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ABSTRACT 

In this paper, we present a new approach to design a 
multi-criteria supply chain network (SCN) under 
uncertainty. Demands, supplies, production costs, 
transportation costs, opening costs are all considered 
as uncertain parameters. We propose an approach 
based on evidence theory (ET), analytic hierarchy 
process (AHP) and two-stage stochastic 
programming (TSSP). First, we integrate ET and 
AHP in order to include several criteria (social, 
economical, and environmental) and the uncertain 
experts decisions for selecting the best set of 
facilities. Second, we combine evidential data mining 
and TSSP approach: (i) to design the SCN, (ii) to take 
into account the uncertainty of supply chain 
parameters, and (iii) to reduce scenarios number by 
retaining only the significant ones. Finally, we 
illustrate the model with computational study to 
highlight the practicality and the efficiency of the 
proposed method. 
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1. INTRODUCTION

The most challenging strategic issues that face 
business organizations today are in the area of Supply 

Chain (SC). SC is a network of suppliers, factories, 
warehouses, and distribution centers through which 
raw materials are procured, transformed, and 
delivered to customers. The success of a SC depends 
on the most basic decision of SC management, which 
influences all other decision levels. The topic of 
designing a SC is called supply chain network design 
(SCND). According to Chopra and Meindl [10], 
SCND problem comprises the decisions regarding the 
number and location of production facilities, the 
capacity of each facility, the assignment of each 
market region to one or more  
locations, and supplier selection for sub-assemblies, 
components and materials. Extensive reviews 
surveying various issues in this area are available, for 
example, in [19]. Indeed, building a sustainable 
supply chain nowadays has become the ultimate 
objective of intelligent organizations, where the goal 
is not only to minimize common costs, but also to 
integrate multi-criteria in the SCND and to reduce 
vulnerability due to uncertainty, by reducing possible 
sources of losses [19, 30, 35]. 
In this paper, we deal with the design of a multi-
criteria SCN under uncertain environment in order to 
satisfy customers and to respect environmental, 
social, and economical requirements. We consider a 
multi-criteria, multi-level, single product, uncertain 
SC parameters and single period SCND problem. The 
network has three levels: suppliers, production plants 
and customers. We propose a new approach based on 
evidence theory (ET), analytic hierarchy process 
(AHP) and two-stage stochastic programming (TSSP) 
to design a SCN under uncertainty. In this work, our 
most significant contributions are the following:(i) 
we integrate experts decisions uncertainty, 
environmental, social and economical aspects in the 
SCND problem using the BF-AHP method, (ii) we 
apply the ET, which is a strong formalism in 
modelling uncertainties, to define the most relevant 
scenarios that can be used in the TSSP model. The set 
of scenarios are mined from an expert opinion 
database with evidential data mining, (iii) we conduct 
a comprehensive set of numerical studies. 
Consequently, we reach some useful managerial 
insights. 
The rest of the paper is organized as follows. In 
section 2, we detail the literature review. In section 3, 
the basics of ET are highlighted from the transferable 
belief model interpretation [41]. In section 4, the new 
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based belief SCND approach is detailed. Section 5 
includes application of the proposed model and offers 
an analysis of the computational results. Finally, 
conclusions are drawn and perspectives are discussed 
in section 6. 
 
2. LITERATURE REVIEW  
 
The business environment under which a SCN 
operates is unknown and critical parameters such as 
customer demands, costs, quantities, and capacities 
are uncertain. The importance of uncertainty in 
SCND has encouraged researchers to handle 
stochastic parameters in SC problems [9, 20, 49]. 
Various modelling approaches have been developed 
to deal with this complex problems, such as 
probability theory, fuzzy sets theory [51], possibility 
theory [7, 50], and the evidence theory [37]. 
In the area of stochastic SCND problems, scenario-
based approaches such as TSSP result in more 
models [2, 4, 35, 42, 45, 46]. Generally, in these 
studies, the first stage decisions belong to the 
strategic decision level, and second stage decisions 
are tactical and operational decisions are made. For 
instance, Mir Hassani et al. [24] presented a TSSP 
model to design a SCN with uncertain demand 
scenarios. The first stage decisions concern the 
location of plants and distribution centers and the 
setting of their capacity levels. The second stage 
decisions concern the optimization of production and 
distribution quantities. Santoso et al. [35] proposed a 
TSSP for a multi-product SCND problem including 
suppliers, processing facilities, and warehouses. They 
also proposed an algorithm for solving the problem 
and they used it for two realistic SCD problems. 
Azaron et al. [4] developed a multi-objective 
stochastic programming approach for SCD under 
uncertainty. They considered numerous uncertain 
parameters such as: demands, supplies, processing, 
transportation, and capacity modification costs. The 
common points of these proposed approaches are: (i) 
minimizing cost or maximizing profit as a single 
objective is often the optimization focus. Literature 
surveys conducted by Seuring et al. [36] and 
Benjaafar et al. [5] have identified a growing need for 
developing quantitative models, methods and 
approaches in sustainable SCND, (ii) in most multi-
objective SCND approaches, only demand is 
considered as the uncertainty source [16], (iii) in 
most SCND problems under uncertainty only a few 
scenarios can be considered in the optimization 
process due to the complexity of the problem. 
Although in most practical situations, the number of 
possible scenarios is large. According to [19] an 
importance based sampling approach must be 
developed to ensure that all important plausible facets 
are covered in the small sample of scenarios selected. 

