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Supply Chain Disruption Models: A Critical Review

Niels Bugert 1 · Rainer Lasch 1

ABSTRACT

Enterprises affected by supply chain disruptions have
reported adverse consequences and dramatic financial
losses. Within the research area of supply chain risk
management, researchers use simulation models
and algorithms to analyze disruption risks and their
potential effects on the supply chain. Supply chain
disruption risk models focus on ways to quantify
and assess disruption risks, study interdependencies
between them, and explore the dynamic behavior of
risks as they propagate through the network. So far, no
review has covered and evaluated quantitative decision
models which focus on these specific network-related
risk characteristics. This paper derives a definition
for supply chain disruption risk models and analyzes
existing approaches on the basis of requirements
derived from the literature. Its aims are to structure
existing approaches, reveal their shortcomings, and
guide future research efforts to improve prospective
models systematically. This analysis reveals potential
improvements regarding the simultaneous integration
of dynamic and interdependent aspects of disruption
risks in the supply chain model as well as their
propagation through the network. More process steps
of a supply chain risk management framework should
be supported and more mitigation strategies should be
incorporated to expand the scope and usefulness of the
models.
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1 INTRODUCTION

Supply chain disruptions are considered to be a
combination of an unforeseen triggering event and the
resulting consequences which jeopardize the flow of
material and normal business activities significantly
[138]. Disruptive triggers can be categorized into
natural (earthquake, floods, fire, etc.) and man-made
(terrorist attacks, accidents, supplier bankruptcy, etc.)
triggers [27]. Well documented disruption triggers have
been for example the 09/11 terrorist attacks, Hurricane
Mitch, and the Taiwan earthquake of 1999. The
resulting consequences of a disruption can be dramatic.
In 2015, a series of explosions at a container warehouse
for toxic chemicals at the Port of Tianjin caused heavy
environmental damage (e.g. water cyanide levels 277
times the acceptable levels), destroyed 8,000 newly
produced cars (causing a direct damage of an estimated
625 million USD), and provoked a shut-down of two
manufacturing plants of Toyota for multiple days
[39,68]. In 2017, Hurricane Harvey, with an estimated
damage of over 125 billion USD the costliest tropical
cyclone on record, not only knocked out 11% of US
oil refining capacity and 25% of oil production from
the US Gulf of Mexico, but also shut down 90% of the
country’s capacity to produce and ship base plastics
[24, 109]. Among the many companies which had to
close production plants were, for example, American
Acryl, Braskem, Celanese, Covestro, Exxon Mobile,
and Chevron Phillips Chemical [21].
These examples display the dramatic consequences

and dependencies between supply chain entities and
their vulnerability to disruptive triggers. The risk of
supply chain disruptions has increased over the last
decade due to the progress of globalization as well as
outsourcing and an intensified focus on efficiency and
lean management [114]. According to the 2017 Supply
Chain Resilience Report from the Business Continuity
Institute, which surveyed over 400 companies from 65
countries, 65% of the participants had experienced at
least one supply chain disruption that year [1].
Companies are not defenseless against disruptions

and can notably reduce the impact of a disruptive
event with the right mitigation strategies. In 2000,
Nokia and Ericsson were both affected by a fire in
a supplier’s semiconductor production facility, but
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Microsoft Excel. Integrated decision support models
for identifying and analyzing disruption risks as well
as for mitigation planning and risk control on a supply
network-level should be provided by this field of
research to assist practitioners.
Table 1 presents the methodologies and scopes of

twelve review papers on SCRMwhich we were able to
identify by using the scientific databases ScienceDirect,
Emerald Insight, and Google Scholar. We have
analyzed if quantitative models are presented, if the
process steps of a standard SCRM framework, namely
risk identification, risk assessment, risk mitigation, and
control of risks, are considered to classify articles, if
models are included that cover a network perspective,
if the presented models consider multiple risks and at
least three supply chain entities, and if the models are
not just presented but also evaluated based on derived

Nokia was able to handle the situation proactively by
changing the design of their chips and making use of
backup suppliers swiftly. Nokia even profited from
the disruption and was able to steal market share from
Ericsson due to their agility [57, 122].
Since the risk of experiencing supply chain

disruptions has increased over the last decade and
potential strategies are capable of decreasing risks,
supply chain risk management (SCRM) has become
a popular research area with a growing number
of publications and an increasing interest from
practitioners [16]. 41% of the organizations interviewed
for the BCI Resilience Report acknowledged strong
top management commitment regarding supply chain
disruption risks in 2017. In contrast, only 37% of
the companies use technology to analyze, track, or
monitor supply chain risks with 41% thereof using
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Tang 2006
[122]

2005 - LR � �
Khan /
Burnes
2007 [50]

2005 - LR �
Manuj/
Mentzer
2008 [67]

2007
- LR
- GT

�
Rao/
Goldsby
2009 [92]

2008 - LR �
Tang/ Musa
2011 [124]

2008
- LR
- CNA

� �
Colicchia/
Strozzi
2012 [18]

2010
- SLR
- CNA

�
Sodhi et al.
2012 [111]

2010
- LR
- SV

�
Fahimnia et
al. 2015 [27]

2013
- LR
- CNA

�
Ho et al.
2015 [38]

2013 - SLR � � �
Snyder et al.
2016 [110]

2014 - LR � �
Rajagopal et
al. 2017 [90]

2016
- SLR
- CNA

� � �
Prakash
et al.
2017 [84]

2014 - SLR � � �
This review 2018 - SLR � � � � � � �

LR: Literature Review CNA: Citation Network Analysis
SLR: Systematic Literature Review GT: Grounded Theory

Table 1: Overview of literature reviews in SCRM
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partners deals with contracting. Prakash et al. [84]
conduct a citation network analysis on 126 publications
from 2005 to 2016 to identify research clusters,
prominent articles, mitigation strategies, discussed
risks, and modeling techniques used. Rajagopal et al.
[90] identify 343 publications between 2004 and 2014
through a systematic literature search and classify the
articles by general criteria like geographic locations,
top contributing journals, etc. and more specific
criteria like the research design, types of risks, and
risk factors considered. Although both reviews do not
cover network-level models, models with numerous
risks are included.
The identified literature reviews differ in scope

and methodology. Five reviews offer an emphasis
on conceptual issues, while three solely focus on
quantitative approaches. Citation network analysis has
been used by five reviews to identify research clusters
or identify the evolutionary aspects of the field of study.
Other reviews aim to give a broad overview and classify
the articles. Tang [123], Ho et al. [38], and Snyder et al.
[110] contain a great amount of quantitative models,
but the large majority of the models deal with specific
planning problems under uncertainty and date back
to 2014. All reviews consider also dyadic models that
include only two entities which we do not consider to be
a supply chain yet ( [45, 69]). A number of the identified
reviews ( [18, 38, 84, 124]) express the need for more
holistic and integrated decision models that deal with
dynamic as well as interdependent and propagative risk
behavior, but we find that the existing research efforts
have been largely overlooked in existing reviews so
far and have only been presented marginally. Only
Snyder et al. [110] present a handful of models of a
given supply network which aim to evaluate the
impact of disruptions, but the authors do not consider
interrelations between risks, risk propagation in
networks, and the dynamic modeling of multiple risks.
In this paper, we aim to identify and present modeling

approaches which possibly identify and analyze
numerous disruption risks, consider their dynamic
and interdependent behavior on a supply chain network
level, and potentially integrate mitigating or risk control
possibilities. We want to evaluate the usefulness of the
identified models from the viewpoint of professional
SCRM managers of an already operating supply
network and assess how integrated and holistic these
models are, what modeling techniques are used, and
which process steps of a standard SCRM framework
are supported. Therefore, we not only present, classify,
and condense the literature like previous reviews, but
derive requirements from the literature to critically
assess the identified models to guide future research
efforts by presenting what modeling aspects have been
neglected so far and which modeling techniques could
be combined to better cater to holistic, system level
decision support. Although the term supply chain has
been discussed in a multifaceted way by researchers, a
consensus can be reached that a multitude of entitities

criteria. Tang [122] gives an overview of quantitative
approaches and sorts the literature regarding the broad
aspects supply, demand, product, and information
management. The author further classifies these fields of
interest in single supply chain planning problems under
uncertainties like supplier selection, the construction
of supply chain designs on a network-level, supplier
contracting, etc. and gives an overview of insights of
research areas that deal with management strategies
like product substitution, postponement, and so on.
Khan and Burnes [50] present general literature on
risk definition as well as risk management frameworks
before discussing risk and general risk mitigation in
the context of supply chain management. Manuj and
Mentzer [67] conduct a literature review combined
with a grounded theory methodology to adapt the
concept of risk and risk management strategies to the
case of global supply chains. Rao and Goldsby [92] use
the classification of business and organizational risks
by Ritchie and Marshall [94], synthesize the SCRM
literature accordingly, and develop risk factors for each
risk group. Tang and Musa [124] review 138 research
papers, summarize qualitative as well as quantitative
mitigation strategies according to risks regarding
the dimensions material flow, financial flow, and
information flow, and use a keywords co-occurrence
analysis to study research clusters in SCRM.
Colicchia and Strozzi [18] use the systematic literature
methodology of Denyer and Tranfield [23] combined
with a citation network analysis to display the dynamic
evolution of the SCRM literature. Sodhi et al. [111]
choose a research field study to analyze the diversity of
scope and research tools in the researcher’s perception
of SCRM. Fahimnia et al. [27] conduct a bibliometric
analysis on 489 publications to define research clusters
and top contributing organizations and authors of
quantitative SCRM models. Ho et al. [38] undertake a
systematic literature review and provide an overview
of supply chain risk definitions, risk types, and risk
factors as well as process steps of a standard SCRM
framework by analyzing 224 research articles between
2003 and 2013. Quantitative approaches have been
structured by the supported process steps of the SCRM
framework and by defined risk types like demand risk,
supply risk, etc. Models which cover more than two
risks simulatenously have not been considered by the
authors. Snyder et al. [110] give an overview of 180
quantitative models up until 2014 that deal with supply
chain disruptions. The authors structure the literature
by mitigation strategies and use the four sub-categories
inventory, sourcing and demand flexibility, facility
location, and interaction with external stakeholders.
While the presented models on inventory management
are for the most part variations of the economic order
quantity (EOQ) model with a single supplier, the cited
models for facility location problems deal with the
construction of supply chain networks considering the
risk of disruption or intentional attacks. The mitigation
of disruptions through interaction with external
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specific or unspecific risk events [35]. Ceryno et al.
[16] combine several definitions and describe SCRM
as “the identification and management of risks for
the supply chain through a coordinated approach
amongst supply chain members to reduce supply chain
vulnerability as a whole, to increase resilience”. SCRM
aims to minimize, monitor, and control the probability
and impact of uncertain disruptive events and
therefore guarantees high performance, profitability,
and continuity [16]. The notion of resilience describes
the system’s ability to return to a stable state after
experiencing disturbances [18].
The differentiation between supply chain risk and

supply chain disruption risk (SCDR) is necessary
since supply chains, in general, encompass plenty of
companies dispersed across the globe and only risks
which jeopardize normal business activities crucially
are relevant. Following the definition of Heckmann
et al. [35], SCDRs can be defined as the subset of
all supply chain risks with potential consequences
that impede the supply chain at least temporarily of
achieving its operational goals and/or jeopardize the
existence of one or more supply chain partners.
Conceptualmodels, in general, represent a real system

whichmayormaynot currently exist. Amodel is created
through the process of abstraction in which specific
features of a real system are embedded in the model
depending on its purpose [96]. Therefore, conceptual
models can be classified according to their objectives.
Different quantitative models exist which deal with
supply chain risk either explicitly or implicitly. Models
which consider risks implicitly focus on specific supply
chain decision problems, and the concept of risk is part
of the problem. Risk is embedded in these models, for
example, by using the variance or standard deviation
of variables and different value-at-risk concepts [35].
Typical supply chain decision problems focus on the
supply chain network design and facility location,
supplier and vendor selection, pricing and contracting
as well as concepts of information sharing regarding,
for example, the bullwhip effect as well as collaborative
planning, forecasting, and replenishment [27]. Models
which consider supply chain risk explicitly focus
on the analysis of various supply chain risks, their
interdependencies, and propagation in the supply chain
and therefore support the objectives of SCRM and risk
analysis in particular (e.g. [30, 53, 121]). The aim is to
understand the dynamic behavior of the supply chain
facing risks of supply chain disruptions. These models
are therefore not problem-specific and more abstract,
but insights from supply chain disruption modeling
can show vulnerabilities of supply chains and shift the
attention to specific supply chain decision problems
like considering the supply chain design as part of a
mitigation strategy to optimize the supply chain.
Based on the previously mentioned definitions

regarding SC risks, SCDR, SCRM, and conceptual
models as well as the distinction between
problemspecific decision problems under consideration

are considered and at least three entities are included
[26, 45, 69, 117]. We therefore analyze approaches with
at least three supply chain entities and assume that a
supply chain structure is already given. We exclude
models which do not aim at specifically supporting
the SCRM framework processes like, for example,
quantitative models regarding supply chain design
and facility location planning, models which focus on
supplier selection, one or two-stage inventory models,
and the research area of risk-related contracting.
The rest of this paper is structured as follows. Section

2 develops a first definition of supply chain disruption
risk models as the foundation of subsequent sections.
Section 3 describes the paper’s research methodology
by specifying the parameters of the conducted literature
search and defining the criteria of the subsequent
analysis. Section 4 presents the identified publications
according to the modeling technique used and evaluates
the models with the help of the described criteria. After
interpreting the results of the evaluation and framing a
future research guideline, the last section summarizes
the findings and offers a general look at future research
in this field of study.

