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ABSTRACT 
In this article, we have developed a two level supply 
chain model for defective items with controllable 
lead time in an imperfect production process. Trade 
credit offered by the supplier to the retailer is 
considered. The lead time demand follows a normal 
distribution and the lead time is crashed. The vendor's 
setup cost is reduced by an extra added cost. A 
mathematical model is derived to obtain the optimal 
number of shipments delivered from vendor to buyer 
in a production cycle, the order quantity, lead time 
and setup cost with the objective of minimizing the 
total expected cost. The theory developed in this 
article is illustrated using a numerical example. 
Managerial insights and the effect of key parameters 
are studied through sensitivity analysis to analyze the 
behavior of model. 
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1. INTRODUCTION  
Inventory control is the activity which organizes the 
availability of items to the customers. Managing 
inventory of an organization plays a vital role in the 
supply chain. A supply chain is a network of facilities 
that procure raw materials, transform them into 
intermediate goods and then to final products, and 
finally deliver the products to customers through a 
distribution system that includes an inventory system. 
Thus, it spans procurement, manufacturing, and 
distribution with an effective inventory management 
as one key element. To fill orders efficiently, it is 
necessary to understand the linkages and 

interrelationships of all the key elements of the 
supply chain. In addressing this issue, many 
researchers such as Ghare and Schrader (1963), 
Covert and Philip (1973), Ouyang et al. (2002), Teng 
(2002), Udayakumar and Geetha (2014, 2016), Jaggi 
et al. (2015), Geetha and Udayakumar (2015, 2016) 
developed the economic order quantity (EOQ) model 
under various assumptions. Recently, Udayakumar 
and Geetha (2017) established an EOQ model with a 
two level storage facility under trade credit policy. 
Therefore, integrated management of the supply 
chain has become a key success factor for some of 
today's leading companies. Coordination between the 
two different business entities (vendor and buyer) is 
an important mean to increase the competitive 
advantage because coordinative strategy lowers the 
supply chain cost and increases their revenue. The 
cooperation between vendor and buyer for improving 
the performance of inventory control has received a 
great deal of attention, and the integration approach 
has been studied for years. The study of the 
integrated supplier-retailer inventory model was first 
advocated by Goyal (1996). Subsequently, many 
researchers investigated this issue under various 
assumptions. Hill (1997) developed an integrated 
single-vendor single-buyer production inventory 
model with a generalized policy. Sarmah et al. (2006) 
gave an intended literature review to cover the entire 
gamut of supply chain coordination mechanism. Yao 
et al. (2007) established the supply chain integration 
model based on vendor managed inventory. Giri and 
Sharma (2014) gave manufacturer’s pricing strategies 
in cooperative and non-cooperative advertising 
supply chain under retail competition.  Rajkumar et 
al. (2016) presented a doctoral dissertation in 
logistics and supply chain management. 
It is common yet unrealistic to assume that all the 
units produced are of good quality. The classical 
Economic Order Quantity (EOQ) model assumes that 
the items produced are of perfect quality, which is 
usually not the case in real production.  Huang (2001) 
developed an integrated inventory model for supplier 
and retailer with defective items. In his article, he 
incorporates the view of the integrated supplier-
retailer approach into the inventory model with 
imperfect items to determine the optimum ordering 
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quantity and number of deliveries per order. Goyal et 
al. (2003) gave a simple integrated production policy 
of an imperfect item for vendor and buyer.  Hsu & 
Hsu (2012 & 2013) derived an integrated single-
vendor single-buyer production-inventory model for 
items with imperfect quality and inspection errors. 
Hsu & Hsu (2014) gave a supplement to an EOQ 
model with imperfect quality items, inspection errors, 
shortage backordering, and sales return.  Kundu and 
Chakraborti (2015) derived an integrated multi stage 
supply chain inventory model with imperfect 
production process.   
In some practical situations, lead time and ordering 
cost can be controlled and reduced in various ways.  
When the demand during the cycle period is not 
deterministic but is stochastic, lead time becomes an 
important issue and its control leads to many benefits. 
The lead time can be reduced by an additional 
crashing cost.  In this direction, Goyal (2003) gave a 
note on controlling the controllable lead time 
component in the integrated inventory model. 
Ouyang et al. (2007) established an integrated 
vendor-buyer inventory model with quality 
improvement and lead time reduction.  Annadurai 
and Uthayakumar (2010) gave the model with 
investment in setup cost with defective items. 
Trade credit is an essential tool for financial growth 
for many businesses.  In order to encourage sales, 
such a credit is given.  During this credit period the 
retailer can accumulate and earn interest on the 
encouraged sales revenue.  In spite of the extension 
period the supplier charges interest on the unpaid 
balance. Hence, the permissible delay period 
indirectly reduces the cost of holding cost. Also trade 
credit offered by the supplier encourages the retailer 
to buy more products. Hence, the trade credit plays a 
major role in inventory control for both the supplier 
as well as the retailer. The integration between the 
vendor and the buyer for improving the performance 
of inventory control with permissible delay in 
payment plays the major role to minimize the joint 
total cost for any business firm. Ouyang et al. (2008) 
established an optimal strategy for an integrated 
system with variable production rate when the freight 
rate and the trade credit are both linked to the order 
quantity. Ouyang et al. (2015) considered the model 
with capacity constraint and order size dependent 
trade credit. Uthayakumar and Priyan (2013) derived 
two echelon inventory models with controllable setup 
cost and lead time under service level constraint with 
permissible delay in payment.  Moreover, in the 
model developed by Uthayakumar and Priyan (2013), 
have considered two echelon inventory systems with 
delay in payment and controllable setup cost under 
service level constraint. In the present work, we have 
developed a single vendor single buyer integrated 
inventory model with permissible delay in payment 
and controllable lead time in an imperfect production 
process through service level constraint. An 
inspection policy is taken to identify the defective 

