex sets. To deal with
both issues in long term, we propose to consider MPC
as a control scheme, which is able to explicitly handle
such constraints.

To make the first step into this direction, in this paper,
we consider control of the manufacturing process in the
continuous optimization case and compare an MPC to
the standard PID implementation.

3 MODEL PREDICTIVE CONTROL

To achieve the goal of asymptotic stability, we propose
to utilize MPC. The idea of the latter is to approximate

the solution of the infinite horizon optimal control
problem with key performance index (-, -)

o0, u Z e 6)
k=0

subject to the dynamics (3) and constraints z € X,
u € U. Note that the direct integration of both the key
performance index and of the constraints presents a
major difference to a PID controller. While the latter
needs to be tuned by an expert to adhere the constraints
and perform well given an external index, no further
action is required for the MPC controller.

Before we specify the MPC problem to our setting,
we introduce the general background of the method.
Following literature [20], we impose the following
standard assumptions:

Assumption 4 For z* € X there exists u* € U such
that f(z*,u*,d) = z*.

Assumption 5 The stage cost (: X xU — Rxg
satisfies ((z*,u*) = 0 and l(z,u) > 0 forallu € U if

The optimal value function corresponding to (6)
is given by V. (z9) = infyecy Joo (20, u) and based on
dynamic programming principles we obtain

Voo (o, do) = 5161%{5(9607 u) + Voo (f (w0, 1, do)) }
and can derive an optimal feedback control law

proo((n)) = argmin{€(z(n), u) + Voo (f (2(n), u, d(n))}

uel
by using Bellmans optimality principle. Since this
optimal control problem is typically computationally
intractable, MPC approximates the respective solution
via a three step procedure: After obtaining the current
state of the system, a truncated optimal problem
with finite prediction horizon is solved to obtain a
corresponding optimal control sequence. Then, only
the first element of this sequence is applied and the
prediction horizon is shifted, which renders the method
to be iteratively applicable. Then computationally
complex part is the solution of the truncated problems

N1
min Jy (o, u,d) = L(x(k),u(k)) 7
k=0
subjectto x(k+1) = f(x(k),u(k),d(k)),
z(0) = z¢
z(k) e XVk € {0,...,N}
u(k) e UVk € {0,...,N — 1}
d(k) e DVEk € {0,...,N — 1}

required in the second step of Algorithm 1. For
simplicity of exposition we assume that a minimizer
u*(-):= argmin,cy Jn(xo,u,d) of (7) is unique.
Combined, these steps reveal the following algorithm:
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Algorithm 1 Basic model predictive control method
Input: N € N.

1: for n=0,... do

2: Measure current WIP levels z(n) and set zg := x(n)
3: Compute control inputs u(n) by solving (7)

4: Apply pn(z(n)) = u*(0) to all workstations

5: end for

Output: Feedback pn(-)

Applying Algorithm 1, for a given initial value
zo = z(0), we obtain the closed-loop solution

z(n+1) = f(z(n), pn(x(n)), d(n)). @®

Note that optimality in each iterate is not sufficient
to guarantee stability in the sense of Definition
1. Yet, we can utilize the optimal value function
Vn(zg) = Jn(zo,u*(-)) to recapitulate the following
from [20, Lemma 5.4, Theorem 5.13]:

Lemma 1 Consider the optimal control problem (7)
with prediction horizon N € N and the additional
terminal condition x(N) = z* and suppose that
Assumptions 4 and 5 hold. Then for each N > 2 and
each x € Xny_1we have Viy_1(z) > Vn(x).

Theorem 1 Suppose the assumptions of Lemma 1 to
hold. If there exist functions a1, as and as € Ko such
that

ar(flz —z*[]) < Vi () < ag(lle — 7)) (€)

as(fle - 27[l) < inf £(z,u) (10)

holds, then py is asymptotically stabilizing the closed-
loop (8) in the sense of Definition 1.

Theorem 1 provides the general background for our
task of asymptotically stabilizing a job shop system
with RMTs. Hence, our aim now is to prove that the
method applies to our case. The particular difficulty
with MPC is that a suitable prediction horizon N is
typically unknown, yet if N reveals a stabilizing
control, then also the feedback with N +; for j € N
stabilizes the closedloop [28]. Here, we show that for
N = 2, the solution of problem (7) can be computed
explicitly without the requirement of an optimization
routine. Therefore, also all feedbacks with N > 2
asymptotically stabilize the closed-loop, which renders
the method to be applicable in general.