2 DEFINITION OF SUPPLY CHAIN
DISRUPTION RISK MODELS

Supply chain risk is predominantly defined in the
literature as an event-oriented concept in which risk
strongly relates to the probability and consequence
of a potentially harmful event (e.g. [73, 124, 149]).
Heckmann et al. [35] broaden this traditional risk
perception and also consider characteristics which
influence supply chain risks like supply chain goals,
risk exposure, and risk attitude. Risk exposure is
further segmented into the triggering event, time-
based characteristics, and features of the supply
chain like vulnerability and resilience. Heckmann
et al. [35] define supply chain risk as “the potential
loss for a supply chain in terms of its target values
of efficiency and effectiveness evoked by uncertain
developments of supply chain characteristics whose
changes were caused by the occurrence of triggering-
events”. The potential loss of a supply chain can be
categorized according to its magnitude. A disturbance
is seen as a deviation from normal business activities
which deteriorates the accomplishments of goals [118].
A disruption is considered to be more severe than a
disturbance, but a clear distinction between these two
concepts is missing.
The literature offers no consensual definition of

SCRM, although there has been plenty of conceptual
research in this area [27]. Jüttner et al. [46] define
SCRM as “the identification and management of risks
for the supply chain, through a co-ordinated approach
amongst supply chain members, to reduce supply chain
vulnerability as a whole”. The concept of vulnerability
is regarded as the susceptibility of the supply chain to
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RQ 4: What process steps of a standard SCRM
framework are supported by the models?

RQ 5: What potential improvements can be formulated
for prospective models and modeling
techniques?

3.1 Literature search
An extensive literature search is the foundation of a
review and aims to locate an exhaustive and problem-
specific set of publications on the topic of interest [20]. A
literature search should focus, according to vomBrocke
et al. [137], on peer-reviewed articles to ensure credible
and reliable information sources. The search should
not be limited to a specific research method, a small
number of journals, or a prearranged geographic region
[142]. Our search therefore considers multiple scientific
databases, namely ScienceDirect, Emerald Insight,
Google Scholar, Inderscience, and Taylor & Francis.
The mandatory keywords used for data collection are
chosen to be “Supply Chain” or “Supply Network”
as well as at least one of the following keywords
in the publications’ title, abstract, and keywords,
combined with “OR” operators: “Risk”, “Disruption”,
“Disturbance”, “Simulation”, “Interdependence”,
“Propagation”, “Quantitative”, “Optimization”,
“Optimisation”, “Crisis”, “Catastrophe”, “Terror”.
The literature search includes published and not yet

published but accepted papers from 2001 to early 2018.
The year 2001 has been chosen since the 9/11 terrorist
attacks dramatically shifted attention to the field of risk
management. Tang and Musa [124] state that between
2000 and 2003, the number of articles in SCRM
slowly started to increase, but the content was mainly
qualitative. Since the topic of interest is focused on the
concept of supply chain and risk and since our search
string is relatively open, we concluded that relevant
keywords would be part of the publications’ titles,
abstract, and keywords. We therefore could reduce
the number of search results to a modest amount. The
abstracts were used to evaluate the papers’ relevance.
Since we put ourselves in the shoes of SCRMmanagers
of functioning supply networks facing a large variety
of disruption risks simultaneously and suitable to the
scope and aim of this review, exclusion criteria were
determined to be:

– No risk mentioned,
– Approaches with a focus on contracting issues,
supplier selection, inventory management
(EOQ) models, and the construction of a supply
chain design (facility location problems),

– Less than three supply chain entities considered,
– Review papers,
– Pure risk identification or risk ranking if there
is no focus on risk interdependencies.

The identified publications were used as an input for a
backward and forward reference search.

of risks and explicit risk modeling, we define SCDR
models as:
A SCDR model represents a supply chain and

all relevant potential triggering events which can
potentially impede the supply chain from achieving
its operational goals and/or jeopardize the existence
of one or more supply chain entities and includes all
necessary static and dynamic features to describe
potential losses for all supply chain partners in terms of
the supply chain’s target values in order to support the
coordinated approach amongst supply chain entities to
reduce supply chain vulnerability and to increase the
supply chain’s predicted ability to return to a stable
state after experiencing disruptions in the real system.

3 RESEARCHMETHODOLOGY

To attain this paper’s objectives, it is necessary to
conduct a critical review on SCDR models. A review
is not based on new scientific insights primarily, but
rather digests, classifies, and synthesizes already
publicized research results to compare, integrate,
and evaluate prior findings and give suggestions for
future research activities [66]. A critical review aims
to synthesize existing research articles and to evaluate
them against criteria [20]. Its strength is the ability to
constructively highlight discrepancies in the literature
and stengthen new insights by giving a direction for
further improvement [76]. Critical reviews focus on
specific sections of a research area and rarely include
an exhaustive look at a complete field of study [51]. Our
literature search is based on the framework of Fink [28],
who described seven steps aimed to ensure a systematic,
explicit, and reproducible literature review. The first
step of this framework (1) consists of formulating
research questions to specify the target of the study.
The next four steps design the literature search by (2)
selecting relevant bibliographic databases, (3) defining
appropriate search terms, and (4) applying practical as
well as methodological screening criteria (5) in the form
of exclusion and inclusion criteria. Practical screening
criteria include factors like the articles’ language and
time-aspects, while methodological screening criteria
cover the papers’ scientific quality and adequacy for the
purpose of the review. After abstracting information
from the articles (6), the findings are synthesized
descriptively and/or statistically (7).
The following research questions (RQ) specify the

goals of this review:

RQ 1: What risk-specific modeling characteristics and
evaluation criteria can be defined?

RQ 2: Which modeling techniques are used for supply
chain disruption modeling?

RQ 3: Howwell do the identified models and modeling
techniques take the identified risk-specific
modeling characteristics into account?
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from outside the supply chain, are for example natural
disasters like floods, earthquakes, or epidemics as
well as political instability like wars, terrorism, and
market uncertainty, which can come from price and
exchange fluctuations as well as economic downturns.
Internal risks can be caused by risks regarding the
internal operations, such as quality issues or forecast
inaccuracy, as well as risks regarding the information
system and the available capacity, when for example a
supplier files for bankruptcy [74]. Approaches which
contain at least one and up to three risks satisfy this
analysis criteria partially ( ), while approaches with
more than three disruptions risks satisfy this criteria
fully ( ).
According to our definition of SCDR models, the

anticipated losses due to SCDR need to be quantified.
One possible way to quantify the losses consists of an
integration of risks into model parameters by using
standard deviations or value-at-risk concepts which
statistically measure the maximum possible loss at
specific percentiles [16]. Similarly, Spekman and Davis
[112] define risk as the probability of variance in an
expected outcome. A different, standard approach is
the explicit risk quantification using the likelihood of
occurrence multiplied with the expected impact of the
risk event to obtain the expected loss [3]. To quantify
the probability and impact of risk events, models can
use historical data and/or expert knowledge. Knight
[54] distinguished in his definition of risk between
certainty, “measurable” uncertainty (quantitative),
and “unmeasurable” uncertainty with no or partial
knowledge of outcomes in the formof beliefs.According
to this notion, Klibi and Martel [53] define three types
of uncertainty. Randomness describes a business-as-
usual fluctuation of random variables, while hazard is
categorized by unusual situations with low probability
and high impact. Deep uncertainty consists of a total
lack of any information regarding the likelihood and
outcome of future events. The latter two categories are
relevant for disruption risks so that models should be
able to handle uncertainty in the form of hazard and
deep uncertainty. Models which use historical data as
well as expert interviews to quantify risk fully satisfy
this criteria ( ), while models which use only expert
knowledge or only historical data partially satisfy this
criteria ( ).
Since a supply chain by definition is a system of

multiple entities which are connected via material,
monetary, and information flows, supply chain partners
are influenced by connected companies and associated
risks [5]. These interdependencies have increased due to
trends such as outsourcing and globalization [22, 113].
Qazi et al. [86] identify holistic methods for capturing
interdependencies between risk factors across the
entire supply network as one important issue for future
research in the field of SCRM. Modeling approaches
should therefore take these interdependencies into
account. This criteria is fully satisfied ( ) if a model
systematically analyzes and evaluates the existence and

3.2 Evaluation criteria
One crucial aspect of this analysis, which has not been
considered by any other of the prior reviews in the field
of SCRM, is the formulation of evaluation criteria.
These criteria should preferably include all critical
evaluation dimensions and be clearly delimited from
each other. In our case, main evaluation criteria are
taken from the literature on conceptual modeling in
operational research and business process modeling
and are specified according to our definition of SCDR
models as well as related statements of authors in the
field of risk modeling.
According to Pritsker [85], the modeling process

is difficult since there are no quantitative criteria for
evaluating the value of a model. Teeuw and van den
Berg [128] build an evaluation framework for business
process models and introduce three external quality
criteria for conceptual models which are used to
evaluate the value of the model for the user or client:
“completeness” (all essential aspects are integrated),
“inherence” (the model focuses on essential aspects),
and “clarity” (the model is comprehensible by the
user and as objective as possible). Robinson et al.
[95] summarize the quite manageable number of
publications in the operational research field and
identify four main requirements for an effective model:
“validity”, “credibility”, “utility”, and “feasibility”.
While the criteria “validity” is defined by Robinson
et al. [95] as the perception of the modeler that the
model is sufficiently accurate for the purpose at hand,
the criteria “credibility” measures the same aspect but
from the possibly different viewpoint of the client or
user of the model. “Utility” describes the usefulness of
the model and includes subcriteria like “ease-of-use”,
“flexibility”, “visual display”, and so on. The fourth
criteria, “feasibility”, refers to the amount of resources
(time, data, etc.) necessary to build the corresponding
computer model.
We focus, according to our first research question (RQ

1), on evaluation criteria specific to SCDR models. We
therefore subdivide the content-specific main criteria
“credibility” and “completeness”, “inherence”, and
“clarity” by applying our definition of SCDR models
and leave out risk-unrelated main criteria like the
general “usefulness” and “feasibility” of the models.
Measurable indicators for each subcriteria are defined
so that criteria can be either not satisfied (denoted by
), partially satisfied (denoted by ), or completely

satisfied (denoted by ).
According to our definition, a SCDR model should

focus on relevant disruption risks. A focus on disruption
risk is indicated by including at least one explicit
disruption risk into the model ( ). If no disruption
risk is incorporated, this criteria is not satisfied ( ).
Relevant operational risks can be incorporated
additionally into the models but should not be the
complete focus. Various SCDRs can be distinguished.
They can be classified according to the risk sources as
external or internal risks. External risks, which emerge
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strengths of risk interdependencies. Partial satisfaction
is present if a model takes risk interdependencies into
account but does not consider their strength and does
not use a systematic methodology to identify the
interdependencies ( ).
Risk propagation is a consequence of existing risk

interdependencies. It can be classified in upstream and
downstream risk propagation. The propagation speed
is dependent on the frequency of the information,
material, and cash exchange in the supply chain. The
impact of propagation can decrease along the network
as buffers in the supply chain dampen the effect [121].
It is possible that overdependence of supply chain
partners leads to an amplification of disruptions [119].
Understanding the propagation of disruptions helps to
design mitigation strategies and reduce the impact of
risks [145]. Several authors agree that there is a lack of
quantitative models that compute propagation effects
of disruptions at multiple stages of the supply chain
[31, 82, 127, 134, 136]. Qazi et al. [86] also stress the
importance of future research on risk propagation.
Models which partially satisfy this criteria merely
model the propagation of the risk impact ( ), while
a complete satisfaction of this criteria is given if
different propagation measures are used to quantify
the propagation itself and if the likelihood as well as
impact of propagation is modeled ( ).
A system, in general, consists of an organized and

an ordered finite set of variables and elements which
interact with each other [29]. Strong interactions
between a system’s variables, time dependency, a
complex causal structure, and delayed behavioral
reactions characterize a dynamic system [6]. Therefore,
supply chains can be regarded as dynamic systems.

Since supply chains interact with their environment,
they can also be viewed as open systems. External
as well as internal risks are dynamic by nature and
influence these systems [108]. To understand the
temporal characteristics of risks, dynamic models are
appropriate to describe the behavior of supply chains
under the influence of risks. Elangovan et al. [25] as
well as Colicchia and Strozzi [18] point out that more
dynamic models are needed in risk management. This
criteria can either be satisfied in the case of a dynamic
model ( ) or not satisfied in the case of a static model
( ).
According to our definition, SCDR models should

support the objective of SCRM by helping to reduce
supply chain vulnerability and increase supply
chain resilience. Supply chain vulnerability and
resilience can be optimized by appropriate strategies
if the future risk situation of the supply chain can be
predicted well. Helbing et al. [36] state that due to
the increased complexity of modern supply chains,
it has become hard and even impossible to predict
impacts of any events. Ghadge et al. [31] describe
the behavior of supply chain risks as unpredictable
and chaotic. Discrete events of low likelihood are
often hard to be estimated due to lack of data. Some
supply chain disruption triggers like hurricanes in
the Gulf of Mexico or heavy snowstorms in the Alps
can be estimated relatively well [132]. SCDR models
should therefore not only predict the triggering event
but also potential consequences of the supply chain
( ). If probabilities cannot be quantified, the impact of
disruptive events can be assessed as one important part
of risk analysis ( ).