items. The lead time crashing cost is assumed to be 
an exponential function of lead time.  The lead time 
demand follows a normal distribution and the lead 
time is crashed to minimize the joint total expected 
cost per unit time.  The vendor's setup cost is reduced 
by some capital investment. Numerical example is 
provided to illustrate the model. Sensitivity analyses 
with managerial implications are discussed. 
The rest of the paper is organized as follows. The 
assumptions and notations which are used throughout 
the article are presented in Section 2. In Section 3, 
mathematical model to minimize the total cost is 
formulated. In Section 4, the solution methodology 
comprising some useful theoretical result to find the 
optimal solution is given. Computational algorithm is 
designed to obtain the optimal values in the Section 
5.  Numerical example is provided in Section 6 to 
illustrate the theory and the solution procedure. 
Following this, in Section 7, Sensitivity analysis for 
the major parameters of the inventory system has 
been analyzed. Managerial implications with respect 
to the sensitivity analysis were given in Section 8. 
Finally, we draw a conclusion in Section 9. 
 
2. NOTATIONS AND ASSUMPTIONS 
 
2.1 Notations 
The following notations are used throughout this 
article. 
𝐷𝐷  Buyer’s annual demand rate in units per unit 

time 
𝑃𝑃 Vendor’s production rate in units per unit time, 

𝑃𝑃 > 𝐷𝐷 
𝑘𝑘 Buyer’s ordering cost per order 
𝜀𝜀 Probability that an item produced is defective 
𝑓𝑓(𝜀𝜀)  The probability density function of 𝜀𝜀 
ℎ𝑏𝑏  Buyer’s holding cost rate per unit per unit time 
ℎ𝑣𝑣  Vendor’s holding cost rate per unit per unit 