In literature, existing analytic hierarchy process 
approaches are applied to facilitate location 
problems, where logistic actors are not considered in 
the selection criteria [3, 44]. Tuzkaya et al. [43] 
included qualitative and quantitative criteria 
(benefits, opportunities, costs and risks), to assess 
and to select undesirable facility locations. Kinra and 
Kotzab [18] suggested a simple AHP model to 
include constraints such as government regulations, 
policy, infrastructural and political conditions, to find 
the best location of an industrial park. Few papers 
integrated ET in SC problems one of them is Wu and 
Barnes [48], which used the ET for formulating 
criteria to use in partner selection decisionmaking in 
agile supply chains. Wu [48] proposed a supplier 
selection in a fuzzy group setting involving decisions 
balancing a number of conflicting criteria and 
opinions from different experts. In addition, only a 
few works got interested in integrating data mining 
tools in the SC problems [8, 26] despite their various 
applications [22]. Data mining techniques can be 
used to improve strategic and operational planning 
activities [25]. However, SC literature lacks works 
that integrate imperfect data mining, which is an 
appropriate tool in case of treating uncertain and 
imprecise data. More especially, no evidential data 
mining approach has been applied to SCND 
problems. 
 
3. THE EVIDENCE THEORY 

 
The ET (also called Belief Function Theory (BFT))

1 
was initiated by the work of Dempster [11] on 
upper and lower probabilities. The development of 
the theory formalism is owed to Shafer [37]. Shafer 
has shown the benefits of ET to model uncertain 
knowledge. In addition, it allows knowledge 
combination obtained through various sources and 
it offers more flexibility than the probabilistic 
framework does. Shafer’s book [37] has been 
followed by a large literature on interpretation, 
application, and computation [15, 41]. For example, 
Smets [39, 41] introduced a non probabilistic 
interpretation of ET called Transferable Belief 
Model (TBM). In the remainder, we build our 
contribution based on the Transferable Belief Model 
(TBM). 
The Basic Belief Assignment (BBA) m is a function 
defined on each subspace of the set of disjunctions 
of 2Θ and taking values in [0, 1]. Θ is the of all 
possible exclusive and exhaustive answers 
(hypothesis) for the treated question and is called 
frame of discernment. It does not only represent all the 
confidence granted to each possible response for the 

                                                           
1 In this paper we conjugate the use of the two designations of the 
theory. The belief function theory designation is associated to the 
AHP method whereas ET is linked to evidential data mining. 
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treated question but also the ignorance and the lack of 
certitude. A BBA m is modelled as follows: 

�∑ 𝐴𝐴 ⊆ 𝛩𝛩
 
𝑚𝑚(𝐴𝐴) =  1             (1) 

 
Each hypothesis A having a belief value greater than 
0 is called a focal element. m(∅) is called the 
conflictual mass. A BBA is called normal whenever 
the emptyset is not a focal element and this 
corresponds to a closed world assumption [38], 
otherwise it is said subnormal and it corresponds to 
an open world assumption [41]. The closed world 
assumption is the assumption that what is not 
known to be true must be false. The Open World 
Assumption is the opposite. For more details, an 

example of BBA modelling is shown in Annex A 
(Example 3). 
When several information, modelled by BBAs, are 
induced from different experts, a fusion process is 
required. The ET proposes several operators of 
combination. One of the most used is the 
conjunctive rule of combination. This combination 
operator is used when sources (i.e. experts) are 
distinct and reliable. For two sources S1 and S2 having 
respectively m1 and m2 as BBAs, the conjunctive rule 
of combination is written as follows: 
 
 

For an event  can be written as follows: 
 
 
 
 
 

 
 
where  corresponds to the conflict mass and 
highlights the degree of contradiction between the 
combined sources (for further details the reader can 
refer to Annex A, Example 4). 
Decision functions allow the determination of the most 
suitable hypothesis from a BBA for the treated 
problem. In the TBM model, the pignistic level (i.e., 

decision level) allows to make decision from classical 
probabilities. The pignistic probability [40], denoted 
BetP , was introduced by Smets [40] within its TBM 
model. Not only does it makes probability 
transformation but it also takes into consideration the 
composite nature of focal elements. Formally, BetP is 
defined as follows: 

 

         

                     (4) 
 

An example of pignistic probability use is provided in 
Example 5 in Annex A. 
In the following, we introduce the TSSP 
formulation to design a SCN answering a real-world 
problem. 
 
4. SOLUTION APPROACH 

 
This section presents a real-world SCND problem. 
The potential design of a supply chain being 
considered by a textile company in France (Fig. 1) is 
composed of suppliers, production centres, and 
customers. Several criteria should be integrated into 
the model, such as the total SC cost, jobless level, the 
quality of the location and the environmental 
aspect. These criteria may affect the selection of the 
facility locations, which is important for making an 
optimal decision. The company is only interested in 
the SCND problem from the strategic point of view 
and model it as a multi-level, single-product and 

single-period problem. Accordingly, the modelling 
assumptions are as follows: 
1. production costs [35], transportation costs [4], 

demands [29] and supplied quantities [35] are 
uncertain parameters. 