Evaluation
criteria

Indicator of fulfillment

Focus on
disruption risks

�: Only operational risk / risks included

�: Considering at least one disruption risk

Number of
considered risks

�: Model contains one risk��: Model contains more than one and up to three risks�: More than three risks considered

Data basis of risk
concept

�: No data basis used��: Expert knowledge or historical data includable�: Expert knowledge and historical data includable
Consideration of
risk
interdependencies

�: No risk interdependencies��: Model assumes specific risk interdependencies without analysis�: Risk interdependencies systematically derived

Risk propagation
�: Risk propagation not considered��: Propagation of consequences considered�: Propagation of risks considered

Dynamic
modeling of risks

�: Static model

�: Dynamic model

Prediction of
risks

�: No prediction included��: Prediction of risk consequences�: Prediction of risks included

Risk
optimization

�: No risk mitigation included��: Mitigation strategies included, but not systematically chosen�: Numerous strategies considered, systematically chosen

Table 2: Derived evaluation criteria for SCDR models
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4 EVALUATION OF IDENTIFIED SUPPLY
CHAIN DISRUPTION MODELS

With the previously described literature search, 57
papers were identified. Fig. 1 gives an overview of the
temporal development of this field of research. It can be
seen that in recent years publications have increased in
general and it can be expected that prospective research
output will further expand in the future. The identified
literature contributions can be categorized according
to the modeling techniques used. Table 3 shows that
Petri Nets, System Dynamics, and Discrete-Event
Simulation are the top three most popular modeling
techniques in this field of study. Together these three
modeling techniques make up a little more than 50%
of all approaches. Bayesian Belief Networks are used
in six publications, Agent-based Modeling in five,
and Interpretive Structural Modeling, Monte Carlo
Simulation, and Input-Output Modeling are applied
three times each. Around 11% of all papers consist of
approaches that have been utilized once so far (RQ 2).
Since different modeling approaches have

characteristic features as well as advantages and
drawbacks, it is useful to organize the following
subsections according to the techniques applied. Each
modeling approach is briefly introduced and each
publication is presented. All papers of each group will
be analyzed according to the criteria conceived above
(RQ 3), and it will be shown which process steps of a
standard SCRM are supported by the paper’s models
(RQ 4).

4.1 Petri Nets
Petri Nets (PN) are a graphical and mathematical
modeling technique for describing and analyzing
Discrete Event Systems [79]. A PN is a bipartite graph
which consists of a set of places, a set of transitions,
directed arcs that connect a place with a transition
and vice-versa, and so-called tokens. Places represent

According to Chopra and Sodhi [17], there is no silver
bullet strategy to prevent or to completely reduce the
impact and likelihood of disruptions singlehandedly.
Mitigation strategies are calculated actions taken by a
firm to lessen the risks of a disruption. These actions
are proactive and are taken before a potential disruption
occurs. Contingency plans are reactive and are
implemented once a disruption has taken place [130].
Zsidisin and Ritchie [150] divided mitigation strategies
into four categories: (1) eliminate the risk, (2) reduce
the frequency and consequences of the risk, (3) transfer
the risk by means of insurance and sharing, and (4)
accept the risk. The specific actions taken by managers
depend on the nature of risk, company’s resources, their
business strategy, and many more factors. Contingency
plans are short-term measures taken like demand
shifting to other not impacted products or increasing
production at alternative suppliers [130]. In general,
mitigation strategies come at the cost of less operational
efficiency, but visibility across the supply chain is one
example of a mitigation strategy that is believed to also
boost efficiency, according to Stecke and Kumar [114].
Since there are so many potential disruptive triggers
inside and outside the supply chain, the planning
of a mitigation strategy is difficult and more than a
single strategy needs to be implemented. Qazi et al.
[86] emphasize the need for evaluating combinations
of mitigation strategies. This criteria is fully satisfied
if the SCDR model analyzes mitigation strategies and
their expected consequences and comprehensively
chooses the most effective strategy / strategies ( ). The
criteria is partially satisfied if the model incorporates
mitigation strategies without a systematic selection
procedure ( ).
This paper focuses on risk-related criteria and

leaves out general criteria like the flexibility of the
modeling approaches and the modeling complexity.
Table 2 shows distinct and measurable indicators of
the analysis criteria.

Fig. 1: Publishing trend of supply chain disruption risk models
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and unexpected events (exceptions) and their effect
on the system. A group of simple events occurring
simultaneously may cause potential problems so that
their interconnectedness needs to be studied. The
authors display ways to model several event patterns
in a PN connected by logic connectives as building
blocks and ways to create new user-defined patterns
by combining the patterns to exhibit more complex
interactions. Dependency graphs are presented to
be able to condense the cause and effect relationship
between events and identify important exceptions.
Reachability analyzing techniques for time colored
PN are not feasible for large problems due to the
complexity of the interrelationships between events.
The authors simulate the operative processes of a two-
tier supply chain with two alternative suppliers. The
inter-arrival times of customer orders, the occurrence
of production delays, as well as their resolution times
are modeled stochastically. The effect of two mitigation
strategies (reducing resolution time of production
delays and increasing probability of finding alternative
sourcing) on the base case performance measures are
studied. The most important performance measures
considered are the customer order fill rate and the
average replenishment time of rush supply orders.
Blackhurst et al. [7] present a methodology

which analyzes supply chain processes via PNs and
systematically detects possible conflicts in the system
as a source of supply chain disruptions. The authors
dissipate the supply chain system in multiple so-called
single system modules which are each modeled by a
PN and subsequently synthesized into an integrated
system using the synthesizing module. The single
system module consists of multiple predefined
components which can be linked together to enable
easy customization of the model to individual needs.
The single system modules are linked via AND and
OR operators. More complex dependency types can be
constructed through these simple operators. After each
synthesizing process, conflict detection is conducted
in order to cope with the size of the problem. Conflict
detection is performedwith the systemconflict detection
module, which uses matrix equations to detect possible
conflicts. The model assumes that conflicts arise if final
states of the system cannot be reached by the model’s
initial state. Tuncel and Alpan [133] study the effect

possible states or conditions of a system, whereas
transitions visualize actions or events and display
how states can potentially be transformed. The actual
system state at a certain time is visualized by tokens.
Tokens are depicted as small filled circles inside places
and show if a condition is met to perform a transition
in the system [14]. The main feature of a PN is that
its state is a vector of nonnegative integers. PNs have
been shown to be an effective modeling technique due
to their ability to visualize parallelism, concurrency,
synchronization, etc. [10]. E-commerce systems, agent-
oriented manufacturing systems, production systems
as well as enterprise resource planning systems have
been modeled by PNs [55, 60, 146].
Blackhurst et al. [8] use a PN approach to model

operative uncertainties in a four-tier supply chain. The
authors develop a so-called Probability-based Trans-
Net which symbolizes the manufacturing process
of the finished process, subassembly parts, and raw
material and incorporates historic data. The total
costs of production and shipping as well as the lead
time are used to assess supply chain activities. Four
different probability-based transition functions are
developed of which three are used for the case study.
Two methods can be used for the total cost attribute
of the Trans-Net, while the last method is helpful for
the lead time attribute since the maximum lead time
will be a constraint for the system. The Trans-Net is
helpful when analyzing the supply chain with respect
to specific attributes under the influence of uncertainty.
Wu et al. [145] apply a PN to a four-tier supply chain
and model the propagation of disruptions. The authors
model production processes on an operative level and
consider the cost and lead time increase of a disruption.
The reachability set provides insight into the affected
nodes of a disruption and simplifies the analysis since
the affected subgraph of the so-called Disruption
Analysis Network (DA NET) can be significantly
smaller. A decision-making logic is incorporated into
the model so that the initial order quantity affects where
the parts are routed, the lead time of the orders, and the
cost to run the order. The network is able to analyze
different policies or different supply chain designs with
respect to the lead time and cost effects.
Liu et al. [64] use a time colored PN to model

cause and effect relationships of expected events

Modeling techniques used No. of instances Quota
Petri Net 12 21%
System Dynamics 11 19%
Discrete-Event Simulation 8 14%
Bayesian Belief Network 6 11%
Agent-based Modeling 5 9%
Interpretive Structural Modeling 3 5%
Monte Carlo Simulation 3 5%
Input-Output Modeling 3 5%
Other approaches 6 11%�

57
�

100%

Table 3: Quantity of modeling techniques used
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model of Wei et al. [143] with the PN technique. So-
called Encapsulated PNs (EPNs), which consist of a
place node and a transition node, substitute the nodes
in IOM modeling. Each EPN represents a function or
supply chain entity and is combined with directed arcs
that visualize the point of disruption, the transmissions
of a disruption, and the recovery to a normal operating
mode.
Zhang [147] models stock-outs occurring in a three-

entity supply chain with two competitive products
(with two different product sizes for each brand) with
a high-level PN. The author analyzes the effect of five
different customer behaviors and the effectiveness of
information sharing on the inventory level, the backlog,
and the bullwhip effect, quantified in this model by
taking the variations of production and demand rate
into account. Switching the store and delaying their
purchase has a significant negative effect on the
performance measures. Information sharing can have
a positive impact but depends on the pattern of the
customers’ behavior.
Blackhurst et al. [9] combine a PN with a

Triangularization Clustering Algorithm to identify
the propagation path of disruptions and to find critical
nodes in complex supply networks. After constructing
a PN of the supply network, the structure of the PN
is transferred to a Node Dependency Matrix, which
contains the dependencies of places and transitions
with a binary digit. The nodes and transitions are
sorted by their strengths of dependency to define
levels, and loops are identified to define cycles. If a
disruption occurs at a node in a specific level, only
subsequent levels will experience material outages.
Cycles are vulnerable parts of the network and need to
be monitored closely, according to the authors.
Liuet al. [63]useacoloredPNtomodel the information

and material flow of perishable products in a linear,
five-entity supply chain and to control product quality
risk based on sensor data. Environmental parameters,
e.g. time-temperature data, processing parameters, e.g.
the type of processing step, and quality parameters
like the decay rate and quality grade of inspection are
registered on sensors and transferred along the entities
of the supply chain. A complex PN of all operating and
information processes is built and analyzed together
with the time-series data for risk identification, impact
assessment, and risk control. Five risk grades range
from perfect quality to inedible quality. Table 4 gives
an overview of the modeling approaches with respect
to the derived analysis criteria. The PN-based models
generally focus on the impact of possible risk events in
the form of what-if analyses. Liu et al. [64], Tuncel and
Alpan [133], and Zhang [147] incorporate more than
one and up to three risks in their models. Liu et al. [64]
concentrate on the interdependencies of operative risk
events, while Tuncel and Alpan [133] focus on the effect
ofmitigation strategies in the face ofmultiple disruption
risks. Zhang [147] analyzes different possible customer
responses to stock-outs and tests mitigation strategies.

of mitigation strategies on performance measures of
a four-tier supply chain in the case of a medium-sized
manufacturer in Turkey and its business partners. The
authors use the Failure Mode, Effects and Criticality
Analysis (FMECA) for risk identification. The data
basis consists of expert interviews, brainstorming,
crossfunctional teams, as well as historical statistical
data. By ranking the possible disruption factors by
their risk priority number, the model incorporates the
three top-valued risks (quality failure of the supplier,
transportation failure risk, system failure risk of the
manufacturer) as well as corresponding mitigation
strategies (decrease of risk occurrence probability).
Nine different scenarios are simulated. For each risk the
exposure level can be high (no mitigation), moderate, or
low. If a mitigation strategy is implemented, a specific
fixed cost is taken account of. Process times, customer
order inter-arrival times, transportation times, etc. are
incorporated as stochastic parameters. Performance
measures like the total revenue, customer order fill rate,
and percentage of orders fulfilled on time, delayed, and
canceled are recorded.
Zegordi and Davarzani [148] extend the model ofWu

et al. [145] by incorporating multiple disruption risks
and considering the interdependencies of their risk
impacts. The authors study the effects of sanctions on a
five-tier supply chain situated in Iran with foreign sub-
suppliers. A sanction changes supply chain processes
and payment procedures depending on the specific case
so that the procurement costs and lead times increase.
In addition to a sanction, the model considers supplier
financial inability, inflation, and fluctuation of exchange
rate and their interdependencies. Experts’ knowledge
and experience are used to define the parameters.
John and Prasad [43] extend the model of Blackhurst

et al. [7] and use a colored PN for conflict detection.
Kano et al. [47] use a PN to dynamically model the

recovery of a supply chain after a disruption occurred.
The authors consider a three-tier supply chain with
safety stock and globally dispersed entities and assume
that, after the material flow stops from the supplier to
the manufacturer, the manufacturer looks for a new
supplier and is able to start production with the new
supplier after a certain time. The simulation consists
of two scenarios (one without a disruption and one with
a disruption of the supplier). To measure the impact of
the disruption, the accumulated productivity regarding
the simulation time span is analyzed.
Blos and Miyagi [10] combine Inoperability Input-

output Modeling (IOM) with PN Modeling. IOM
originally stems from Leontief ’s Input-output Model
[58], which is a useful tool to study consumption
shocks on interdependent economic systems [99].
IOM attempts to foresee the resulting economic losses
and inoperability suffered by different interdependent
industry sectors [34, 100]. Wei et al. [143] use IOM
to model the propagation and interdependencies of
disruptions in supply chains, which will be discussed
in section 3.6. Blos and Miyagi [10] formulate the
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et al. [7] and John and Prasad [43] concentrate on risk
identification and risk control since these approaches
aim to detect conflicts in the supply chain which can
lead to serious damage.