time 
𝐹𝐹  The freight (transportation) cost per shipment 

from the vendor to the buyer 
𝑀𝑀  The length of the trade credit period, in years 
𝐼𝐼𝑝𝑝  Interest charge to be paid per $ per year 
𝐼𝐼𝑒𝑒  Rate of Interest earned for the buyer $ per year 
𝐼𝐼𝑣𝑣  Rate of Interest for calculating vendor’s 

opportunity interest loss due to the delay 
payment, $ per year 

𝑐𝑐𝑏𝑏 Unit purchase cost paid by the buyer 
𝑝𝑝 Unit selling price for the buyer, 𝑐𝑐𝑏𝑏 < 𝑝𝑝 
𝑟𝑟 Reorder point of the buyer 
𝐵𝐵(𝑟𝑟) Expected demand shortage at the end of the 

cycle 
𝑋𝑋 The lead time demand in units per unit time, a 

random variable 
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Decision Variables 
𝑄𝑄 Buyer’s order quantity in units 
𝐿𝐿 The length of lead time for the buyer 
𝑘𝑘𝑣𝑣  Setup cost per production run for the vendor 
𝑛𝑛  The number of lots in which the product is 

delivered from the vendor to the buyer in one 
production cycle, a positive integer  

2.2 Assumptions 
1. The inventory model deals with single-buyer and 

single-vendor with single item. 
2. The buyer orders a lot size of 𝑄𝑄 units and the 

vendor produces 𝑛𝑛𝑛𝑛 units with a finite production 
rate 𝑃𝑃, (𝑃𝑃 > 𝐷𝐷 ) in units per unit time in one 
setup but ships in quantity 𝑄𝑄 units to the buyer 
over 𝑛𝑛 times.  The buyer’s shortages are 
completely backordered. 

3. The production process is imperfect and may 
produce defective items.  On arrival, the items are 
inspected in a complete inspection process with 
an inspection cost of  𝑐𝑐𝑖𝑖 and all defective items 
are returned to the vendor in the next shipment.  
A defective item incurs a cost of 𝑐𝑐𝑑𝑑 for the 
vendor.  The vendor will sell the defective items 
at a reduced price to a secondary market at the 
end of the production period within each cycle. In 
other words, 𝑐𝑐𝑑𝑑  is the difference between the 
regular and the reduced selling prices. 

4. The percentage of defective items produced 𝜀𝜀 has 
a probability density function 𝑓𝑓(𝜀𝜀).  To guarantee 
that the vendor has enough production capacity to 
produce the buyer’s annual demand, it is assumed 
that 𝜀𝜀 < 1 − 𝐷𝐷/𝑃𝑃.   

5. The inventory is continuously reviewed and the 
order is placed whenever the inventory level falls 
to the reorder point 𝑟𝑟. The reorder point 𝑟𝑟 =
𝐷𝐷𝐷𝐷 + 𝜏𝜏𝜏𝜏√𝐿𝐿, where 𝐷𝐷𝐷𝐷 is the expected demand 
during lead time, 𝜏𝜏 the safety factor and 
satisfies 𝑃𝑃𝑃𝑃(𝑋𝑋 > 𝑟𝑟) = 𝑞𝑞, 𝑞𝑞 represents the 
allowable stock-out probability during lead time  
and 𝜎𝜎, the standard deviation of the lead time 
demand. 

6. The lead time crashing cost per order 𝑅𝑅(𝐿𝐿), is 
assumed to be an exponential function of 𝐿𝐿 and is 

defined as 𝑅𝑅(𝐿𝐿) = �
0             𝑖𝑖𝑖𝑖 𝐿𝐿 = 𝐿𝐿0

𝑒𝑒𝐶𝐶/𝐿𝐿  𝑖𝑖𝑖𝑖 𝐿𝐿𝑏𝑏 ≤ 𝐿𝐿 < 𝐿𝐿0
, where 

𝐶𝐶 is a positive constant and 𝐿𝐿0 and 𝐿𝐿𝑏𝑏 represent 
the existing and the shortest lead times, 
respectively. 