2. products are aggregated into a single product 
shipped through the SC network in a unique long-
term period 

In the following, we detail the steps of our approach. 
This approach, as illustrated in Fig. 2, has four steps. 
The first step consists in storing the experts’ 
preferences over a set of criteria in order to process 
them with BF-AHP. In fact, the second step is related 
to the best locations selection i.e., where facilities can 
be set-up respecting all criteria: environmental, 
social, and economical criteria. The BF-AHP method 
[6, 12, 13], that provides a convenient framework for

 

𝑚𝑚(∅) ≥  0 

(3) 

(2) 
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 dealing with uncertain data given by experts, is then 
used to select the best alternative. As highlighted in 
[14], classical AHP method is often criticized for its 
use of an unbalanced scale of estimations and its 

inability to adequately handle uncertainty and 
imprecision associated with the mapping of the 
decision maker’s perception to a crisp number. In

 
Figure 1: Supply Chain Network 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

addition, BF-AHP tolerates that an expert may be 
uncertain about his level of preference due to 
incomplete information or knowledge, inherent 
complexity and uncertainty within the decision 
environment. Therefore, BF-AHP is an interesting 
approach to tackle uncertainty and imprecision within 
the pair-wise comparison process, in particular, when 
the decision maker’s judgements are represented as a 
qualitative assessment. Once the best facilities are 
located, in the third step, experts are questioned over 
the optimal SCN configuration (called also scenarios) 
to meet customer demand minimizing the sum of 
costs. To select a subset of scenarios from a large set 
given by experts, for solving the TSSP model, the 
evidential data mining tools are used. Evidential data 
mining is very suited to handle large uncertain data 
and to associate a support value (degree of frequency 
of an item within the database) to each selected 
scenario. So, the last step combines ET and the TSSP 
model. These steps will be detailed in the following 
subsections. 
 

Belief Function AHP 

The introduction of the BFT to the AHP method has 
brought flexibility in data treatment. Indeed, 
imprecision and uncertainty are handled in the 
decisionmaking problem. The first step of this method 
consists in the identification of the set of criteria Ω 
and alternatives Θ. The expert can not only express 
his preferences on the selected criteria but he can also 
do it on a set of them. Once the sets of criteria and 
alternatives are defined, the expert tries to specify his 
preferences in order to obtain the criterion weights and 
the alternative scores in terms of each criterion. 
Interested readers may refer to [13, 14] for more detail 
of pair-wise comparisons and to preference elicitation. 
At the alternative level, unlike the criterion level, the 
expert tries to express his preferences over the sets 
of alternatives regarding each criterion. Accordingly, 
and to better imitate the expert reasoning, we 
indicate that to define the influences of the criteria 
on the evaluation of alternatives; we might use 
conditional belief
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Figure 2: Approach steps 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
that could be written as follows: 

 

mΘ [cj ](Ak ) = ωk , ∀Ak ⊂ 2Θ and cj ∈ Ω       (5) 
 

where Ak represents a subset of 2Θ , ωk is the eigen 
value of the kth sets of alternatives regarding the 
criterion cj . mΘ [cj ](Ak ) means that we know the 
belief about Ak regarding cj . The BF-AHP aims 
through this step to combine the obtained 
conditional belief with the importance of their 
respective criteria to measure their contribution. 
Since the group of criteria and alternative that 
respectively belong to the frame of discernment Ω 
and Θ are different, the extension for constructed 
BBA is needed. At criterion level, the BBA mΩ

 is extended to Θ× Ω with the use of Equation (21)2. 
On the other hand, at alternative level, the 
ballooning extension [28] is applied with the use of 
Equation (23)3. The ballooning extension consists 
at expressing a BBA, initially defined in the frame 
of discernment Θ, in a higher set Θ × Ω. Finally, we 
might combine the obtained BBA with the 
importance of their respective criteria to measure 
their contribution. To that purpose, we will apply the 
conjunctive rule of combination so that: 

                                                           
2 Details about vacuous extension of Equation (21) are provided in 
the appendix. 
3 Details about operation in product space in belief function theory 
are provided in the appendix. 
4
 Details about marginalization of Equation (22) are provided in 

the appendix. 

where mΩ↑Θ×Ω is the vacuous extension of mΩ 
which reflects the importance of criteria. In order to 
make a decision, a marginalization4 is operated on 
the resulting BBA over Θ with Equation (22). the 
decision is made over a set of probabilities found 
with the application of the pignistic probability 
(Equation (4). 
4.2 Evidential data mining and stochastic 
programming 
In this step, we address the problem of reducing the 
number of scenarios in TSSP. The location of the 
facilities already computed with BF-AHP, we aim 
now at finding the best scenarios (i.e., the best 
configuration). To do so, we access the opinion of 
several experts over set of parameters such as: the 
quantity (pieces), the transport unitary cost, the 
production unitary cost and the demand. To handle 
these imprecise data (opinions), an uncertain data 
mining approach (or commonly) 
 

called uncertain pattern mining approach) is required. 
To deal with this problem, we propose the Expert 
Decision Consensus Approach (EDeCA) based on 
evidential data mining [17, 34], which reduces the 
dimensions of the original scenarios set to a smaller 
set of scenarios. The choice of evidential data mining 
is motivated by its ability to model expert’s opinions 
even if they suffer from imprecision and uncertainty 
[21]. In addition evidential data mining provides a 
generalizing framework for binary and other imperfect 
data mining 

𝑚𝑚𝛩𝛩 × Ω 
=  [𝑄𝑄 ∩  𝑗𝑗 = 1, … , 𝑚𝑚𝑚𝑚

𝛩𝛩 
[𝑐𝑐𝑗𝑗 ]

⇑ 𝛩𝛩 × Ω 
]𝑄𝑄 ∩  𝑚𝑚Ω ↑ 𝛩𝛩 × Ω                    (6) 
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mining toolboxes [33]. Then, the stochastic program 
is solved with the smaller set of scenarios in order to 
obtain a representative solution in reasonable time. In 
this subsection, we recall some basics of evidential 
data mining.  
An evidential database is a database in which expert 
opinions are expressed with basic belief assignment 
functions. Let us consider the set of n experts E = 
{E1, · · · , En}. Each expert Ej gives his opinion with 
regards to a parameter (e.g the cost) i ∈ I that takes its 

value from the set Θi. The set is all 
possible choices (k ∈ [1, 2|Θi|]) that any expert i I 
and a parameter i, a BBA may pick for the parameter 

i. For an expert Ej and a parameter i, a BBA 

 is modelled as follows: 