4.2 System Dynamics
System Dynamics (SD) is a modeling approach which
aims to analyze complex and dynamic systems. In
its essence, SD explains the dynamic behavior of a
system as a consequence of the system’s structure [93].
According to this approach, the structure of a system
consists of elements that interact with each other
through delayed cause-and-effect relationships and
information feedback [116]. A model includes multiple
causal loops which can either balance or reinforce
fluctuations of variables. The relationship between
elements is described with equations [52]. SD has been
applied to various research areas such as supply chain
management, biological and medical modeling, theory
development in the natural and social science, and so
on [2]. Nine models have been identified which use SD
as the modeling technique of choice.
Wilson [144] uses SD to examine the effects of

transportation disruptions on a five-echelon supply
chain with fixed transit times. The author compares a
traditional supply chain and a supply chain coordinated
by a vendor managed inventory system (VMI). In the
conventional arrangement only downstream demand
information of the direct partners are known. In the
VMI structure the retailer and the first-tier supplier
receive direct customer demand information. A 10-
day transportation disruption was simulated, and the

John and Prasad [43] as well as Blackhurst et al. [7] aim
to detect conflicts as a possible source of a disruption
by using a PN technique. The model therefore does
not use historical data or expert knowledge to quantify
risks. Tuncel and Alpan [133] integrate historical
data and expert knowledge simultaneously for risk
identification, while other PN approaches use expert
knowledge as a sole source of information. Some
approaches model the interdependencies in the system
dynamically but concentrate on the impact of risks and
not on the risk interdependencies themselves. Kano et
al. [47] focus on the recovery process after a disruption
occurs and therefore model the risk propagation without
considering interdependencies.
Four approaches in Table 4 use simulation studies

to analyze the supply network dynamically. Basic risk
prediction is mainly incorporated into the models since
most approaches carry out what-if analysis, which
helps to understand possible consequences. Proper
risk prediction is not part of these studies. Liu et al.
use sensor-based time series data to manually assess
and partially predict quality risks of the considered
products. This approach also supports risk control
through sensor information. Liu et al. [64] as well
as Tuncel and Alpan [133] partially optimize the
risk situation of the considered supply chain. Both
approaches test the mitigation strategies’ effectiveness
with respect to performance measures, but do not
optimize risk itself.
The right part of Table 4 gives an overview of the

supported framework steps of the articles. Most articles
focus on risk assessment. The approaches of Blackhurst
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Blackhurst et al. 2004 [8] � � �� �� �� � �� � � �� � �
Wu et al. 2007 [145] � � �� �� �� � �� � � �� � �
Liu et al. 2007 [64] � �� �� �� �� � � �� � �� �� �
Blackhurst et al. 2008 [7] � � � �� �� � �� � �� � � ��
Tuncel / Alpan 2010 [133] � �� � �� �� � � �� �� �� �� �
Zegordi / Davarzani 2012 [148] � � �� �� �� � �� � �� �� � �
John / Prasad 2012 [43] � � � �� �� � �� � �� � � ��
Kano et al. 2013 [47] � � �� � �� � �� � � � �� �
Blos / Miyagi 2015 [10] � � �� �� �� � �� � � �� � �
Zhang 2016 [147] � � � � � � � �� � �� �� �
Blackhurst et al. 2017 [9] � � � �� �� � �� � �� � � ��
Liu et al. 2017 [63] � � �� � �� � �� � � �� � �

Table 4: Comparison of Petri Net approaches to model supply chain disruption risks
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Mexico or Brazil, resulting in different lead times. The
consequences of a cargo robbery on the inventory level
are similar to the findings of Bueno-Solano et al. [13].
Wang et al. [139] analyze a two-tier supply chain with

one retailer and two independent suppliers. The authors
use a SD approach to evaluate the risk mitigation
strategy of having a more reliable but more expensive
backup supplier in the form of a contingent supplier
or standby supplier. If and only if a disruption occurs,
the retailer will begin to place orders at the contingent
supplier which then starts to produce and deliver the
products. In case of using a standby supplier, the
retailer reserves some products at the supplier and
gets paid a specific ratio of the price per product by
the retailer. If a disruption occurs, the retailer buys
these products at the major supplier’s regular price. If
the order is higher than the standby quantity, a higher
price needs to be paid by the retailer. Inventory levels,
unsatisfied demand, and the retailer’s total profit are
used as performance measures.
Based on the basic four-tier manufacturing supply

chain SD model of Sterman, Schuh et al. [104] develop
and validate a SD model capable of assessing different
disturbances in a supply chain. The basic model with
its continuous replenishment was enhanced by defining
reorder point variables for all material inventories
to create discrete event points which describe real
supply chain activities more accurately. The original
time-based safety stock coverage variable has been
changed into a target service level degree based on
safety stock calculations. Furthermore, economic
order quantity and lot size calculations are integrated
based on cost parameters. Included cost parameters
are material unit prices for each inventory level,
stock holding cost per material unit, and fixed costs
per material order as well as production setup. The
disturbances are integrated by considering stochastic
deviations. Disturbance parameters include customer
demand, replenishment time, production lead time, and
production output quantity. The authors also develop
adjustment parameters to dampen the effect of the
deviations. These mitigation strategies consist of the
adjustment of the economic lot size or economic order
quantity as well as the adjustment of reorder points and
the safety stock level. The logistics costs, the supply
service level, and the capital lockup are considered
to evaluate the performance and usefulness of the
adjustment strategies.
Guertler and Spinler [33] build an SD model to

capture the internal dynamics of operational risks
of an enterprise under the influence of supply risks.
The authors define 14 operational risks and 10 risk
categories to be able to compare different scales of
original risk-related data. The data set includes data
of two case companies, of over 3000 suppliers, expert
interviews, and secondary data. The interrelationship
between the modeled risks are quantified using in depth
expert interviews via cross-impact analysis. The causal
loop diagram contains only positive correlations since

effects on performance measures such as unfilled
customer orders, maximum and average inventory
levels, and maximum goods in transit are studied. All
four possible disruption locations are considered.
In a similar approach, Sidola et al. [108] compare the

effects of two transportation disruptions on a regular and
a so-called visible four-tier supply chain. In case of the
visible supply chain, all demand information is shared
between the supply chain partners. The performance
is measured by the number of stockouts of the retailer,
the inventory variability, and average demand among
all supply chain entities. Two consecutive disruptions
are simulated in each of the two systems between the
warehouse and the retailer.
Ghadge et al. [31] develop a SCRM framework

which is supported by SD modeling. Qualitative and
quantitative data of internal product development
projects were used as a representation of a global
supply chain. For risk classification, the “Process,
Organisation and Location, Data, Applications and
Technology” (POLDAT) model is used, which was
originally applied for process improvement purposes
in companies. Qualitative risk data is incorporated
by using the Delphi method, while quantitative data
is collected with the help of historic risk data. The
average impact of the identified risk events on the
performance measures (cost and duration) and their
average probability of occurrence were analyzed
with respect to the risk classification categories of
the POLDAT model. It is therefore possible to define
upper and lower limits for each risk attribute and gain
understanding of the risk behavior. The risk modeling
step itself starts with defining a risk as a set of
attributes according to the POLDAT classification and
initial parameters such as initial risk impact on time
and costs as well as expected probability of occurrence.
Subsequently, statistical modeling was conducted
to find the best probability distribution for the set of
data. The SDmodel considers the combination of these
risk attributes and their behavioral pattern to simulate
the overall impact within 200 iterations based on SD
equations not explicitly shown. A sensitivity analysis
of the two models is conducted to further analyze the
system.
Bueno-Solano et al. [13] simulate the impact of

a border shutdown on the inventory levels and total
inventory costs of a four-tier supply chain due to a
terrorist attack. The raw material supplier and supplier
are located in Mexico, whereas the warehouse and
manufacturer are situated in the US. Random border
crossing times are used. Disruptions of different
time spans are studied before, during, and after the
disruption with respect to the performance indicators
such as inventory level and service level.
Cedillo-Campos et al. [15] use the same SDmodel to

simulate the impact of criminal acts on the inventory
performance and total costs of the same fourtier supply
chain used in the approach before, with a safety stock
level of five days. The supplier is either located in
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suggest risk mitigation methods. The performance
of the system is evaluated by four measures, namely
the transportation capacity, the transportation time,
the inventory level, and the order fulfillment rate.
Keilhacker and Minner [48] analyze five mitigation
strategies (product substitution, recycling, increase
of research and development, and mix of the previous
four strategies) to cope with supply shortages of the
critical commodity of rare earth elements due to export
restrictions. With an extensive use of empirical data,
an end-to-end supply chain model (including eight
different supply chains) is developed, consisting of a
great number of mining companies and raw material
processors (modeled on country level), semi-finished
goods and finished goods manufacturers, research and
development labs (modeled on supply chain level),
and consumers (modeled on industry level). The
authors compare the model’s output price of rare earth
elements with the empirical price of Neodymium and
the supply unavailability avoidance as performance
values. Product substitution (especially for finished
goods manufacturers) mitigates supply unavailability
best. Recycling can be effective if the infrastructure
and recycling technology is already present.
Shukla and Naim [107] build an SDmodel of the well

known four-echelon supply chain of Sterman’s Beer
Game [115] and apply a cluster-based spectral analysis
on time series profiles (amount of shipped goods and net
inventory level) to detect disturbances due to capacity
restrictions. In their first simulation scenarios, the
mean customer demand per period is doubled halfway
through the simulation run and the shipping capacity
of one entity per scenario is designated to be the
bottleneck of the system. The subsequent simulation

it is assumed that a risk increase does not lead to an
improvement of the situation. The model is designed
to consider disruptive shocks, but it also incorporates a
degree of self-stabilization. The magnitude of a risk is
therefore affected by the magnitude of interrelated risks
(deviation from the equilibrium state), the presence of
a disruptive shock, a random factor with a set standard
deviation, and a stabilizing factor which is calculated
as a constant flow towards the initial equilibrium of the
system. Each simulation run consists of 500 iterations
and is embedded in aMonte Carlo simulation to retrieve
stable results from a sequence of 1000 simulation runs.
Guertler and Spinler [33] follow a design of experiments
approach with two independent experiments (a single
factor and a multiple factor analysis). The single factor
analysis studies the high impact occurrence of one
operational risk and the multiple factor analysis studies
the occurrence of multiple lowimpact operational risks.
Li et al. [59] study the effect of 13 risk events, which are
identified from existing literature, and two mitigation
strategies (increasing transportation equipment
capacity and increasing amount of transport vehicles)
on the performance of a chemical supply chain
transportation system. Risk is modeled by using four
risk characteristics, namely the occurrence probability
of a risk event, the probability that a risk event
influences a variable, the likelihood of a consequence,
and the severity of the consequence. The model focuses
on one focal enterprise and consists of the inventory
system and the dynamic capacity of the transportation
system. The transportation time is dynamic and
dependent on the infrastructure’s capacity and the
current volume of the products being transported.
Expert opinion is used to generate input values and
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Wilson 2007 [144] � � �� �� �� � �� �� � �� �� �
Sidola et al. 2011 [108] � � �� �� �� � �� �� � �� �� �
Ghadge et al. 2013 [31] � � � � � � � � � � � �
Bueno-Solano et al. 2014 [13] � � �� �� �� � �� � � �� � �
Cedillo-Campos et al. 2014 [15] � � �� �� �� � �� � � �� � �
Wang et al. 2014 [139] � � �� �� �� � �� �� � �� �� �
Schuh et al. 2015 [104] � � �� �� �� � �� �� � �� �� �
Guertler / Spinler 2015 [33] � � � � �� � �� � � � � �
Li et al. 2016 [59] � � �� �� � � �� �� �� �� �� �
Keilhacker / Minner 2017 [48] � � �� � � � � � � � � �
Shukla / Naim 2017 [107] � � �� � � � �� � � � � �

Table 5: Comparison of System Dynamics approaches to model supply chain disruption risks
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tool to analyze uncertainty in a multitier, serial supply
chain. Order-up-to-levels for all inventory stages are
determined by using fuzzy sets regarding the customer
demand, lead time, and supplier reliability. The
control of the inventory levels is either decentralized
or partially coordinated, which takes the uncertainty
of the immediate predecessor into account. The fuzzy
sets are used to calculate probability distributions of
the SC parameters. The simulation analyzes various
performance measures (total costs, holding costs,
and fill rate) achieved by the SC under the specific
parameters.
Schmitt and Singh [101, 102] study DES to analyze

the performance of a three-tier supply chain with
two products (low-volume and high-volume), two
raw material suppliers, three distribution centers,
as well as predefined mitigation strategies. Monte
Carlo Simulation is used to determine an aggregated
distribution of the frequency and duration of disruptions
per location. The data basis of the Monte Carlo
simulation consists of historical disruption data and
expert knowledge of future possible risk events. For
each location a mitigation strategy (backup capacity at
different locations) is defined which comes into effect
after a set duration of a disruption. The authors analyze
the effect of several inventory levels on the service level
of the supply chain, in case of no disruption occurring
and in case of disruptions occurring, and perform a
stress test for various disruption scenarios.
Hishamuddin et al. [37] compare the impact of two

different types of disruptions (supply disruption and
transportation disruption) on the total recovery costs
of a three-tier supply chain with three suppliers, one
manufacturer, and one retailer. The total recovery
costs include machine setup cost, inventory holding
cost, penalty costs for late recovery, and shortage
costs due to stock-outs. The supply disruption is
analyzed at each location, whereas the transportation
disruption is examined at each link of the supply
chain. For simplicity, only one disruption can occur
simultaneously. The authors compare the resulting
eight different disruption scenarios.
Aqlan and Lam [4] combine a goal programming

and a simulation model to find the best mitigation
strategies, inventory levels, and production quantities
under budget constraints in a high-end server
manufacturing supply chain with four suppliers. The
optimizing model determines the parameters (response
strategy, production quantities, and inventory levels)
for the subsequent simulation. It simultaneously
maximizes total profit as well as total risk reduction
and minimizes the total cycle time. The DES considers
the parameters calculated by the goal programming
approach and analyzes the performance values under
stochastic features. The output of the simulation serves
as input of the optimizing model and the deviation is
calculated. This process is continued until convergence
is achieved.