7. 𝑀𝑀 is less than the reorder point, i.e. credit period 
should not be longer than the time at which next 
order is placed. 

 

3. MODEL DEVELOPMENT 
 
In this section, based on the above notations and 
assumptions, we have developed a model for vendor-
buyer integrated inventory system for defective 
items, with controllable lead time and setup cost 
under permissible delay in payment to minimize the 
joint total expected cost per unit time subject to 
service level constraint on the buyer. The inventory 
pattern for the vendor and the buyer is shown in 
Figure 1. 
3.1 Buyer's expected total cost 
Buyers total expected cost consists of the following 
components: 
1. The Buyer’s ordering cost per unit time is  𝑘𝑘𝑘𝑘

𝑄𝑄
. 

2. Inventory holding cost per unit time is  𝑐𝑐𝑏𝑏 ℎ𝑏𝑏𝑄𝑄
2

. 
3. The total safety stock cost per unit time is the 

sum of the holding cost and interest charged 
4.  i.e.  (ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝)𝑐𝑐𝑏𝑏𝜏𝜏𝜏𝜏√𝐿𝐿. 
5. According to our assumption, the credit period 

cannot be greater than the ordering time.  
Therefore, when the buyer’s permissible delay 
period expires on or before all inventories are 
depleted completely, the buyer can sell the items 
and earn interest with the rate of 𝐼𝐼𝑒𝑒  until the end 
of the credit period 𝑀𝑀.  Hence, the buyer’s 
interest earned per unit time is𝐷𝐷2𝑀𝑀2𝑝𝑝𝐼𝐼𝑒𝑒

2𝑄𝑄
.   

6. In addition, the expected shortage 𝐵𝐵(𝑟𝑟) is 
completely backordered in the previous cycle, 
which is cleared in the beginning of the current 
cycle, therefore, during the trade credit period the 
buyer earns an interest of 𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝑒𝑒𝐵𝐵(𝑟𝑟)

𝑄𝑄
 per unit time. 

On the other hand, the buyer still has (𝑄𝑄 − 𝐷𝐷𝐷𝐷) 
units unsold at the end of the permissible delay.  
Hence, the buyer has a loan for the unpaid 
purchase cost of unsold units with the interest 
charge of 𝐼𝐼𝑝𝑝.  Therefore, the opportunity interest 
cost per cycle time for the unsold items is 

obtained by  (𝑄𝑄−𝐷𝐷𝐷𝐷)2𝑐𝑐𝑏𝑏 𝐼𝐼𝑝𝑝
2𝑄𝑄

.   

7. The lead time crashing cost per unit time is given 
by 𝐷𝐷𝐷𝐷(𝐿𝐿)

𝑄𝑄
. 

Hence the total expected cost per unit time for the 
buyer consists of ordering cost, holding cost, safety 
stock cost, opportunity interest cost, lead time 
crashing cost, interest earned and the transportation 
cost is expressed as 
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𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏(𝑄𝑄, 𝐿𝐿) = 𝑘𝑘𝑘𝑘
𝑄𝑄

+ 𝑄𝑄𝑐𝑐𝑏𝑏ℎ𝑏𝑏
2

+ �ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝�𝑐𝑐𝑏𝑏𝜏𝜏𝜏𝜏√𝐿𝐿   +  (𝑄𝑄−𝐷𝐷𝐷𝐷)2𝑐𝑐𝑏𝑏 𝐼𝐼𝑝𝑝
2𝑄𝑄

+ 𝐷𝐷𝐷𝐷(𝐿𝐿)
𝑄𝑄

− 𝐷𝐷2𝑀𝑀2𝑝𝑝𝐼𝐼𝑒𝑒
2𝑄𝑄

− 𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝑒𝑒𝐵𝐵(𝑟𝑟)
𝑄𝑄

+ 𝐹𝐹𝐹𝐹
𝑄𝑄

         (1) 