 
 
 
 

The constructed evidential database that summarizes 
expert opinions is denoted EDB. A focal element is 
commonly called an item. An itemset is a set of focal 
elements belonging to different parameters. In this 
work, an itemset having a size I (itemset containing 
items from each parameter) represents a feasible 
scenario. 
Example 1 Table 1 shows an example of two experts 
having their opinions captured in an evidential 
database. The cost parameter takes its values 
withinthe frame of discernment Θ1 = {High1, Low1} 
whereas the quantity parameter are within 
Θ2={High2, Low2}. 𝑚𝑚𝑖𝑖

𝛩𝛩({𝑤𝑤𝑖𝑖𝑘𝑘}) highlights how 
confident expert j is that the parameter should be ωi

k. 
  

 

Table 1: Supply chain parameter’s evidential database EDB 
 
 

 

 

 

 

 

 
The first row of the database means the expert E1 
thinks that the cost should have a high value but he 
remains confused (m1

Θ1 (Θ1) > 0). Expert E2 is sure 
that the quantity should remain high (i.e, m2

Θ2 
({High2}) = 1). High1 is an item whereas High1 × 
Low2 is a scenario. 
Once the supply chain parameter’s evidential 
database is constructed, the main task is to mine 
interesting scenarios. As it is the case for the other 
variant of data mining, the aim

is to retrieve items and itemsets that have a degree 
of presence (aka support) within the database 
greater than or equal to a fixed threshold. In our 
problem, it means that we are aiming at retrieving 
valuable information supported by the majority of 
experts. In this part, we introduce a new measure 
that we denote as the precise measure. This measure 
computes the pertinence of all scenarios. For an item 
ωi

k, the precise measure is computed as follows: 

 
 
 
 
 
 

(7) 

(8) 

(9) 
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1
0 

As illustrated above, the Pr(.) is a measure that 
computes the probability of presence of an item in a 
single BBA. The Pr is also assimilated to the  
pignistic probability in case of ωi

k ∈ Θi. For an
 

itemset
 

and satisfying the constraint

 
its support (i.e., pertinence) for a

 
single expert Ej is computed with the precise measure 
as follows: 
 
 
 

Finally, the support of X in the entire database is 
deduced as follows: 

 
 
 
 
Example 2 Let us consider the Table 1. The precise 
measure of the scenarios X1={Highc, Lowq } and X2 = 
{Highc, Highq } is computed as follows: 

 

 
 
 
 
 
 

priority than X2 if and only if PrEDB (X1) > PrEDB 
(X2). 
 
Despite, the frequency threshold constraint, the 
number of frequent scenarios could still be to great to 
be evaluated. Therefore, several approaches for 
selecting only the top-k best scenarios were provided 
[47]. A top-k mining approach consists in retaining 
only the k frequent scenarios with the highest utility. 
In this work, we fix k parameter proportionally to the 
size of the database such as 𝑘𝑘 = �𝑛𝑛∗500

100
� (five percent 

of the database). Therefore, the number of retrieved 
pertinent scenario do never exceed 5% of the 
database size. For the utility function, it is derived 
from Proposition 1 where only those frequent 
scenarios maximizing the support are retained. 
Using the set of facility locations obtained solving the 
belief AHP and the reduced set of scenarios along 
with their precise measures obtained by solving 
EDeCA approach, we design the supply chain 
network of the problem solving the TSSP presented 
in Equations (12) to (19). 
We consider a network G=(NO, AC) (Fig. 1), where 
NO is the set of nodes and AC is the set of arcs. The 
SCN consists of the set of suppliers S, the set of 
processing facilities Θ and the set of customers C. R 
is the set of scenarios. The SC configuration 
decisions consist in deciding which of the 
manufacturing facilities to open and the quantity of 
products transported through the SCN. We associate 
a binary variable yi to the location decisions, yi=1, if 
a manufacturing facility i is built, and 0 otherwise. 
We let xij denote the flow of product from a node i to 
a node j of the network where (ij) ∈ AC.  

 (10) 

(11) 

The precise measure aims at estimating the 
support of each itemset. In our problem, an 
itemset is assimilated to a scenario. The more the 
support grows for a scenario, the more priority it 
gains. supported by the majority of experts. The 
scenarios having the highest precise value (i.e., 
support) gather somehow the consensus of studied 
experts. Therefore, the approach of extracting 
pertinent scenarios with the precise measure is 
denoted as Expert Decision Consensus Approach 
(EDeCA). In addition, the precise support 
provides very precise estimation of the support  
comparatively to the other state-of-the-art 
alternative which is the belief support [17]. As 
demonstrated recently in [31, 34], the belief support 
provides a pessimistic estimation of the support 
and therefore do not outperform the precise 
support. 
In pattern mining the definition of support is related 
to a threshold called minsup [1]. Let us assume a 
threshold minsup and a scenario X, X is considered 
as frequent as long as PrEDB (X) ≥ minsup. The 
threshold limits the number of retained scenarios. 
Only scenarios with a support greater or equal to 
minsup are retained in the set of frequent scenarios 
FS. The threshold is generally fixed by the expert. 
However, it still can be automatically computed to 
select only pertinent scenarios [27]. In Example 2, for 
a minsup fixed to 0.4, X2 is considered as a frequent 
scenario. 
 