scenarios consider a capacity reduction of one entity
per scenario, while the demand remains unchanged.
In both simulation experiments the entity which limits
the shipping capacity could be detected.
Table 5 provides an overview of the approaches with

respect to the described requirements. The modeling
approaches, for the most part, focus on disruption
risks. Ghadge et al. [31] study risk in general and
use project risk data as a representation of supply
chain risks, while Schuh et al. [104] and Guertler and
Spinler [33] focus on operative risks. It is debatable
if project risk data can be used as a representative of
supply chain risk data since multiple projects can be
classified in different, recurring phases and supply
chain activities are continuous. Shukla and Naim
[107] study disturbances during which production
capacity is limited but still available. Only four models
incorporate more than one risk. Most SD approaches
apply a what-if analysis where one specific risk is set as
true and the consequences and behavior of the system
are analyzed. The models therefore include only the
impact as part of the risk concept, but are able to display
interdependencies and propagation of the impact well.
Guertler and Spinler [33] as well as Ghadge et al.
[31] model risk explicitly and use qualitative as well
as quantitative data so that these two models display
a risk related modeling output. A few authors partly
consider risk optimization. Wilson [144], Sidola et al.
[108], and Wang et al. [139] compare different supply
chain organization strategies (VMI, backup supplier)
and therefore evaluate their usefulness. Schuh et al.
[104] and Li et al. [59] change model parameters to
study the effects of mitigation strategies, but only
consider some mitigation strategies. The approach of
Keilhacker and Minner [48] is an exception that solely
concentrates on mitigation strategies to find ways to
deal with scarce resources.
The right-hand side of Table 5 gives an overview of

the supported process steps of each modeling approach.
Although only the models of Ghadge et al. [31] as
well as Guertler and Spinler [33] fully consider risk
assessment, risk assessment with a concentration on
the dynamic impact of risk events is the focus of the
identified SD models. The only two approaches that
considered systematic methods for risk identification
were the models of Ghadge et al. [31] and Guertler and
Spinler [33]. The data-driven monitoring approach of
Shukla and Naim [107] integrates the control of risk
indicators.

4.3 Discrete-Event Simulation
Discrete-Event Simulation (DES) models the system’s
dynamic behavior as a discrete sequence of events
in time [40]. A wide range of supply chain planning
problems have been modeled with DES models, such
as supply chain design, inventory planning, production
scheduling, and supplier selection [120]. Five models
have been identified which use DES as the modeling
technique of choice. Petrovic et al. [80] develop a DES
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sales, and transportation costs are subsequently added
to find cost-based order-up-to levels across multiple
echelons under the influence of the disruption. The
authors vary the order-up-to levels of the first and
second echelon, calculate the resulting total supply
chain costs, and find highly volatile cost behavior. A
genetic algorithm is designed and could outperform a
regular line search algorithm.
Wang et al. [140] consider a two-echelon real-

world precast supply chain in their DES approach
to systematically analyze the uncertainty due to
disturbances and the effects of precaution strategies
on various operational (e.g. waiting time, lead time,
etc.) and economic level measures (e.g. maintenance
costs, inventory costs, etc.). The production and
delivery process of ten different prefabricated molds
is modeled with triangular distributions gained by on-
site data collection. Possible disturbances are inserted
in a database together with possible countermeasures.
Cost attributes, the probability values of different
disturbances, and the decrease in probability due to the
countermeasures (low, medium, and high mitigation)
are assessed by expert interviews. Four risks and their
corresponding countermeasures are integrated into
the model. By simulating 11 scenarios and subsequent
sensitivity analysis, the authors conclude that machine
breakdown is themost critical and risk countermeasures
can significantly reduce lead times and total cost. By
also considering cost variables for implementing the
countermeasures, the optimal intensity of mitigation
strategy can be defined.
Table 6 shows that the identified DES models

predominantly incorporate a number of risks and have
a strong focus on SC disruptions. Only the models of
Petrovic [80] and Wang et al. [140] deal with general
uncertainty and disturbances. A number of risks are
incorporated, except for the DES models of Ivanov

Ivanov [41] builds a DES model of a four-echelon
supply chain consisting of one manufacturer, one
central distribution center (CDC), two regional
distribution centers (RDCs), and ten customers in order
to quantify the effects of two disruptive scenarios ((1)
total disruption of CDC, (2) 50% capacity disruption at
RDC and a full disruption of CDC) and corresponding
recovery processes. Lead times and demand are
modeled with a triangular distribution. Sales price,
holding costs, fix facility costs, production time and
costs, and transportation costs are defined to make
monetary effects investigatable. Real transportation
distances are used for the modeling of material flow
and an order-up-to policy controls replenishment
processes. Total revenue, cost, and profit as well as the
customer service level and inventory holding costs are
used for performance evaluation. The model shows
that both disruption scenarios impact the performance
values significantly, not every disruption leads to
a propagative effects (ripple effect), and recovery
processes can significantly alleviate the disruptive
impact.
Schmitt et al. [109] implement a four-echelon supply

chain (stage 3 and 4 containing two entities each) into
a DES model to test the impact of 20-day disruptions
((1) close to the customer and (2) on the most upstream
echelon) on the total supply chain inventory level and
customer fill rate to evaluate the effect of expediting
as well as dynamic cost-based ordering policies.
Expediting is implemented by switching to airplane
delivery in certain lowstock situations, which reduces
lead times significantly. The simulations show that
expediting increases the variability in order quantity
and frequency, leads to significantly higher total
inventory in the system, and reduces shortages slightly.
A downstream disruption is shown to be more severe
than an upstream disruption. Holding, backorder, lost
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Petrovic 2001 [80] � � � �� � � � � � � � �
Schmitt / Singh 2009 [101] � � � � �� � �� � � � � �
Schmitt / Singh 2012 [102] � � � � �� � �� � � � � �
Hishamuddin et al. 2015 [37] � �� �� � � � �� � � � � �
Aqlan / Lam 2016 [4] � � �� � � � � � � � � �
Ivanov 2017 [41] � � �� � �� � � �� � � �� �
Schmitt et al. 2017 [109] � � �� � � � � � � � �� �
Wang et al. 2018 [140] � � � � � � �� � � � � �

Table 6: Comparison of Discrete-Event Simulation to model supply chain disruption risks
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Badurdeen et al. [5] use a BN to model risk
interdependencies of an aerospace industry supply
chain with 11 suppliers, one focal OEM, and 20
customers. The research group uses the risk taxonomy
of Rao and Goldsby [92] and expands it to 94 risk
drivers and 11 supply chain performance measures with
the help of a literature search and expert knowledge.
A risk network matrix was developed to identify risk
interdependencies. An Excel-based prototype software
tool transformed the matrix into a risk network map
which visualizes how the identified risk drivers
influence the performance measure. Data collection
sheets were used to gather information regarding
conditional probabilities, and a group of experts then
estimated conditional probabilities used for the BN.
Joint probabilities can be calculated and visualized for
each producing entity of the supply chain by applying
Bayesian theory. Further analyses are conducted by
changing specific risks to 0% or 100% and studying
the impact on other risks and performance metrics.
Garvey et al. [30] model the propagation of disruption

risks in a supply chain. The authors identify multiple
potential risk events at various nodes and arcs of the
supply chain. These risk events are considered to be
nodes of a so-called risk graph. A procedure based
on a probability dependency model is developed to
capture causal relationships between the occurrences
of the identified risks without creating directed cycles.
Due to this procedure, the arcs of the risk graph can
be implemented. The BN is established by assessing
conditional probabilities between these risk events. The
impact of each potential risk event needs to be estimated
and is captured by defining a cost function for each
risk. Scenarios which cover all possible outcomes and
corresponding probabilities of occurrence are assigned.
The authors develop measures to study propagation
effects of the considered risk events.
Qazi et al. [86] incorporate mitigation strategies

into their BN approach and model the mitigating
effects on the system. The conditional probabilities
of each risk event can be reduced by implementing
mitigation strategies, which results in extra mitigation
costs. The authors define an objective function that
rewards the saving of costs with respect to the costs
of implementing all mitigation strategies and the
reduction of expected loss in relation to implementing
no mitigation strategies. The maximum weighted sum
of these two normalized utility factors is considered
to be the optimal combination of mitigation strategies.
Similar to Badurdeen et al. [5], Sharma and

Sharma [106] develop a BN model to assess risk
interdependencies of eight risks and 23 risk factors in
an Indian textile supply chain to calculate the impact
on three performance measures, namely cost, time, and
quality. The structure and the conditional probability
tables of the BN have been created with the help of six
supply chain experts, historical supply chain data, and
corresponding SCRM literature. To keep computing
time manageable, the appearance state of risk factors,

[41] and Schmitt et al. [109] that concern generic
disruptions. Hishamuddin et al. [37] conduct a what-if
analysis on two different types of disruptions (supply
and transportation disruption) so that this model is able
to incorporate deep uncertainty without considering
quantified likelihoods. Petrovic [80] analyzes
uncertainty in general without any focus on disruption
risk, but is able to incorporate linguistic and fuzzy
data into the model. Wang et al. [140] rely on expert
interviews and measured, quantified parameters.
Schmitt and Singh [101, 102] incorporate historical
disruption data and expert knowledge of future possible
risk events. The main focus of these models is the
dynamic description of the system’s behavior. Schmitt
and Singh [101, 102], Aqlan and Lam [4], Schmitt et
al. [109], and Wang et al. [140] have a clear focus on
risk optimization. Aqlan and Lam [4] aim to find the
best mix of mitigation strategies to optimize the supply
chain’s risks with respect to different constraints.
Schmitt and Singh [101, 102] focus on the optimal
inventory level to face supply chain disruptions as
well as the right backup supply strategy to cope with
disruptions. Schmitt et al. [109] evaluate expediting
and cost-based order-up-to policies. Wang et al. [140]
analyze the effect of four mitigation strategies on
the system’s performance and aim to asses the most
cost-efficient countermeasures. The DES models of
Hishamuddin et al. [37], Wang et al. [140], and Schmitt
and Singh [101, 102] display the relationship between
disruption and potential consequences so that risk
prediction is partially included. The only approaches
which focus on risk propagation across the supply
chain are the approaches of Schmitt and Singh [101,
102], since they study the time-aspects of disruptions
regarding performance measures, and Ivanov [41],
who analyzes the so-called ripple effect but without
considering direct quantitative measures of this effect.
The right-hand side of Table 6 gives an overview of

the supported process steps of each modeling approach.
The models of Schmitt and Singh [101, 102] and Wang
et al. [140] support risk identification, risk assessment,
and mitigation of risks. Petrovic [80], Hishamuddin
[37], Ivanov [41], and Schmitt et al. [109] focus mainly
on risk assessment. The two latter approaches also
partly consider risk mitigation. Aqlan and Lam [4] aim
to optimize mitigation strategies. The control of risk is
not included in the identified DES models.

4.4 Bayesian Belief Networks
A Bayesian Belief Network (BN) is a graphical
model in the form of a directed acyclic graph which
represents random variables and their conditional
dependencies. It enables the computation of a joint
probability distribution over a set of random variables
[83]. It is widely used in statistics, machine learning,
and artificial intelligence [49, 70]. Three applications
of BNs have been identified, which will be outlined in
the following.