 
3.2 Vendor’s expected total cost 
Vendor's total expected cost consists of the following 
components.  
1. The set-up cost is given by 𝑘𝑘𝑣𝑣. 
2. The holding cost for the defective items and good 

quality are ℎ𝑣𝑣 �� 𝑛𝑛𝑛𝑛
2

� 𝜀𝜀
1−𝜀𝜀

�� � 𝑛𝑛𝑛𝑛
𝑃𝑃

� 1
1−𝜀𝜀

���and 

 ℎ𝑣𝑣 � 𝑛𝑛𝑄𝑄2

𝑃𝑃(1−𝜀𝜀)
�1 − 𝑛𝑛

2
� + 𝑛𝑛(𝑛𝑛−1)𝑄𝑄2

2𝐷𝐷
� respectively. 

3. The cost of defective items is  𝑐𝑐𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛
(1−𝜀𝜀)

. 

4. Inspection cost =  𝑐𝑐𝑖𝑖𝑛𝑛𝑛𝑛
(1−𝜀𝜀)

 

5. The vendor’s opportunity interest loss per unit 
time is  𝐼𝐼𝑣𝑣𝑐𝑐𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀. 

Hence, the vendor’s total expected cost per unit time 
compresses, the setup cost, inspection cost, the cost 
of defective items, holding cost and opportunity 
interest loss. Therefore

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣(𝑄𝑄, 𝑛𝑛) = 𝑘𝑘𝑣𝑣𝐷𝐷
𝑛𝑛𝑛𝑛

+ 𝑐𝑐𝑖𝑖𝐷𝐷𝐷𝐷 � 1
1−𝜀𝜀

� + 𝑐𝑐𝑑𝑑𝐷𝐷𝐷𝐷 � 𝜀𝜀
1−𝜀𝜀

� + ℎ𝑣𝑣 �𝑄𝑄𝑄𝑄
𝑃𝑃

�1 − 𝑛𝑛
2

� 𝐸𝐸 � 1
1−𝜀𝜀

� + (𝑛𝑛−1)𝑄𝑄
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛
2𝑃𝑃

𝐸𝐸 � 𝜀𝜀
(1−𝜀𝜀)2�� + 𝐼𝐼𝑣𝑣𝑐𝑐𝑏𝑏𝑀𝑀𝑀𝑀      (2) 

 

 

3.3 The integrated vendor-buyer inventory 
model 

The total cost per unit time for the vendor-buyer 
integrated inventory system under permissible delay 
in payment is given by 

 
 

 

 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑛𝑛) = 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏(𝑄𝑄, 𝐿𝐿) + 𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣(𝑄𝑄, 𝑛𝑛) 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑛𝑛) =
𝑘𝑘𝑘𝑘
𝑄𝑄