Proposition 1 Let us consider the database EDB of n 
experts expressing their opinions over I parameters. 
Let us consider two scenarios X1 and X2. X1 has more 
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We model the SC as two-stage stochastic program 
(see [2, 4, 35, 45, 46]). For reasons of simplicity, we 
denote the set of feasible solution of first-stage 
decisions yi by Y . The uncertain parameter in this 
formulation is: production costs, transportation costs, 
opening costs, demands and supplies. The first stage 
consists in determining the configuration decisions y, 
and the second stage consists of the quantities of 
goods to transport throughout the supply chain 
network in an optimal way. Note that ξ represents the 
random vector corresponding to the uncertain 
parameters. The design objective is to minimize the 
sum of investment costs and expected future variable 
costs. The strategic SCN that we intend to establish, 
should answer the following questions under 
uncertain environment: (i) how many manufacturing 
plants should be installed (ii) where the new sites 
should be located 

(iii) how much goods the production plant should 
handle (iv) what products quantities to transport 
throughout the supply chain network. The 
minimization of the sum of investment can be written 
as follows:  

 
 
subject to:  

𝑦𝑦 ∈ 𝑌𝑌 ⊆ {0, 1𝑛𝑛} 
 
with Q(y, ξs) being the solution of the following 
second stage problem: 
 

 

 
 
 
 

subject to: 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
where oci denotes the opening cost for building 
facility i, and ρs is the proba bility of each scenario. 
The first-stage consists of configuration decisions y, 
the objective is to minimize investment costs and 
future operating costs (Equation 12). The second-
stage consists of optimal production and 
transportation of products through the SC based on 
the configuration and the realized uncertain scenario 
(Equation 14). fj

s is the unit production cost of each 
product at facility j and µs presents unit 
transportation cost of each product and βij is the 
distance between i and j on arc (ij). Constraint (15) 
requires that the total flow of products from a 
supplier j, should be less than the supply Aj at that 
node. Constraint (16) enforces the flow conservation 
of products across each processing node j. Constraint 
(17) represents the capacity constraint who requires 

that the total processing requirement of all products 
flowing into a processing node j should be smaller 
than the capacity Fj

max of facility j if it is built (yj=1). 
If facility j is not built (yj=0) the constraint will force 
all flow variables xij=0 for all i ∈ N . Constraint (18) 
requires that the total flow of products sent to a 
customer j should exceed the demand dk of customer 
k. Finally, constraints (19) and (20) enforce the non-
negativity of the flow variables. 

 
5. COMPUTATIONAL EXPERIMENTS 
 
In this section, we present the results of the 
analysis. In order to evaluate the model, we present 
an example of SC. The SCN consists of 4 possible 
locations for production center, 3 suppliers from 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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whom goods are supplied, and 10 customers that the 
company serves. We propose an ET-TSSP model in 
which we involve 100 experts’ scenarios and 4 
criteria: investment costs, environmental risks, 
location, social aspect. The uncertain parameters 
are: the experts decisions in the selection of the best 
facility location set, customer demand, transportation 
costs, production costs and supplied quantities. One 
hundred scenarios are proposed by several experts 
for TSSP and all these scenarios are reduced to 5 
best scenarios using the evidential data mining tool. 
The TSSP problem was solved using ILOG CPLEX 
12.0 solver. All the experiments are conducted on a 
PC with Intel Core 2 Duo 2.19 GHz and 2 GB RAM. 

A comparison between the deterministic approach 
and the stochastic solution is performed next. 
5.1 Belief AHP results 

Before running the TSSP model, the first step is to 
obtain a set of potential facility locations. As 
mentioned in section 4, the potential set of facilities 
needs to be computed using BF-AHP. To select the 
best facility locations, we relied on four important 
criteria: Ω={investment costs (C1), environmental 
risks (C2), location (Accessibility, closeness to 
suppliers and customers) (C3), social aspect (C4)}. 
We have to select the best locations from four 
location alternatives: Θ={L1, L2, L3, L4} as shown in 
Figure 3: 

 
 
Figure 3: AHP hierarchy: Find the best facility location. 

 
 
 
Table 2 shows the weight assigned to each criterion 
given by an expert of the textile company. These 
weights are then converted into a BBA mΩ. 
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Table 2: Weights assigned to criteria according to the experts’ 

opinion Criteria {C1} {C2} {C3, C4}

 Priority 

{C1} 1 3 1
 0.31 

{C2} 1
 1 5 0.35 

{C3, C4} 4 1
 

 
1 0.34 

 
 
 

In the same way as criterion level, the expert is asked to 
evaluate subsets of alternatives according to each 
criterion Ci. With these

 comparison judgement matrix, the priority values are 
obtained in regard to each criterion (Table 3). 
 

 
Table 3: Priority values 

 

 

 

 

Table 4 summarizes the ballooning extension 
operated on a conditional alternative BBA 
according to C1. Indeed, from priority values, an 

extension is operated following Equation (23). This 
operation is repeated for the other priority values 
obtained according to criteria. 