For technical reasons, we require

Assumption 6 The flow probability matrix P between
the workstations is invertible.

Then we can utilize our dynamics (3) together with
Assumption 6 to show the following:

Proposition 1 Consider problem (7) for the job shop
system (3) together with the stage costs

k), u(k)) = llo(k) — 2*[|3 + A+ Ju(k) — w5 (11)

for some predefined desired equilibrium ( x* u®). Then
Theorem 1 holds for N = 2 with

a1 (s) = az(s) = s

as(s) = (1+ X013 + (16213 + Al|6s][3)s>

where

—1

01 = (4X-Id + 2a] a1) " (—2a] + —

FRMT 2))

0y = 1d + r"™MT P,

0 P—l + TRMTQI
3= FRMT

Moreover, the stabilizing MPC feedback is given by
po(x) =61 (z — ™) + u™.

The details of proof are given in the appendix.

In practice, the stage cost (11) may represent any
performance indicator or a scalarized combination
of several indicators. Hence, it is possible to model
maximization of throughput, profit or quality as well
as minimizing lead time, energy requirements or costs
directly.

Given the result from Proposition 1, MPC is as
readily available for the job shop system problem
including RMTs as PID. A particular conclusion
from this result is that, upon implementation, one
does not have to worry about stability of the closed-
loop when choosing the prediction horizon length as
stability comes for free. Hence, similar to PID, no
expert knowledge is required to control the system.
In contrast to stability, however, PID requires internal
knowledge of the key performance indexes used to
evaluate the feedback as well as good command of
how to appropriately adapt the PID parameters to
perform well for these indexes. The latter task becomes
even more difficult if connected PID controllers, e.g.,
one per workstation, need to be considered and to be
adjusted simultaneously. In such a MIMO case, one
may apply optimization mehtods, e.g. particle swarm
optimization [29] or iterated linear matrix inequalities
[30]. For MPC, no further knowledge and no adaptation
phase is required as KPIs can be used as cost criterion
and are therefore optimized by design.

Remark 1 Due to the additional terminal endpoint
constraints, recursive feasibility is guaranteed
automatically, i.e. if the initial state of the job shop
system adheres all constraints, then there always exists
a solution to problem (7). [20] and the MPC procedure
can be applied without running into a dead end.

Remark 2 While the solution derived from
optimization typically outperforms the decision
based on worker experience, the computational cost
grows with the dimension of the system and may be
intractable, i.e. the best solution may not found in a
reasonable time. Within a job shop system, this may
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be the case if the initial state of the job shop system
is far from the desired equilibrium. In this case,
decentralized or distributed control could be applied
for the high order system [31, 32], which are out of the
scope of this article.

To complement and check our theoretical findings,
we next consider a numerical example to illustrate our
results.

4 CASE STUDY

Within this section, we considered the multi
workstation system sketched in Fig. 3. Since products
can be manufactured cost efficiently with a high
productivity by means of dedicated machines, and
diversity of customized product at a low quantity
effectively via reconfigurable machines, we included
both of RMTs and DMTs for all workstations. This kind
of combination and co-existence in industrial practice
can be observed frequently [33] and naturally occurs
when a new type of machine tool is introduced. The
respective dynamics are given by (3) with parameters
and initial values according to Tab. 2 as well as flow
matrix and external input rates

—-105 0 0 i01(n)
o 04—-1 0 O o iog(n)
P=10605-1 0 and d(n) = |
0 0 04-1 0
S — - :
1 —_— !
! < = i
1

Fig. 3: Multi workstation multi product
job shop system

Table 2: The variables definition
in the job shop system

Variable Description

x(0) = [40 40 40 30] " Work in process (WIP) level

PPMT — 3 Production rate of DMT
rRMT — 9 Production rate of RMT
nPMT = [5452]T Number of DMTs for each WS
u=1[2121]T Number of RMTs for each WS
m =6 Maximum value of RMTs

x* = [25,22,25,16] 7 Planned work in process (WIP)

where the latter include a demand fluctuation in a
certain period, which is modeled by a sin function