+
𝑄𝑄𝑐𝑐𝑏𝑏ℎ𝑏𝑏

2
+ �ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝�𝑐𝑐𝑏𝑏𝜏𝜏𝜏𝜏√𝐿𝐿 +

 (𝑄𝑄 − 𝐷𝐷𝐷𝐷)2𝑐𝑐𝑏𝑏 𝐼𝐼𝑝𝑝

2𝑄𝑄
+

𝐷𝐷𝐷𝐷(𝐿𝐿)
𝑄𝑄

−
𝐷𝐷2𝑀𝑀2𝑝𝑝𝐼𝐼𝑒𝑒

2𝑄𝑄
−

𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝑒𝑒𝐵𝐵(𝑟𝑟)
𝑄𝑄

+
𝐹𝐹𝐹𝐹
𝑄𝑄

+
𝑘𝑘𝑣𝑣𝐷𝐷
𝑛𝑛𝑛𝑛

+ 𝑐𝑐𝑖𝑖𝐷𝐷𝐷𝐷 �
1

1 − 𝜀𝜀
� + 𝑐𝑐𝑑𝑑𝐷𝐷𝐷𝐷 �

𝜀𝜀
1 − 𝜀𝜀

�

+ ℎ𝑣𝑣 �
𝑄𝑄𝑄𝑄
𝑃𝑃

�1 −
𝑛𝑛
2

� 𝐸𝐸 �
1

1 − 𝜀𝜀
� +

(𝑛𝑛 − 1)𝑄𝑄
2

+
𝑛𝑛𝑛𝑛𝑛𝑛
2𝑃𝑃

𝐸𝐸 �
𝜀𝜀

(1 − 𝜀𝜀)2�� + 𝐼𝐼𝑣𝑣𝑐𝑐𝑏𝑏𝑀𝑀𝑀𝑀     

(3) 
 
where 𝐸𝐸[𝑥𝑥] denotes the expected value of 𝑥𝑥. 
3.4 Buyer’s Service level constraint 
The lead time demand 𝑋𝑋 follows a normal probability 
distribution function with mean 𝐷𝐷𝐷𝐷 and standard 
deviation 𝜎𝜎√𝐿𝐿and the reorder point, 𝑟𝑟 = 𝐷𝐷𝐷𝐷 + 𝜏𝜏𝜏𝜏√𝐿𝐿, 
where 𝜏𝜏 is the safety factor and 𝜎𝜎, the standard 
deviation of the lead time demand.  Therefore, the 
buyer's expected demand shortages at the end of the 
cycle is given by 

𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+ = 𝐵𝐵(𝑟𝑟) = � (𝑥𝑥 − 𝑟𝑟)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
∞

𝑟𝑟
=  𝜎𝜎√𝐿𝐿 𝜓𝜓(𝜏𝜏) 

where 𝜓𝜓(𝜏𝜏) = 𝜑𝜑(𝜏𝜏) − 𝜏𝜏[1 − 𝜙𝜙(𝜏𝜏)] > 0 and 𝜑𝜑, 𝜙𝜙 are 
the standard normal p.d.f and cumulative distribution 
function respectively. In developing, the joint total 

expected cost of the system, the stockout cost term 
for the buyer is not considered. Normally, it is 
complicated to calculate the penalty costs associated 
with a shortage, as a stock-out event may include 
uncertain manipulates. As a result, authors like Jha 
and Shankar (2009, 2013), Moon et. al. (2014), 
Annadurai and Uthayakumar (2010) assumed that the 
buyer has set a target service level corresponding to 
the proportion of demand to be satisfied directly from 
the available stock.  Hence, a service level constraint 
puts a limit on the proportion of demand that is not 
met from the stock. From assumption (5), the actual 
proportion of demand that is not met from the stock 
should not exceed the desired value of 𝛼𝛼. Hence, the 
Service level constraint can be expressed as 

  
Expected demand shortages at the end of the cycle for a given safety factor

Quantity available for satisfying the demand per cycle
≤ 𝛼𝛼 

 

i.e. ,         
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𝐵𝐵(𝑟𝑟)
𝑄𝑄

≤ 𝛼𝛼 

When the lead time demand follows normal 
distribution, Service level constraint is given by 

𝜎𝜎√𝐿𝐿 𝜓𝜓(𝜏𝜏)
𝑄𝑄

≤ 𝛼𝛼 

Therefore, the joint total expected cost per unit time 
for the vendor-buyer integrated inventory system 
under permissible delay in payment is given by 

 

 
𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛)