Supply Chain Disruption Models: A Critical Review 17

risk mitigation strategies and estimating their costs
and the overall budget constraint, the mitigation
strategies and their effect on the risks are built into the
BN. All possible combinations of mitigation strategies
are analyzed by running the BN and calculating the
performance values for each scenario. The final
step is the selection of strategies that maximize the
decision maker’s overall expected utility and therefore
considering their risk attitude.
Table 7 compares the six approaches with the

requirements derived above. All six models focus on
a number of SCDR and concentrate on modeling the
interdependencies between them. Since conditional
probabilities need to be defined, the models incorporate
the risk categories “randomness” and “hazard”. Deep
uncertain risks are not considered. Four modeling
approaches quantify risks by using experts without
usinghistorical data. SharmaandSharma [106] andQazi
[87] also integrate historical data into their approach.
Risk propagation is mainly studied by Garvey et al.
[30] and Qazi et al. [86], who both develop propagation
measures. Badurdeen et al. [5] briefly mention that risk
propagation can be explored by setting specific risks
as true and analyzing the impact. Qazi et al. [86–88]
concentrate on risk optimization. The prediction of
risks is considered in all approaches. Badurdeen et al.
[5] only predict the probability of occurrence, while the
other five models predict the probability of occurrence
and the impact of risks. None of the approaches include
dynamic aspects into their models.
The right-hand part of Table 7 shows which steps

of the standard SCRM framework are modeled and
supported by the publications. While the control
of risks is not supported, all approaches cover risk
assessment. On top of that, Badurdeen et al. [5], Sharma
and Sharma [106], as well as Qazi [87, 88] extensively
cover risk identification, and Qazi et al. [86–88] find
ways of mitigating risks. The control of risk is missing
in BN approaches, so far.

risks, and performance measures can either be “high”
or “low”. The Delphi method has been adopted to
reach a consensus between experts. After calculating
the state probabilities of the performance nodes, the
probability of risk factors are individually set to 100%
to identify the most critical risk factors as part of the
sensitivity analysis.
Qazi et al. [87] combine a FMECA approach with

a BN model in a Turkish supply chain, considering
all immediate suppliers of a manufacturer of
supplementary parts in the home appliance industry,
to identify risk factors, risks, and possible losses and
to assess the interdependencies between them. FMECA
is used for the identification of risks, direct losses, and
possible mitigation strategies. The BN calculates the
resulting probabilities. The authors develop measures
to assess the contribution of risks to the overall losses
in case of a risk-neutral and risk-averse decision maker.
Risk mitigation is also considered by prioritizing
risk mitigation strategies based on the impact on the
developed risk measures under a budget or a resource
constraint. If no mitigation cost can be assigned,
the budget is split fairly by considering the Shapley
Value, a concept in Game Theory, and calculating the
marginal contribution of each mitigation strategy.
In a similar approach, Qazi et al. [88] use Fault Tree

Analysis (FTA), BN, and Expected Utility Theory
to model 29 risks of a component manufacturing
supply chain in the aerospace industry and their
effect on the following performance values: quality,
timeliness, market share, profit, and sustainability.
FTA (conducted and validated by focus group
sessions of experts) is used as a top-down way to
identify the performance measures’ potential risks
as well as their underlying causal risk factors and to
therefore determine the hierarchical structure of the
BN. The experts subsequently determine the strength
of interdependency between the risks by assessing
conditional probabilities. After identifying potential
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Badurdeen et al. 2014 [5] � � �� � �� � �� � � � � �
Garvey et al. 2015 [30] � � �� � � � � � � � � �
Qazi et al. 2015 [86] � � �� � � � � � � � � �
Sharma/Sharma 2015 [106] � � � � � � � � � � � �
Qazi et al. 2017 [87] � � � � � � � � � � � �
Qazi et al. 2018 [88] � � �� � � � � � � � � �

Table 7: Comparison of Bayesian Belief Network approaches to model supply chain disruption risks
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Seck et al. [105] present an ABM approach to study
the effect of different risk scenarios on the fill rate of
the supply chain system. The authors analyze a three-
tier supply chain with two suppliers and two sub-
suppliers. The first risk scenario consists of a perfect
demand forecast with a planning horizon larger than the
cumulative lead time and a capacity superior or equal to
the demand. As expected, the fill rate is 100%. Aminor
forecasting error with no safety stocks results in a fill
rate below 100%. The authors test a major forecasting
error with enough safety stock to maintain a perfect fill
rate. The last scenario consists of a disruption of one of
the sub-suppliers with a set duration and a set time to
recovery. This scenario shows the delayed drop of the
fill rate and the slow replenishment of the safety stock.
Otto et al. [75] propose the ABM approach

“acclimate” to assess the propagation of losses in
global supply networks due to natural disasters of
different sizes using the example of the Japanese
automotive manufacturing industry. The authors
consider the economic monetary input-output data
table of 27 sectors and a large number of contributing
countries including consumer demand in the form of
household consumption, governmental spending, and
private investments. The producing agents are capable
of adjusting their production capacity, assessing future
demand, receiving price-offerings of suppliers, and
setting the ordering quantity to locally maximize
their profit. During simulated disruptions of different
time lengths (0 to 19 days) the production capacity
of a specific regional sector is reduced by a certain
variable degree. The authors find that indirect losses
strongly depend on the duration and magnitude of the
disruptions and can rise well after the disruption has
ceased. The exogenous variable of buffer inventory
serves as a mitigating component and is recommended
to be increased due to the increase in the number of
expected natural disasters.
Ledwoch et al. [56] build an ABM to quantitatively

compare the consequences of different disruption

4.5 Agent-based Modeling
Agent-based Modeling (ABM) is a modeling and
simulation method in which multi-agent systems
represent social, economic, and ecological systems,
etc. [97]. Each system consists of a set of agents, a set
of relationships, and the agents’ environment in the
boundaries of an overarching system. An agent is an
autonomous, self-directed, individual entity which can
function independently from other agents. It interacts
with and reacts to other agents and their environment
by having either a simple collection of if-then-else rules
or complex artificial intelligence techniques integrated
in their behavior [125]. ABM is particularly interesting
because of its ability to represent self-organizing
systems in which entities interact, influence each other,
and are able to learn from their experience to be better
adapted to their environment [65].
Park [77] combines ABM as well as SD modeling to

study the behavior of a three-tier supply chain with two
manufacturers of two different products, two retailers,
and a customer. The customer chooses between the
two products and waits a given time before consuming
again. The customer’s behavior is modeled by SD,
whereas the production processes are described by
ABM. The service level of the supply chain is used as
a performance metric.
Blos et al. [11] describe a simulation-based

methodology to assess and mitigate identified risk
scenarios with a supply chain risk event database and
ABM of the supply chain. Scenarios are generated by
expert-based probabilistic description or by known
historical risk events, and an SCRMspecialist generates
possible mitigation strategies. Simulation models of all
scenarios need to be developed before the performance
and effectiveness of the strategies can be quantitatively
assessed. The authors adopted their methodology to a
global supply chain of a manufacturing firm within the
electronic industry in Taiwan but do not describe their
simulation models in detail.
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Park 2014 [77] � � � � � � � � � �� � �
Blos et al. 2015 [11] � � � � � � � �� �� �� �� �
Seck et al. 2015 [105] � � � � � � � � � �� �� �
Otto et al. 2017 [75] � � �� �� �� � � �� � �� �� �
Ledwoch et al. 2018 [56] � � � � � � � �� � �� �� �

Table 8: Comparison of other modeling approaches to model supply chain disruption risks
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are determined by pairwise comparison of the risks.
The SSIM, which includes four symbols to describe
the interdependencies, is transformed into a binary
reachability matrix. The final reachability matrix
contains indirect relationships between the elements
which are connected by intermediate elements. The
elements are then put in a hierarchical order by level
partitioning. The left part of Table 9 compares the
ISM approaches. All of the models integrate a number
of different SCDRs and have a high focus on risk
interdependencies.
Pfohl et al. [81] as well as Vekantesh et al. [135]

incorporate a fuzzyMICMACanalysis and are therefore
able to evaluate the strengths of the interdependencies.
ISM is suitable for all risk categories with the
premise that it is possible to at least understand the
consequences of deeply uncertain risk events on other
risks and vice versa. The data basis of the described
models stems from expert knowledge and literature
reviews. Dynamic effects, the prediction of risks, risk
propagation, and a risk-related optimization of the
supply chain is missing.
The right-hand side of Table 9 shows which steps

of the standard SCRM framework are modeled and
supported by the publications.
Pfohl et al. [81] use ISM to identify interdependencies

among supply chain risks and apply a MICMAC
analysis to classify the risks according to their
driving and dependence power. The authors study a
supply chain consisting of a first-tier supplier, a focal
company, and a third-party logistics provider which
transports goods to the focal company as well as to the
customer. 21 external and internal disruption risks are
incorporated. A group of experts is suggested who then
construct the structural self-interaction matrix (SSIM).
After constructing the ISM-basedmodel, theMICMAC
analysis consists of calculating the sum along the rows
and the columns of the final reachability matrix as an
indicator for the driving power and dependence of each
risk. Four groups of risks are defined (autonomous,
dependent, linkage, and independent). A Fuzzy
MICMAC analysis is applied to consider the strength
of relationships on a scale from 0 to 1. The values are
superimposed on the initial reachability matrix.
Vekantesh et al. [135] use the ISM approach to

model the interdependencies of supply chain risks
associated with the Indian apparel retail industry. The
authors identified 12 risks with the help of experts
through a Delphi study and a literature review. The
Delphi methodology is an empirical tool to reach a
consensus among a group of experts [61]. An expert-
based fuzzy MICMAC analysis is used to describe
the strength of relationships between the risks. A new
risk prioritization number (RPN) is developed which
replaces the occurrence probability in the classical
formula (RPN = Occurrence x Severity x Detection)
with the ratio of the driving power to the dependence
power of a risk.

frequencies and durations on the fill rate, backlog,
and inventory holding costs of random and scale-free
network topologies with a single original equipment
manufacturer and 102 supplier nodes. In case of a
random topology, a set number of links is randomly
attached to a set of nodes. Scale-free networks consist of
hub nodes with a large number of immediate suppliers.
Producing agents can receive orders, forecast demand,
ship product, and order supply, whereas logistics
provider agents perform transportation between nodes.
A specific random number of producing agents can
perform twomitigation strategies. Contingent rerouting
lets the agent transfer their orders from a disrupted
node to one or more operational suppliers, while
inventory mitigation increases the buffer inventory as a
robust strategy. Simulation experiments with different
risk and mitigation scenarios show that scale-free
networks have higher disruption tolerance than random
networks, inventory mitigation improves fill rates more
effective than contingent rerouting regardless of the
network topology, and inventory mitigation is cost
effective only for frequent disruptions.
Table 8 shows that all ABM approaches focus on

disruption risks and incorporate dynamic modeling.
The identified models do not have a strong data basis
for their modeled risk concepts and do not integrate
risk interdependencies, risk propagation, and risk
prediction. Blos et al. [11] is the only approach which
considers numerous risks and focuses on historical
data and expert opinion. Otto et al. [75] use historical
data and study the interdependencies and propagative
characteristic regarding the losses due to disruptions.
Risk optimization has been slightly touched by the
authors and only a single mitigation strategy has been
tested. Otto et al. [75] and Ledwoch et al. [56] use
buffer inventory for mitigation, while Blos et al. [11]
conceptually integrates mitigation strategies but does
not show numerical results.
A clear focus on risk assessment is visible in the

approaches. Systematic risk identification methods
have not been incorporated. Blos et al. [11] mention risk
identification but do not go into detail. Risk mitigation
has been partly integrated but not systematically
supported. Seck et al. [105] indirectly show that nodes
with backup supply or safety stock are less affected and
accurate forecasting is beneficial. Approaches which
emphasize the control of risks are still missing.

4.6 Interpretive Structural Modeling
Interpretive Structural Modeling (ISM) is a
methodology which is used to transform unstructured
graphical representations of a complex system into
a well-structured directed graph with a hierarchy
and relationships between elements [98, 141]. The
basic procedure is as follows. The elements of the
models need to be defined first. The structural
self-interaction matrix (SSIM) contains the direct
relationships between the elements. The relationships
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entities as well as infrastructure), and their exposure
levels with respect to the defined multihazards.
A stochastic process models the time and space
characteristics of the risk events’ occurrences as well
as their intensity and the time for recovery regarding
production capacity and demand of different product
markets. It is recommended to use historical data and
expert opinions to establish these parameters. The
Monte Carlo Simulation creates a number of scenarios
and calculates the number of hits and the number of
unserved products within the planning horizon.
Mizgier et al. [71] quantify the direct and propagated

losses due to both idiosyncratic (one node is directly
impacted) and systemic (all nodes are directly impacted)
disruptions of a two-stage converging network with a
Monte Carlo simulation approach. The resulting loss
distribution of the central manufacturer is considered
by its mean, its value-at-risk (maximum possible loss
up to a predefined quantile), and its expected shortfall
(mean losses exceeding the predefined quantile). The
disruption and recovery of nodes are modeled as a
Renewal-reward process, in which hazard events
disrupt the node according to a Poisson process with
different intensities and the subsequent recovery time
is identically distributed. Two idiosyncratic hazards
per node and one systemic hazard, threatening all
entities, are considered. The indirect losses are
calculated based on a weighted adjacency matrix
which contains the relative purchasing volume with
respect to each direct customer. The nth power of
the matrix describes the relative impact on the nth
stage of the network. Indirect losses are immediately
distributed and no buffer inventory is considered. The
conducted simulation experiments quantify the effect
of diversification as a mitigation strategy on the loss
distribution of the manufacturer by adding one supplier
in each simulation run to the network (starting with just
a single supplier) and changing the intensity parameter
of the hazards. In this model, the variance of the loss
distribution is reduced with an increasing number of
same-stage suppliers. This positive effect is diminished
when suppliers on the second stage are added.

Srivastava et al. [113] focus on the Indian food retail
industry and identify 24 supply chain risks with the
help of experts. The authors also use a MICMAC
analysis but do not apply a fuzzy-based evaluation of
the strengths of the relationships.
Risk identification as well as the selection of elements

to be examined are part of the ISM methodology. It
is, however, not methodically supported. Literature or
expert knowledge are named as the source of relevant
risks. Interdependencies and the driving power of risks
are one aspect of risk assessment. The quantification
of risks is not considered in the ISM framework. Other
process steps like the mitigation and the control of risks
are not supported.