. 10 + 3|sin(0.17n)|, 20 <n <30
fn(n) = 10 else

102 = 6. (12)

Then, our goal was to steer the WIP level of each
workstation to the respective desired value 27 while
considering the state and control constraints

4
z(N)=2" 0<wuj(n) and Zu](n) <m (13)

We imposed the stage cost function (11), which
satisfies Assumption 5. From Assumption 4, we then
obtained

,Pfl d—1- nDMT . 7nDMT

- : (14)

u =
rRMT

In order to increase the basin of attraction, we chose
N =16 and obtained the simulation results sketched in
Figs. 4 and 5. As benchmark, we complemented these
figures by respective graphs using a PID controller.
As PID does not allow to include constraints on the
total number of RMTs, we additionally imposed the
truncation

u;(n),

m

25: uj(n)

P
if Zuj(n) <m
j=1

uj(n) = uj(n), else.

(15)

such that PID always adheres to this constraint. The
parameters of the PID controller were tuned manually
by extensive simulations to reduce oscillations as

= = = Planned WIP
o 40 = MPC H
S = = =PID
g \ i
20 [ L L L L L L L |
0 10 20 30 40 50 60 70 80
Time [hour]
T
o’ 40 By 1
= ST
20 - -\ - L L L L L L |
0 10 20 30 40 50 60 70 80
Time [hour]
40 . T T
~
a” 30 - = 1
2 |m=m===F i e e
20 :
| | | | | | |
0 10 20 30 40 50 60 70 80
Time [hour]
30 T T
~ ~
o 20 - S B
s |----" e
10 :
| | | | | | |
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Fig. 4: WIP level for MPC and PID
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0 10 20 30 40 50 60 70 80
Time [hour]
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0 ] = L ‘ = T WS2  161.06 40.25 1032.42  37.80
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> - ==, N WS1  155.24 76.83 1882.57 100.05
00 10 20 36 40 50 60 70 80 WS2 165.45 39.73 2163.74 33.81
Time [hour] MPC
WS3 83.10 73.47 622.92 103.40
WS4  62.36  36.38  400.50 39.38

Fig. 5: Assigned RMTs by MPC and PID

much as possible but without external optimization
technique. As simulations have shown that the D
component shows no further improvement, we chose a
PI controller with &, = 0.5, k; = 0.01 and ks = 0.

As expected, in Fig. 4 we observe that the proposed
method is capable of tracking the desired WIP value for
each workstation. The allocation of RMTs is displayed
in Fig. 5.

From Fig. 5, we observed that for both MPC and PID,
the number of RMTs assigned to particular workstation
is identical from time instant » = 34 onwards.
Comparing this to the WIP levels in Fig. 4, we found
that MPC is tracking the desired values «} perfectly
for all workstations j =1, ..., 4. PID, on the other hand,
shows an offset, which we were unable to solve despite
extensive tuning of the control parameters.

For n €[0,33] in Fig. 5, we observed that both
controllers result in a very different assignment of
RMTs, which however is not well reflected in standard
comparison errors. Here, we considered integral
absolute error (IAE), integral square error (ISE),
integral absolute control (IAU) and integral square
control (ISU) to analyze the results displayed in Fig. 4
and 5, cf. Tab. 3 for details. Considering the differences
in the assignments, time instants » = 0 and n = 22
were of particular interest: At n =0, PID chose almost
identical assignments of RMTs for all workstations,
whereas MPC moved RMTs to workstations 3 and 4
only. As a result, the WIP levels for workstations 3
and 4 in the MPC case dropped significantly faster
than for PID, whereas WIP levels for workstations 1
and 2 were only slightly higher, cf. Fig. 4. At n =22,
both PID and MPC reacted to the change of the input
rate. The following curve was almost identical for both
controllers and approximates a sin function, which was
to be expected given the nature of the input rate change.
In contrast to PID, however, MPC started with a very
strong peak in workstations 1, 2 and 3.