=
𝐷𝐷
𝑄𝑄

�𝑘𝑘 +
𝑘𝑘𝑣𝑣

𝑛𝑛
+ 𝑅𝑅(𝐿𝐿) − 𝑀𝑀𝑀𝑀𝐼𝐼𝑒𝑒𝜎𝜎√𝐿𝐿 𝜓𝜓(𝜏𝜏) + 𝐹𝐹 +

𝐷𝐷𝑀𝑀2

2
�𝑐𝑐𝑏𝑏𝐼𝐼𝑝𝑝 − 𝑝𝑝𝐼𝐼𝑒𝑒��

+
𝑄𝑄
2

��ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝�𝑐𝑐𝑏𝑏 + ℎ𝑣𝑣 �
𝐷𝐷
𝑃𝑃

[2 − 𝑛𝑛]𝐸𝐸 �
1

1 − 𝜀𝜀
� + (𝑛𝑛 − 1) +

𝑛𝑛𝑛𝑛
𝑃𝑃

𝐸𝐸 �
𝜀𝜀

(1 − 𝜀𝜀)2���

+ �ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝�𝑐𝑐𝑏𝑏𝜏𝜏𝜏𝜏√𝐿𝐿 + 𝑐𝑐𝑖𝑖𝐷𝐷𝐷𝐷 �
1

1 − 𝜀𝜀
� + 𝑐𝑐𝑑𝑑𝐷𝐷𝐷𝐷 �

𝜀𝜀
1 − 𝜀𝜀

� + 𝐷𝐷𝐷𝐷𝑐𝑐𝑏𝑏�𝐼𝐼𝑣𝑣 − 𝐼𝐼𝑝𝑝� 

subject to 

𝜎𝜎√𝐿𝐿 𝜓𝜓(𝜏𝜏)
𝑄𝑄

≤ 𝛼𝛼                                                                                             (4) 

3.5 Investment in setup cost reduction 
In this section, the effects of investments on setup 
cost reduction is studied.  Here we have considered 
the setup cost 𝑘𝑘𝑣𝑣 as a decision variable and have 
sought seek to minimize the sum of the capital 
investment cost and the total cost of the integrated 
inventory system. In real life, the setup cost can be 
controlled and reduced through efforts such as 
procedural changes, worker training and specialized 
acquisition.  According to Nasri et al. (1990), the 
implementation of electronic data interchange may 
reduce the fixed setup cost and result in new 
replenishment policy and the corresponding lower 
cost. Many researchers such as Porteus (1985), 
Paknejad and Affisco (1987), Kim et al. (1992), Hall 
(1983), Uthayakumar and Priyan (2013) discussed 
several classes of setup cost reduction functions.  In 
this article, we have assumed that the relationship 
between the setup cost reduction and capital 
investment by the logarithmic investment function. In 
many business transactions, the logarithmic function 
is used to determine the present and the future value 
of investments. 
Hence, the logarithmic investment function discussed 
here is not only an interesting special case but also a 
practical one.  Specifically for the logarithmic 

investment functions the setup cost 𝑘𝑘𝑣𝑣 declines 
exponentially as the investment amount 𝐼𝐼𝑘𝑘𝑣𝑣  increases, 
i.e., (following Nasri et al. (1990)) 
𝑘𝑘𝑣𝑣 = 𝑘𝑘𝑣𝑣0  exp (−𝛿𝛿𝐼𝐼𝑘𝑘𝑣𝑣) for 0 ≤ 𝐼𝐼𝑘𝑘𝑣𝑣 < ∞ 
where  𝑘𝑘𝑣𝑣0 is the original setup cost and 𝛿𝛿 is the 
percentage decrease in 𝑘𝑘𝑣𝑣 per dollar increase in 𝐼𝐼𝑘𝑘𝑣𝑣 . 
Taking the natural logarithm of both sides of the 
above equation yields, 

𝐼𝐼𝑘𝑘𝑣𝑣(𝑘𝑘𝑣𝑣) = 𝐴𝐴 − 𝐵𝐵 𝑙𝑙𝑙𝑙 (𝑘𝑘𝑣𝑣) for 0 < 𝑘𝑘𝑣𝑣 ≤ 𝑘𝑘𝑣𝑣0  

where 𝐴𝐴 = 𝑙𝑙𝑙𝑙 (𝑘𝑘𝑣𝑣0)