4.7 Monte Carlo Simulation
Monte Carlo Simulation (MCS) is a simulation method
based on repeated random sampling and statistical
analysis to compute the simulation results.MCS usually
considers a large number of stochastic parameters
with known or assumed statistical distributions and
generally depends on a great number of simulation
iterations in order to be able to assess the detailed
stastical features of the output parameters. MCS is
used in a wide variety of application areas including
Mathematics, Statistical Physics, Engineering, and
Social Sciences [89].
Deleris and Erhun [22] combineMCSwith a so-called

flow model which calculates the loss of volume due to
destroyed supply chain nodes to obtain the probability
density function of the losses in the network. The
likelihoods of the considered scenarios are estimated
by experts.
Klibi et al. [53] use MCS to model the impact of

random business-as-usual risk events as well as extreme
events on the capacity of SC entities and on the demand
of products. The authors propose a three-step modeling
approach which consists of the definition of so-called
multi-hazards (summary of different hazards with
generic impact to improve quantification), geographic
hazard zones, associated vulnerability sources (SC
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Pfohl et al. 2011 [81] � � �� � � � � � �� �� � �
Vekantesh et al. 2015 [135] � � �� � � � � � �� �� � �
Srivastava et al. 2015 [113] � � �� �� � � � � �� �� � �

Table 9: Comparison of Interpretive Structural Modeling approaches to model supply chain disruption risks
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in a five-tier supply network with 11 members. The
inoperability vector consists of continuous variables
with values ranging from 0 to 1 which indicate the
extent of inability of the system’s member to perform
its functions (perfect operable state is represented
by 0). A so-called interdependency matrix displays
the interdependencies between supply chain entities.
Total inoperability is calculated by summing up the
propagated inoperability passed on by dependent supply
chain nodes and the direct inoperability of the node
(direct effect of a disruption). The interdependency
matrix can be calculated based on Ordered Weighted
Averaging. The interdependency can be measured
by determining multiple factors like trading volume,
buffer capacity, and substitutability, etc. for each
directly connected relationship to a node. Niknejad
and Petrovic [72] combine Fuzzy Set Theory with a
Dynamic IOM (DIOM) to measure the propagative
effects of two disruptive scenarios in a supply chain
with two suppliers, one manufacturer, and customers.
Experts’ knowledge is used to specify triangular fuzzy
set numbers (TFSNs) of each entity’s planned revenue
and resilience as well as the dependencies between
each partner. The disruption itself is also modeled
with a TFSN. The exogenous disruption lasts for ten

Table 10 compares the three MCS approaches
regarding the fulfillment of the requirements derived
above. All three MCS approaches focus on disruptions
and incorporate numerous risks into their methodology.
Historical data as well as expert opinions are used to
assess the risk values, except in the methodology of
Mizgier et al. [71], who have a more theoretic approach
to risk modeling. Mizgier et al. [71] focus partly on risk
propagation and aim at risk mitigation by a diversified
sourcing strategy.
Systematic risk identification and the control of risks

are not considered in the identified models. A strong
focus on risk assessment is detectable, and all three
models support this process step.

4.8 Input-Output Modeling
Input-Output Modeling (IOM) originally stems from
Leontief ’s Input-output Model [58], which is a useful
tool to study consumption shocks on interdependent
economic systems [99]. IOM attempts to foresee the
resulting economic losses and inoperability suffered
by different interdependent industry sectors [34, 100].
Wei et al. [143] use IOM to model the propagation
and interdependencies of supply chain disruptions

Table 10: Comparison of Monte Carlo Simulation approaches to model supply chain disruption risks

Table 11: Comparison of Input-Output Modeling approaches to model supply chain disruption risks
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Wei et al. 2010 [143] � � � �� �� � �� �� � �� �� �
Niknejad / Petrovic 2017 [72] � �� � �� �� � �� � � �� � �
Brosas et al. 2017 [12] � � � �� �� � �� � � �� � �
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Niknejad and Petrovic [72] use a dynamic IOM and
can therefore also provide temporal insights.
Risk identification as the first step of a standard

SCRM framework is not supported by the IOMmodels.
The control of risk has also not been incorporated so
far. A clear focus lies on the easy assessment of risk
impact.

4.9 Other approaches
Six approaches have been identified which could not
be numbered alongside the simulation techniques
described above. These approaches include Time-
based Simulation, Static Simulation, Neural Networks,
and models based on Graph Theory.
Thiagarajan et al. [126] develop a simulation-based

risk analysis technique for large-scale military logistics
planning. Simulation is used to evaluate the impact of
unavailability of transport vehicles on the sequence of
activities which form the logistics plan. The logistics
plan contains the structural information about the
available fleet of vehicles, required capacities, and
time spans that the vehicles are needed. Some activities
need to be fulfilled by specific transport vehicles so that
unavailability can either cause the whole logistics plan
to fail or has no effect. The static simulation calculates
conflicts in the plan. The authors develop a simple
so-called failure threshold and consequence metric to
measure the relative criticality of transport vehicles
observed in simulation and to enable large plans to be
analyzed quickly. A risk matrix is used to combine the
consequences with the likelihood of an unavailability,
which needs to be assessed by experts, and to derive
mitigation strategies.
Aqlan and Lam [3] develop a multi-objective mixed-

integer linear programming model which looks for the
best combination of different interdependent mitigation

time units, in which the disrupted entity is partially
functional. The DIOM calculates the propagative
effects for each time frame (50 time units in total)
with respect to the dependencies between each partner
and the resilience of each entity. The mean resulting
inoperability is multiplied with the planned fuzzy
revenue to calculate the fuzzy financial losses. A
sensitivity analysis tests the impact of each input’s
value on the estimated fuzzy financial losses and on
its ambiguity (a measure of uncertainty of TFSNs). The
most critical input values should be reanalyzed more
thoroughly until decision makers feel confident.
Brosas et al. [12] use a fuzzy supply-side IOM to

assess the impact of price changes due to an occurring
disruption. A Philippine herbal food supplement supply
network which is exposed to devastating typhoons,
consisting of five suppliers, two manufacturers, and
three distributing pharmacies, is modeled. Unlike the
standard IOM, the supply-side IOMmodels supply-side
price perturbations. A typhoon is assumed to increase
the prices of one supplier by 10%. The interdependency
matrix consists of fuzzy supply costs in the form of
TSFNs. The price increases are calculated for each
partner to see the most affected nodes.
Table 11 compares the IOM approaches to the derived

requirements. Although the approaches consider one
generic disruptive event as a risk factor and do not have
a strong focus on how to gather the input parameters,
IOM is helpful for swiftly calculating the propagative
effects with the help of the interdependency matrix.
All approaches here partly fulfill the requirements of
risk propagation and risk interdependencies because
they focus on the impact of risks on the performance
values. Risk mitigation is partly incorporated by one
model. Wei et al. [143] increase the number of suppliers
and evaluate the effects on the performance values.

Table 12: Comparison of other modeling approaches to model supply chain disruption risks
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SS Thiagarajan et al. 2011 � � �� � � � �� � � � �� �
MIP Aqlan / Lam 2015 [3] � � �� �� � � � � � � � �
GT Rajesh et al. 2015 [91] � � �� � � � � � � � � �
TBS Tan et al. 2015 [121] � � �� � � � � � � � �� �
NN Liu et al. 2016 [62] � � �� � � � � � � � � �
GT Tang et al. 2016 [123] � � � � � � � � � � � �
GT: Graph Theory MIP: Mixed-Integer Programming NN: Neural Network

SS: Static Simulation TBS: Time-based Simulation
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the newly failed node are forwarded to the neighbors but
are not allowed to top the maximum permitted failed
load. The physical-layer and cyber-layer are linked by
some nodes. The probability that the surviving network
still belongs to the giant component of the graphs
serves as a measure of robustness. The authors test the
effect of a single-node disruption versus a multi-node
disruption and vary input parameters regarding the
maximum capacity and initial loads.
Table 12 compares the remaining modeling

approaches and shows their corresponding modeling
techniques. All approaches except the model of Rajesh
et al. [91] focus on disruption risks, but only two of
the models incorporate multiple risks. The variety
between the models is relatively high, since different
simulation techniques are used. Each technique has its
own field of attention. The Neural Network approach
of Liu et al. [62] emphasizes risk prediction based on
historical data, while the multi-objective optimization
model of Aqlan and Lam [3] and the Grey Theory
approach of Rajesh et al. [91] aim to minimize risks
with an adequate risk mitigation mix. The time-based
simulation approach of Tan et al. [121] gives insight
into the dynamic nature of risk propagation. Table 12
shows that all models contain a form of risk assessment
except Rajesh et al. [91], which focus solely on risk
mitigation.
The models of Rajesh et al. [91] as well as Aqlan

and Lam [3] consider the process step risk mitigation
explicitly, while Thiagarajan et al. [126] and Tan et al.
[121] suggest risk mitigation strategies and indirectly
show that nodes with backup supply or safety stock
are less affected and accurate forecasting is beneficial.

4.10 Interpretation of results
The previous subsections have presented the 57
approaches with the corresponding modeling
techniqueswhich are used tomodel SCDRon a network-
level. Each of these simulation techniques as well as
specific approaches possess different characteristics.
This section compares the eight techniques regarding
the previously derived requirements and displays
the strengths and weaknesses of these methods. The
analysis of the requirements regarding the data basis
and the risks integrated into themodel can be conducted
independently from the simulation techniques used.
Regardless of the simulation techniques used, most of

the identified models focus on disruption risks. Fig. 2a
displays that more than 80% of all contributions have a
direct focus on disruption risks, while ten publications
consider disruption risks among general supply chain
risks. Fig. 2b presents the fact that around half of the
models incorporate only one risk, while 24 models
(around 40%) include more than three various risks
simultaneously. This indicates that a good proportion
of researchers have recognized the importance of
analyzing disruptions and have developed extensive
models which include a multitude of strategic risks.

strategies. Its aims are to minimize total mitigation
cost and to maximize risk reduction under budget
constraints and a minimum risk reduction constraint.
Bow-Tie analysis is used to aggregate the likelihood
and impact of multiple risk factors to form a single risk.
To evaluate the interdependencies between different
risk mitigation strategies, the authors use expert
opinion and develop a so-called risk mitigation matrix
which displays the effect of each mitigation strategy on
the incorporated risks.
Rajesh et al. [91] combine Grey Theory with a Graph

Theory Matrix Approach (GTMA) to find the most
effective mitigation strategies with respect to various
supply chain risks including the risk of disruption. Grey
Theory is used to quantify the relative importance of
risks as well as the positive and negative influence of
each risk mitigation strategy over each risk by using
linguistic expression of experts. The grey scales are
converted into crisp values and the GTMA calculates
the positive impact of each mitigation strategy in
total as well as the negative impact of each mitigation
strategy over all risks. The difference of these two
values of each mitigation strategy forms the net
positive influence value and enables the ranking of the
strategies according to their effectiveness. 12 supply
chain risk categories and 21 mitigation strategies with
a focus on electronics manufacturing supply chains are
considered.
Liu et al. [62] combine a grey prediction model

with a Neural Network to predict the demand after
the occurrence of a transportation disruption. Grey
Prediction Modeling (GM) is based on Grey System
Theory, which describes systems with partially
unknown parameters. GM requires only a limited
amount of data to estimate behavior of an unknown
system compared to conventional statistical models and
uses a so-called grey differential equation to explain
and predict dependent variables [44]. Neural Networks
are designed to estimate functions to explain large-scale
nonlinear systems and predict their behavior based on
a relatively large amount of training data [42]. The
authors study the demand of one single supply chain
enterprise which experienced transportation disruption
after a snow disaster and could predict the demand with
less error than the standard GM.
Tang et al. [123] analyze the dynamic effects of

risk propagation in a supply network with 1000
nodes consisting of a physical-layer (material flow,
directed graph) and a cyber-layer (information flow,
undirected graph). Each node is given a specific
initial load, a maximum capacity, and a maximum
permitted propagable failed load. A proportion of
nodes fail at the beginning of each simulation run, and
the corresponding linkages of the affected nodes are
removed. The initial loads of the affected nodes are
distributed through a socalled priority redistribution
strategy to the neighboring nodes and added to their
load. If a node’s maximum capacity is exceeded, the
node fails and the propagated load as well as the load of
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only one which considers hazardous as well as deeply
uncertain events explicitly. This aspect indicates that
more extensive work on the data basis of the developed
models could be done.
The types of disruptions modeled by the identified

models can be seen in Fig. 3. Disruptions have been
modeled by 29 publications, modeled in a generic way
by impairing entities and/or links between supply chain
partners independently of the risk cause. While 20
models create disruptions by letting nodes fail, seven

One important aspect of risk modeling is the data
basis of the approach. Fig. 2c shows that more than
three-quarters of the identified SCDRmodels consider
the potential losses of the risk without integrating the
probability of occurrence to their risk concept. This
is suitable for considering deep uncertainty where
events happen rarely and have a high impact. Only 12
models (around 20%) have risks quantified with their
probability of occurrence by historical data and expert
knowledge. The approach of Klibi et al. [53] is the

(a) Risk type focused on (b) Number of risks

(c) Data basis of risk concept

Fig. 2: Overview of papers with respect to the focus on disruption risk, the number of risks considered,
and the data basis of risk concept