To further test the proposed method, we additionally
simulated cases for different initial values. In the
context of MPC with terminal conditions, initial
values far from the desired equilibrium require a
large prediction horizon N , which in turn may cause
problems in solving problem (7). To test the job shop
system problem, we considered the cases 1) x(0) = [30
30 30 20]7, 2) x(0) = [40 30 20 30]", 3) x(0) = [40 40
40 30]", and 4) x(0) = [50 40 50 40]", for which the
resulting trajectories are displayed in Fig. 6. We like
to note that this cannot be regarded as a complete
test, which would require to check for control forward
invariance of a set of initial conditions. Yet, the cases
already assume quite excessive deviations from the
desired point of operation and from a practical point of
view, such occasions are already rather unlikely. Still,
we observed that in all cases the trajectories converged
to the desired values z for all workstations j =1, ..., 4.
Additionally, we like to highlight a peculiarity arising
for workstations 2 and 4 at time instant n = 23, when
the trajectories were almost at x7, cf. the magnified
section in Fig. 6. Here, the trajectories showed an
almost inverse behavior. In fact, MPC chose to cause a
deviation from z on purpose as it recognized that this
is necessary to steer the trajectory exactly to «; at later
time instances.

Remark 3 We additionally like to note that the
terminal condition (N) = z* has to reachable within
the prediction horizon. Hence, depending on the range
of initial conditions and of the external input rate d,
which the user wants to allow, the prediction horizon
must be chosen large enough. If the input rate and
initial conditions are contained in a region for which
a feasible solution exists, then Proposition 1 together
with Theorem 1 guarantee that MPC asymptotically
stabilizes the job shop system.
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Fig. 6: WIP levels for different initial conditions
Last, we considered the case of a dynamic flow, which 50
. . . WIP
includes the product mix handled by the workstations 45 wie |1
and which leads to the modification of off-diagonal j
values of P given by .
’L'()Q (n)
por(n, O (u(n), d(n)) = ——20___
7 7 p1201(n) + dg2(n)
i()l (n)

p12(n, Oz(u(n)), d(n))

p3a(n, O2(u(n)), d(n))

Respective results are illustrated in Fig. 7. Here, we
observed that — despite availability of all information
regarding workstation outputs —the resulting trajectories
showed oscillations. Therefore, the closed-loop system
was not asymptotically stabilized but showed practical
asymptotic stability for the chosen prediction horizon
N =16 only. For a complete stability proof in the case

" 9210:(n) + i1 ()

p23(n; Or(u(n), d(n)) := —om s oy

pis(n, Oafulm), dn)) := s )

P1201(n)
p2102(n)

p2302(n)

- p2302(n) + p1301(n)’
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Time [hour]
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Fig. 7: Variations of WIP in the dynamic flow
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of time varying dynamics, also time varying Lyapunov
arguments would be required, which was out of the
scope of this article. Yet the simulation indicated that
the applicability of MPC in the time varying case is not
perfectly straight forward and requires further analysis.

Based on these results, we conjecture that the
difference between PID and MPC seen in Figs. 4 and
5 at n =0 could be reduced significantly by choosing
different PID control parameters for each workstation.
As this is unnecessary for MPC, we conclude that
from a practitioners point of view MPC is more easily
accessible. Regarding n =22 and the deviation from the
desired values observed for PID, MPC — at least for this
example setting — also shows improved performance.
Additionally, we conjecture that this plug and play
property will allow us to straight forward integrate
the integer constraints and reconfiguration delays
mentioned in Section 2, whereas for PID these may
cause serious problems in the stability proof.

5 CONCLUSION AND OUTLOOK

Reconfigurability is a key enabler for handling
exceptions and performance deteriorations in
manufacturing operations. In the context of changing
capacity requirements, reconfigurable machine tools
(RMTs) offer a machinery-based alternative to labor-
oriented methods, which are already established in
practice. Combined with suitable planning and control
methods, RMTs may become a powerful enabler of
Industry 4.0 concepts.

In this paper, we showed that RMTs allow to adjust
capacity and functionality of a job shop system
effectively in the presence of demand fluctuations.
To this end, we considered the WIP levels for each
workstation, which we controlled by optimally
reallocating RMTs using MPC. Utilizing equilibrium
terminal conditions, we showed that asymptotic
stability of the closed-loop system can be guaranteed
for the job shop system case with RMTs regardless of
the chose prediction horizon, which is typically hard
to obtain for applications. As a consequence, we were
able to show that the choice of the prediction horizon
solely depends on the operating range of the job shop
system, which in practice is defined by responsible
managers. Hence, MPC represents a readily available
and plug-and-play applicable tools to include RMTs
into job shop systems.