 
Table 4: Ballooning extension mΘ [C1] ⇑Θ×Ω of conditional BBA mΘ [C1] 
 

conditional bbm Ballooning extension Values 

mΘ [C1]({L1}) {(L1, C1), Θ × {C2, C3, C4}} 0.28 

mΘ [C1]({L2 ∪ L3}) {(L2, C1), (L3, C1), Θ × {C2, C3, C4}} 0.33 
mΘ [C1]({L4}) {(L4, C1), Θ × {C2, C3, C4}} 0.19 
mΘ [C1](Θ) Θ × Ω 0.20 

 
 

The final results are shown in Table 5 in which the 
resulting BBA is detailed. This BBA is obtained, 
with Equation (6) after combining extended 

conditional BBAs (mΩ [Ci]⇑Θ×Ω ) with criteria BBA 
(mΩ ) which is previously extended to Θ×Ω and 
marginalization on Θ (Equation (22)). 

 
Table 5: The obtained BBA mΘ×Ω↓Θ and the confidence of location possibilities 

 

{L1} 0.13 

{L2} 0.07 

{L3} 0.30 

{L4} 0.06 

{L1, L3} 0.04 

{L2, L3} 0.14 

{L1, L2, L4} 0.10 
Θ 0.09 

   ∅ 0.07   
 
 

 

{C1} Priority {C2} Priority {C3} Priority {C4} Priority 

L1 0.28 L3 0.73 L1 0.24 L3 0.35 

{L1 ∪ L3} 0.33 {L1 ∪ L2 ∪ L4} 0.27 L2 0.33 Θ 0.65 

L4 0.19   Θ 0.43   Θ 0.20       
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After the pignistic transformation, the results 
obtained from the computation of the weights using 
the BF-AHP method for four criteria and four 
alternatives are shown in Table 6. The priority 
weights of the four alternatives (L1, L2, L3, L4) are 

0.22, 0.21, 0.45, 0.12 respectively. They imply that 
the third alternative (L3) and the first alternative 
(L1) are the best facility locations. These locations 
are then used in the second step to design the SCN 
using TSSP. 

 

Table 6: The final BBA mΘ and locations’ priority 
 

Alternative priority 

L1 0.22 

L2 0.21 
L3 0.45 

   L4 0.12   
 
 

5.2 EDeCA results 
The tests were conducted in a database that contains 
100 records. A part of the records are collected from 
experts of the textile company. This study case was 
also presented to several scientists. All experts were 
allowed to give more than one opinion if they desire. 

Each expert gives values over four parameters: 
quantity Ai (pieces), transport unitary cost 
(€/pcs.km), production unitary cost (€/pc) and 
demand (pcs). These informations are depicted in 
Table 7. 

 
 

Table 7: Expert’s chosen parameters database 
 

Expert Quantity Ai (pieces) Transport  unitary cost 
(AC/pcs.km) 

Production unitary cost 
(AC/pc) 

Demand (pcs) 

Expert 1 2381409 0.26 5.05 1148838 

Expert 2 2399271 0.33 7.04 1077142 

· · · · · · · · · · · · · · · 
Expert 100 2046663 0.2 5.2 1060153 

Mean 2222917 0.3 7.64 1259580 

Min 2002113 0.11 5.01 1001389 

Max 2499212 0.50 9.89 1497426 

Median 2214462 0.3 7.73 1250971 

Standard deviation 147200 0.12 1.48 145745 

 
 

In order to obtain its corresponding evidential 
database, an evidentialization process [32] is operated 

using ECM algorithm [23]. The resulting evidential 
database is illustrated in Table 8. 
 

 
 

Table 8: Expert’s chosen parameters evidential database 
 

 

Expert BBA Quantity Θ1 = 
{ω1, ω2, ω3, ω4, ω5} 

BBA Transport Θ2 = 
{ω1, ω2, ω3} 

BBA Production Θ3 = 
{ω1, ω2, ω3, ω4, ω5} 

BBA Demand  Θ4 = 
{ω1, ω2, ω3, ω4, ω5} 

1    1    1    1    1 

mΘ1 2 

2    2    2 
Θ2 3 

3    3    3    3    3 
Θ3 2 

4    4    4    4    4 
Θ4    1 5 

1  ({ω1 }) = 0.02 m1  ({ω2 }) = 0.021 m1  ({ω3 }) = 0.85 m1  (ω4 ∪ ω4 ) = 0.94 
Expert  1 mΘ1 (ω2 ∪ ω4) = 0.07 mΘ2 (ω1 ∪ ω2 ∪ ω3) = mΘ3 (ω1 ∪ ω2) = 0.04 mΘ4 (ω2 ∪ ω5) = 0.01 

1 1 1 

mΘ1    3 4 

1 2 2 2 

0.82 Θ2 4 

1 3 3 

Θ3 3 

1 4 4 

Θ4 

1   (ω1 ∪ ω1 ) = 0.89 m1   ({ω2 }) = 0.11 m1   ({ω3 }) = 0.05 m1   (Θ4) = E 
mΘ1 Θ2 Θ3 

1   (Θ1) = E m1   (Θ2) = E m1   (Θ3) = E 
· · · · · · · · · · · · · · · 

mΘ1 3 Θ2 1 Θ3 1 Θ4 4 

100({ω1 }) = 0.07 m100({ω2 }) = 0.04 m100({ω3 }) = 0.99 m100({ω4 }) = 0.16 

Expert 100 mΘ1 ({ω5}) = 0.03 mΘ2 (ω2 ∪ ω3) = 0.09 mΘ3 (Θ3) = E mΘ4 (ω1 ∪ ω4) = 0.07 
mΘ1 3 5 Θ2 Θ4 4 5 

100(ω1 ∪ ω1 ) = 0.86 m100(Θ2)  = 0.87 m100(ω4 ∪ ω4 ) = 0.57 
mΘ1 Θ4 

100(Θ1) = E m100(Θ4) = E 
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Since the evidentialization relies on the ECM [23] 
approach, Fig. 4 details same approach is applied for 
the parameter Transport unitary cost, Production 
unitary cost and demands. The results of these 

evidentialization process are presented in Fig. 5, Fig. 
6 and Fig. 7 respectively. 
 