Fig. 3: Types of disruptions modeled
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of place and transition nodes, helps tomodel propagative
effects. The approaches measure the propagation of the
effects of a disruptive event or, in the case of stochastic
and dynamic models, calculate the effects of risks.
Interdependencies of different risk events are included
in around 75% of the publications. No PN approach
considers the propagation and the interdependencies of
risks itself. Only around 30% of PN approaches display
a dynamic model with stochastic features regarding, for
example, process time or demand. 70% of the models
are static and deterministic. The presence of risk
prediction is twofold: PN and its reachability matrix
can be either used to discover inconsistencies in intra
and cross-company processes and is therefore able to
detect the risk of coordination problems early on or the
PN can be applied to better understand the system and
the effects of SCDR. The prediction of risks itself is
partly considered by 75% of the identified PN models
but the effects of the supply chain system are measured
by analyzing lead time and total disruption cost of the
system. As part of risk optimization, around 25% of
PN models are used to test the effects of individual
mitigation strategies on the performance of the system.
In comparison to PN, SD captures the dynamic

behavior of its systems very well. All models integrate
dynamic risk behavior. This factor can be ascribed to
the equation structure of SDmodeling as well as the use
of causal loop diagrams. Closely linked to the aspect
of dynamic modeling is the risk propagation behavior.
It focuses on the transfer of risks to upstream and
downstream supply chain entities. Around 60% of the
instances exhibit either the propagation of detrimental
consequences of risks and do not model the risk
propagation itself ormodel risks explicitly but only focus
on the direct supply chain partner. Around 90% of all
models implement some form of interdependency since
the cause-effect relationship expands over more than
one supply chain entity. 60% of the SD models merely
consider the interdependency of resulting potential
losses of a risk, while the approaches of Guertler and
Spinler [33] as well as Ghadge et al. [31] address risk
interdependencies explicitly. Risk prediction is part of
around 90% of all identified approaches. These models

models focus on generic transportation disruptions.
Two of the models consider both transportation and
node disruption. The most frequent specific disruption
risks included by the 18 approaches are natural
disasters, machine breakdowns, political risk, strikes,
material shortages, financial instabilities, alignment
conflicts, criminal activities, and IT breakdowns.
Fig. 4 shows the proportion of each risk mitigation

strategy with respect to the models which include some
kind of risk mitigation. The largest portion of the risk
mitigation strategies (nearly 30%) concern the supply
base in the form of establishing backup supply. Around
20% reduce risks by lowering their value in an abstract
way without integrating the cause-effect relationship
of strategies in the model itself. Increasing visibility
and information sharing have been considered by
around 15% of the models which have some kind of
risk mitigation implemented. The same ratio of papers
have various mitigation strategies implemented in their
approach. Buffer inventory in the form of strategic
stocking has been tested by around 10% of the models.
Increasing transportation capacity has been used
by around 7% and agility in the form of expediting
deliveries has been implemented by 3% of the models.
The risk behavior of the identified models

is characterized by the evaluation criteria
“interdependency”, “propagation”, as well as
“dynamic modeling”. The output and the aim of the
model, respectively, are defined by the criteria “risk
prediction” and “risk optimization”. We study how the
eight identified techniques satisfy each of these criteria
independently before regarding how the criteria are
satisfied jointly to learn more about the strengths and
weaknesses of the techniques (RQ 3). Other approaches
are not considered at this point since their quantity
is too low to give insight into their characteristic
features. Fig. 5 shows the proportion of instances of
each technique and their fulfillment of the evaluation
criteria.
PN approaches have a focus on interdependent and

propagative characteristics. Around 90% of the models
include propagative aspects. The structure of this
simulation technique, namely the alternating behavior

Fig. 4: Mitigation strategies incorporated by models
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Fig. 5: Evaluation of the simulation techniques used for SCDR modeling
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risk prediction. Risk prediction is fully considered by
five approaches, while the approach of Badurdeen et
al. [5] considers the probability of occurrence without
estimating the impact. Risk mitigation strategies can be
integrated by reducing the probability of occurrence of
a specific risk or risks and capture the difference on the
overall risk situation. None of the BN models display
dynamic effects.
Due to the nature of ABMmodeling, every approach

displays dynamic features of risk assessment. Other
risk characteristics have not been thoroughly captured
yet. Only one out of five models, namely the model of
Otto et al. [75], analyze the direct and indirect effects
of the disruptions and models the interdependent and
propagative aspects of the resulting losses. 60% include
some kind of risk optimization. Buffer inventory is used
by Otto et al. [75] as well as Ledwoch et al. [56], who
also incorporate contingent rerouting as a mitigation
strategy. Bloss [10] discusses various strategies but
does not present a detailed, concrete inclusion.
Interpretive Structural Modeling is used to cover

interdependencies between risks, and two out of three
models are combined with a fuzzy MICMAC analysis
to capture the strengths of the interdependencies. This
modeling technique does not integrate any other risk
behavior aspects, so that the field of application is more
narrow than the other described techniques but can be
easily combined with other techniques.
The emphasis of MCS approaches lies in risk

prediction. All three models incorporate risk prediction
since they calculate the loss distribution due to various
disruptive scenarios of different probabilities. Two
out of three models include temporal aspects of the
disruptive scenarios, while the model of Deleris and
Erhun [22] calculates the losses by summing up the
volume loss of each disruption. Risk optimization has
not been modeled thoroughly yet. One of the three
models, namely the one of Mizgier et al. [71], tests risk
diversification through a multi-sourcing approach. The
interdependencies of risks have not been considered by
MCS approaches yet.
IOMhave a strong emphasis on loss interdependencies

and loss propagation. All three models integrate the
propagative and interdependent features through
the interdependency matrix. The matrix is used to
calculate the effects of the inoperability so that all
models also incorporate the prediction of losses. IOM
lacks a consideration of probabilities so far, so that it
can only be used for deep uncertain risk events in the
form of swift what-if analysis. The model of Niknejad
and Petrovic [72] uses a dynamic IOM approach so that
temporal aspects can be analyzed as well. The only
model that considers one mitigation strategy is the
model of Wei et al. [143], which focuses on redundant
supply as a countermeasure for disruptive events.
Fig. 6 displays the supported process steps of

each simulation technique of a standard SCRM
framework (RQ 4). BN models show a high focus
on risk assessment with 65% risk identification and

give insight into how the system would behave in case
a risk event actually occurs. The model of Ghadge et
al. [31] predicts risk explicitly by using project risk data
as a representation of supply chain risk which is hard
to transfer to general supply chain activities. Around
50% of the approaches partially aim to optimize the
risk situation of the system. The authors compare the
effects of one mitigation strategy on the performance
indicators of the system in case of a disruption, but
do not systematically optimize the system with
various mitigation strategies at hand. The approach
of Keilhacker and Minner [48] is an exception that
completely focuses on risk mitigation.
Discrete-Event Simulation as a dynamic and

simulative modeling approach is mostly concentrated
on risk optimization of the supply chain system. All
models display dynamic charateristics. More than
60% of the models incorporate a number of mitigation
strategies and quantify their effect on the system’s
performance. The approach of Ivanov [41] considers
recovery processes as an abstract way of riskmitigation.
Risk interdependencies have not been the focus of the
identified studies so far. Only around 25% include a
consideration of interdependencies. Aqlan and Lam
[4] use a goal programming approach to find the best
mitigation strategies and test their effects with DES.
The optimizing model takes risk interdependencies
into consideration and makes sure that mitigation
strategies do not increase correlated risks. Petrovic
[80] tests the effect of various uncertainties on the
performance of the system, so the model partially
satisfies the interdependency criteria. Risk propagation
itself is not fully considered, but the propagation of
the effects of SCDR is integrated similarly to SD and
PN models. Over 30% take propagative features of
disruptive events into account. The prediction of risks
is so far only considered indirectly by the models of
Schmitt and Singh [101, 102], Hishamuddin et al. [37],
and Wang et al. [140] in the form of a basic analysis
of cause-effect relationships regarding the potential
impact of disruptive events.
Bayesian Belief Networks by nature model

risks explicitly and are predestined to calculate
interdependencies between risks. All of the six
identified SCDR models manage to display risk
interdependencies. The definition of conditional
probabilities is mandatory for this modeling technique,
so it is difficult to use for deeply uncertain risk events
which can only be studied in a what-if analysis. Due
to its directed graph representation, it is suitable to
model propagative system behavior. Two out of six
models address the spread of different risks through the
supply chain network and develop specific propagation
measures. The model of Badurdeen et al. [5] partly
measures risk propagation because it sets risks as
true and analyzes the impact as a form of sensitivity
analysis but does not consider the propagation through
the network. In opposition to DES, the BN models
concentrate less on risk optimization and more on
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assessment partially, too. ABMmodels concentrate on
assessing the consequences of disruptive events and
80% of the models support risk mitigation partially.
With their specific design, MCSs have a strong focus
on risk assessment and all approaches completely
support this SCRM process. Only a third of the MCS
models also consider risk mitigation. IOM approaches
demonstrate a swift way to assess the consequences of
disruptive scenarios. The IOM models lack a focus on
risk identification and quantification, which decrease
their usefulness. One of the three IOMmodels partially
supports risk mitigation.

another 50% also fully including risk mitigation.
DES displays a slightly higher concentration on risk
mitigation with 50% completely fulfilling this criteria
and another 25% of the approaches partially fulfilling
it. The control of risks is only completely present in
one PN and one SDmodel. Two further PN approaches,
namely the approaches of Blackhurst et al. [7] as well
as John and Prasad [43], partially consider control
of risk, since they address the detection of process
related risks in the system. ISM is primarily used for
risk identification and risk assessment. It does not
support the risk identification itself, but identifies
risk interdependencies and therefore supports risk

Fig. 6: Comparison of supported process steps of SCRM
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techniques like SD, PN, ABM, or DES. The BN model
could focus on calculating probabilities of occurrences
for risk events and consider their interdependencies.
The dynamic simulation techniques can be used to
assess the consequences and losses of the networks,
and the effect of mitigation strategies. The identified
BN approaches have considered risk mitigation mainly
by reducing the risk in an abstract way. Therefore, a
combination with other simulation techniques could
provide more valid insights.
The strength of MCS consists in the inclusion of a

large number of potential scenarios with stochastic
distributions, so that the output of MCS models
not only calculate a crisp value but develop a more
differentiated stochastic view of potential damages.
So far, the MCS approaches lack considering risk
propagation and interdependencies. Since MCS
consists of a large number of experiments and
combining it with computation-intensive techniques
would be impractical, they can be greatly combined
with an IOM model to swiftly calculate risk impact on
a network level.
TheABMapproaches have not yet lived up to their full

inherent potential yet. ABM is useful for mimicking the
complex behavior of entities and integrating rule-based
or complex decision making into the independently
acting agents. The identified models do not display
decision making of the agents. In the context of SCRM,
agents could be equipped with multiple mitigation
possibilities and even complex ways of anticipating the
consequences of risk countermeasures for the network.
With other techniques like SD or PN this behavioral
logic would be very complex and time-consuming to
integrate, but ABM models allow a compact way of
incorporating individual decision making. Even a BN

After analyzing the evaluation criteria separately,
we now shift the attention towards the simultaneous
satisfaction of the requirements. Fig. 7 displays
the simulation techniques with respect to risk
interdependencies, risk propagation, and dynamic
risk modeling. The previously discussed features of
the identified modeling techniques can be seen in the
illustration. Only two models which use Bayesian
Nets for modeling fulfill risk interdependencies
and risk propagation requirements completely, but
do not consider dynamic aspects. The majority of
PN approaches and all IOM models consider risk
propagation and risk interdependencies partially. The
majority of SD approaches also cover these two aspects
partially, with the exception of two SDmodels that fully
cover risk interdepedencies. All ISM, DES, MCS, and
the majority of ABM models only consider either risk
propagation or risk interdependency. It is discernible
that no approach covers all three important risk behavior
characteristics totally. Since we now have analyzed the
characteristics of the identified models and have also
extended the view of the characteristics of the modeling
techniques, we now want to focus on identifying
possible improvements for prospective models (RQ
5). The prior analysis displayed that the identified
models lack the simultaneous consideration of the
three important features of risk behavior on a network-
level: risk propagation, risk interdependencies, and
dynamic behavior. We also revealed that not all SCRM
processes are supported yet. The inherent strength of
the BN modeling technique is the consideration of risk
interdependencies and the possibilities to also take
risk propagation into account. It lacks the portrayal
of dynamic features. To accomplish modeling this
aspect, BN models can be combined with dynamic

Fig. 7: Comparison of identified simulation techniques
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indicators that can be tracked by modern sensors for
a multitude of risks and integrate the data with the
decision making models. The new trend in digitization
could lead to a stronger symbiosis between SCRM and
supply chain event management system.

5 CONCLUSION

This review has identified 57 SCDR models and the
corresponding modeling techniques between 2001
and early 2018. Unlike prior reviews, we have not
only presented the corresponding literature but also
have derived relevant risk-specific criteria from the
literature and from our introduced definition of SCDR
models. All models have been evaluated based on these
requirements. Subsequently, modeling techniques have
also been analyzed. Our analysis indicates that the
modeling approaches fulfill a great number of important
risk-specific requirements, but still a lot of progress
needs to be made. Especially on the main network
level, risk characteristics, namely risk propagation, risk
interdependency, and dynamic risk behavior, should be
given more emphasis by future research efforts. Also
the data basis of the approaches could be given a more
central role to increase the models’ validity. We could
also detect the individual strengths and weaknesses of
the modeling techniques and proposed numerous ways
of combining and expanding the techniques to cover
more risk characteristics synchronously. In addition to
that, prospective models should put more emphasis on
resilience and risk control. The trend of sensor-based
digitization will connect prospective decision models
to real-time information more and increase their
consideration. We therefore expect the research field
of SCRM to further grow, expand, and play a more
decisive role for academics and practitioners.
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