To illustrate the latter, we presented a numerical
case study of a four workstation two product job shop.
We compared the applicability of MPC with standard
PID and observed that applying MPC directly showed
better results as compared to PID, which was tuned
manually, which showed the plug-and-play property
of MPC.

In the future, we will extend the model to incorporate
reconfiguration delays and transportation times as well
as integer programming methods for the assignment

of RMTs. Here, we expect even better results for
MPC, which allows to directly address these issues.
Moreover, stability without terminal conditions is
also of interest, especially as the integer constraints
may lead to large combinatorial problems which may
be reduced drastically if the terminal conditions can
be dropped. Moreover, we will move to adherence of
delivery dates by modifying the cost functional and
dynamics respectively.
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APPENDICES

Proof of Proposition 1:

Given the running cost (11), ai(s) =as(s)=s
satisfy (9) and (10). Hence, only the bound
as(|lz — x*||) > V() needs to be established. Based
on Lemma 1, we conclude that if Va(z) < as(|lz — z*|)
holds, then Vi (2) < as(||x — «*||) holds for any N > 2.
Based on the dynamic programming principle, we get
Vao(z) = £(x, pa(x)) + VA (f(x, p2(x)) and therefore

po(x) = argmin(l(x, u) + Vi (f(z,u))
u€elU

2

= argmin [z — 2*[3 + X - [Ju — u*||3
ueclU

4 H(‘T —x*+P. nDMT,r,DMT) +d+ TR,MT .P. u”%

P*l(Z —r*rep. nDMTrDMT + d)

+ A - FRMT —ull3
Next, we set
ap =M. p

ap :=x —a* + P . nPMTPMT g

Pil(l‘ —z*+ P nDMTrDMT + d)
PRMT

as = —

and obtain

pa(z) = argmin(||z — %2 + X - [Ju — u*|3

+ [lag + a1 - ull3 + A - [lag — ull3.

Hence, we have

0
/L(;(;E) = 2\(u — u*) + 2a] (az + a1 - u) — 2\ (a3 — u)
= (4\-Id + 2a] a1)u + 2a] as — 2\ (a3 + u*)
. _ _ P 'w—a") *
Since @ = ~—wvT — T U then
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0

13}
u=(4\-Id + Qa}—al)_l(m —2a] ag + 2\ (as + u*))

_ P~z —a¥)
= (4\-1d 4 2a] a1) " (—2a] as + QA(_,JLT

01

+2u™)

—1

= (4\-Id + 2a{ a1) (24 + 20 (x — 2¥)+

TRI\/’IT
—aju®

e e
(4X-Id + 2a] a1) "t (4 u* — 2a] (P - pPMT,PMTY)
=01(z — ") +u"

As the problem is convex, u is the unique optimal
solution according to the MPC scheme, which in turn
allows us to set 2 = u.

Utilizing the closed-loop
f(CU,MQ(l')) — .l‘—ﬁ—PnDMT’r‘DMT—f—
d+r*MT P (g, (x — z*) + u*), we obtain
VA(f (@, pia(a)) = [(1d + r™NT PO, (& — a%) 4 (PPN
(Pfl + T’R’MTel)(:U _ T*)

FRMT

5. (16)

TDMT +d+TRMTP’U,*)H§ - H

nDMT,,,DMT 4 P71d+TRMTu*

+ y
FRMT

Last, we substitute (14) into (16), which then reads
Va(z) = Uz, pa(z)) + Vi(f(z, p2(z))) a7
= llz — 2|3 + Alfr (@ — 213
02
—_——
+ [ (Id + PO ) (2 — 273
03

—_——
(P~1 4 rRMTg ) X
W(f -z )Hg

<l = 2[5 + Mo l3lle — 213 + [16a]]3 ]|z — 2|3
+ All6s ]3]l — 2713
= (1+ X013 + 1102013 + All6s D)l — =113

+ A

Therefore, we may define the bound
as(s) = (L4 All61[13 + (162113 + Al163]13)s>.

Hence, V2(x) is a Lyapunov function and the
assumptions of Theorem 1 hold. Accordingly,
the assertion follows and po(x) =0i(z —2*)+u*
asymptotically stabilizes the closed-loop system.
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