 

Figure 4: Cluster’s centers for the Quantity parameter 
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Figure 5: Cluster’s centers for the Transport unitary cost 
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The results of the EDeCA approach are 
illustrated in Table 9 and 10. EDeCA retrieved over 
900 frequent scenarios from which we distinguish 
two categories. The first category regroups over 
500 imprecise scenarios which we denote as the 
vague ones. Indeed, to each single parameter, the

EDeCA approach retains a vague focal element 
(disjunction of hypothesis). These kinds of scenario 
are important since it gives the decision maker an 
idea about the values that he must avoid and those 
he must consider the top-k best scenarios and they. 
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Figure 6: Cluster’s centers for the Production unitary cost 
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Fig. 7 Cluster’s centers for the Demands 
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are shown in Table 9 where k is fixed to 5. So, these 
scenarios are then ranked by their pertinence. The 
second category regroups the precise frequent 
scenarios i.e., those constituted by simple focal 
elements (singleton hypothesis). The precise 

scenarios point out which parameter’s value the 
decider has to choose. The top-5 precise scenarios 
are shown in Table 10. 
 

 
 
Table 9: 5 best vague scenarios 

 

Scenario Pertinence 

{ω1 ∪ ω2 ∪ ω3 ∪ ω4}, Θ2, {ω1 ∪ ω2 ∪ ω3 ∪ ω4}, Θ4 
1 1 1 1 3 3 3 3 

0.773 
{ω1 ∪ ω2 ∪ ω3 ∪ ω4}, Θ2, {ω1 ∪ ω2 ∪ ω3 ∪ ω5}, Θ4 

1 1 1 1 3 3 3 3 0.712 
{ω1 ∪ ω3 ∪ ω4 ∪ ω5}, Θ2, {ω1 ∪ ω2 ∪ ω3 ∪ ω4}, Θ4 

1 1 1 1 3 3 3 3 0.709 
{ω1 ∪ ω3 ∪ ω4 ∪ ω5}, Θ2, {ω1 ∪ ω2 ∪ ω3 ∪ ω5}, Θ4 

1 1 1 1 3 3 3 3 0.699 
{ω1 ∪ ω2 ∪ ω3 ∪ ω4}, Θ2, {ω1 ∪ ω2 ∪ ω4 ∪ ω5}, Θ4 

1 1 1 1 3 3 3 3 
0.689 
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Table 10: 5 best precise scenarios 
 

 

Scenario 
 

 ω3     3     2     1 

1 , ω2 , ω3 , ω4 ω4     2     1     5 

1 , ω2 , ω3 , ω4 ω4     2     1     4 

1 , ω2 , ω3 , ω4 ω4     3     2     3 

1 , ω2 , ω3 , ω4 ω4     3     3     4 

1 , ω2 , ω3 , ω4 
 

 
 

By comparing the pertinence in Table 9 and 10, we 
notice that the vague scenarios present a better 
pertinence than the precise ones. This result was to 
be expected due to the nature of the pertinence 
formula (Equation (11)) and its pignistic probability 
basics. The more the considered scenario is vague, the 
more pertinence it gathers. On the other hand, our 
EDeCA approach gives a classification of both 
scenario categories. Even if the pertinence of the 
precise scenarios is low, EDeCA shows a ranked list 
of the best scenarios to rely on. 
5.3 Two-stage stochastic model results 
In this step, we study the configuration of the supply 
chain network. By using the set of facility locations 
and the reduced set of scenarios obtained in the 
preview step we solve the mathematical model (12)-
(19). The values for the SC uncertain parameters are 
the same as in Table 10. In order to generate a 
balanced network configuration between these various 
scenarios, we applied stochastic programming with 
equal probabilities. Table 11 summarizes the results of 
the TSSP model, deterministic (DET), and normal 
distribution model (NDM). TSSP solution is 
obtained solving the TSSP model considering the 5 
scenarios of EDeCA results and the best two facility 
locations L1 and L3. 
TSSP4 solution is obtained solving the TSSP model 
considering the 5 scenarios of EDeCA results and the 
four location alternatives: Θ = {L1, L2, L3, L4}. 
A deterministic model is used to solve each scenario 
individually (S1,..,S5). Scenarios (S6,..,S10) are 
generated assuming that the uncertain parameters fit 
to normal distribution. 

Table 11 reveals that, for this case, the TSSP model 
contains 148 variables and 235 constraints. As we can 
see, for 5 scenarios the CPU Time is equal to 195 
seconds, and it can easily go up with the growing of 
scenario numbers and the size of the supply chain. 
The SC configuration proposed is to open two 
production plants L1 and L3. The affectation of 
customers to each production facility is depicted in 
Fig. 8. To satisfy customers demand the production 
plant L1 should deliver products to 3 customers (C7, 
C8, C9) and L3 should supply products to customers 
(C1, C2, C3, C4, C5, C6, C10). The solution of TSSP4 
is to open two production facilities L3 and L4. The 
production plant L3 delivers the products to four 
customers (C1, C2, C3, C5) and L4 supplies the 
other customers. The best facilities selected in this 
case are different than the facilities obtained solving 
the BF-AHP, because only the economic aspect was 
considered in the TSSP model. The solutions obtained 
using the TSSP model are feasible only because of 
the high capacity of the suppliers and the 
nonconsideration of the capacity constraints. 
Comparing the TSSP solution to the deterministic 
ones the structure of the SCN is the same in the all 
scenarios. This can be explained by the low 
uncertainty of the SC parameters and the small size 
of the case study. The NDM model exhibits two 
different SCNs, for scenarios (S6,S7,S8,S9) the 
optimal solution is to open two facilities L1 and L3 
and for scenario S10, the SC configuration proposed 
is to open one production plant (L1). 

 
 

Pertinence Probability of scenario 

0.015 0.28 

0.012 0.22 
0.009 0.17 
0.009 0.17 
0.009 0.16 
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Figure. 8: Customers affectation 
 
 

 
 

 

 

 

 

 

 

6. CONCLUSIONS 
 

In this paper, we introduce a multi-criteria SCND 
under uncertainty model based on the evidence 
theory. The main contribution of the model is the 
integration of multi-criteria aspect and uncertainty of 
SC parameters in the design of SCN using the belief 
AHP and TSSP. 
The approach contains two steps, the aim of the first 
step is to select the best locations where plants can be 
opened. We used the belief AHP method to integrate 
uncertain information given by experts and to 
consider many criteria in the selection: 
environmental, social, and economical. In the second 
step, we consider that all SC parameters of the 

model are uncertain: transportation costs, 
production costs, customers demand and supplied 
quantities. So, we used the evidential data mining to 
select a subset of scenarios from a large set given by 
experts and TSSP to model the problem. 
Several possible future research avenues can be 
defined in this context. For instance, addressing 
uncertainty in the suppliers capacity, the production 
capacity and the location of customers may be 
attractive direction for future research. Also, testing 
the approach on large scale SCN is not addressed in 
this paper. Therefore the evaluation of the model on 
large SCN and comparing its efficiency to other 
methods can be an interesting development in this 
area 

 
Table 11 Computational Results 
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A EXAMPLES ON BELIEF FUNCTION 

OPERATIONS DESCRIBED IN SECTION  
 
Example 3 Let us assume a company that plans to 
relocate its factory to optimize its revenues. The 
factory should be either set up in the downtown of a 
big city or in its suburbs for supplying transport 
constraints i.e., Ω = {Downtown, Suburb}. Thus, 
three locations have emerged and are discussed i.e., 
Θ = {Paris, Lille, Berlin}. Both Ω and Θ are frames 

of discernment. One expert has been questioned 
about the location problem and below is his answer 
modelled with a BBA. 
 
 
 
 
mΘ(Θ)=0.3 means that the expert has some doubts 
over the given location possibilities.This uncertainty 
is expressed by assigning a value to the frame of 
discernment Θ. . 
Example 4 Let us consider Θ={Paris; Lille; Berlin}. 
Two experts have been questioned over the best 
possible location for the factory. Both opinions are 
highlighted in the following BBAs: 
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Thus, the result of the combination sum is equal to 
 
 
 
 
 
For example 𝑚𝑚1

𝛩𝛩({𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃})𝑥𝑥 𝑚𝑚2
𝛩𝛩({𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃}) +

  𝑚𝑚1
𝛩𝛩({𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃}) 𝑥𝑥 𝑚𝑚2

𝛩𝛩(𝛩𝛩) + 𝑚𝑚2
𝛩𝛩({𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃}) 𝑥𝑥 𝑚𝑚1

𝛩𝛩(𝛩𝛩) 
 
Example 5 Assuming the BBA obtained through the 
conjunctive rule of combination in Example 4. To 
make a final decision, it is possible to recover a set of 
probabilities from a BBA with the pignistic 
probability as follows: 

 
 
 
 
B Operation on the product space in belief 
function theory 
 
Let U = {X, Y, Z, . . .} be a set of variables, each one 
has its frame of discernment. Let X and Y be two 
disjoint subsets of U . Their frames are the product 
space of the frames of the variables they 
include.Given a BBA defined on X, its vacuous 
extension on X × Y denoted mX↑X×Y is given by: 

 

 
 
 
 
Example 6 Let us assume the example depicted in 
Example 3. The BBA defined on Θ will be defined in 
a finer frame Θ × Ω using the vacuous extension as 
follows:

 

 
 
 
 
 
 
A BBA defined on a product space X × Y may be 
marginalized on X by transferring each mass mX×Y 
(B) from B ⊂ X × Y to its projection on X: 

 
 
 

 
 
 

 
where Proj(B↓X) denotes the projection of B onto X. 
 
Example 7 Let us assume the following BBA defined 
over Θ × Ω:

 
 
 
 

 

 

 

 

 

 

 

Marginalizing of mΘ×Ω on the coarser frame Θ gives 
the following mΘ×Ω↓Θ : 

 

 

 

 

(21) 

(22) 
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Let mX [B] represent the beliefs X conditionally on B 
a subset of Y , i.e., in a context where B holds. The 

ballooning extension is defined as: 
 

 
 

mX [B]⇑X×Y (A × B ∪ X × B) = mX [B](A), ∀A ⊂ X.                (23) 

 

 

Example 8 Let us consider Θ={Paris, Lille, Berlin}, 
Ω = {Downtown, Suburb} and the conditional BBA 
mΘ[Downtown]({Paris})=0.6. Its corresponding BBA 
on Θ × Ω is obtained by taking into consideration 
{Paris, Downtown} and all the instances of Θ for the 
complement of {Downtown}. 

mΘ[Downtown]⇑Θ×Ω({(Paris, Downtown), (Paris, 
Suburb), (Lille, Suburb),(Berlin, Suburb)}) = mΘ 
[Downtown]({Paris}). 
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