𝛿𝛿
 and 𝐵𝐵 = 1

𝛿𝛿
  

 Hence, the logarithmic investment function is stated 
as 

𝐼𝐼𝑘𝑘𝑣𝑣(𝑘𝑘𝑣𝑣) = 𝐵𝐵 𝑙𝑙𝑙𝑙 �
𝑘𝑘𝑣𝑣0

𝑘𝑘𝑣𝑣
�  𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑘𝑘𝑣𝑣 ≤ 𝑘𝑘𝑣𝑣0  

where 1
𝐵𝐵
 is the fraction of the reduction in 𝑘𝑘𝑣𝑣 per 

dollar increase in investment. Thus the annual cost of 
such an investment is  𝜉𝜉 𝐼𝐼𝑘𝑘𝑣𝑣(𝑘𝑘𝑣𝑣), where 𝜉𝜉 , is the 
annual fractional cost of capital investment. 
Now, the problem is to find the optimal lot size, lead 
time, setup cost and the total number of deliveries in 
a production cycle that minimize the joint total 
expected cost, that is,

min 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛)

=   𝜉𝜉 𝐼𝐼𝑘𝑘𝑣𝑣(𝑘𝑘𝑣𝑣) +
𝐷𝐷
𝑄𝑄

�𝑘𝑘 +
𝑘𝑘𝑣𝑣

𝑛𝑛
+ 𝑅𝑅(𝐿𝐿) − 𝑀𝑀𝑀𝑀𝐼𝐼𝑒𝑒𝜎𝜎√𝐿𝐿 𝜓𝜓(𝜏𝜏) + 𝐹𝐹 +

𝐷𝐷𝑀𝑀2

2
�𝑐𝑐𝑏𝑏𝐼𝐼𝑝𝑝 − 𝑝𝑝𝐼𝐼𝑒𝑒��

+
𝑄𝑄
2

��ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝�𝑐𝑐𝑏𝑏 + ℎ𝑣𝑣 �
𝐷𝐷
𝑃𝑃

[2 − 𝑛𝑛]𝐸𝐸 �
1

1 − 𝜀𝜀
� + (𝑛𝑛 − 1) +

𝑛𝑛𝑛𝑛
𝑃𝑃

𝐸𝐸 �
𝜀𝜀

(1 − 𝜀𝜀)2���

+ �ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝�𝑐𝑐𝑏𝑏𝜏𝜏𝜏𝜏√𝐿𝐿 + 𝑐𝑐𝑖𝑖𝐷𝐷𝐷𝐷 �
1

1 − 𝜀𝜀
� + 𝑐𝑐𝑑𝑑𝐷𝐷𝐷𝐷 �

𝜀𝜀
1 − 𝜀𝜀

�

+ 𝐷𝐷𝐷𝐷𝑐𝑐𝑏𝑏�𝐼𝐼𝑣𝑣 − 𝐼𝐼𝑝𝑝�                                                                        
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subject to         0 < 𝑘𝑘𝑣𝑣 < 𝑘𝑘𝑣𝑣0 

𝜎𝜎√𝐿𝐿 𝜓𝜓(𝜏𝜏)
𝑄𝑄

≤ 𝛼𝛼                                                                                      (5) 

 

4. SOLUTION PROCEDURE 
 
In order to find the minimum total cost for this 
constrained nonlinear programming problem, we first 
have temporarily ignored the service level constraint 
(SLC), 0 < 𝑘𝑘𝑣𝑣 < 𝑘𝑘𝑣𝑣0 and have relaxed the integer 
requirement on 𝑛𝑛, then have tried to find the optimal 
solution of 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛)with classical 
optimization technique.  
For fixed 𝑄𝑄 and 𝐿𝐿 ∈ (𝐿𝐿𝑏𝑏 , 𝐿𝐿0), 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛) can be 
proved to be a convex function of 𝑛𝑛. 
Proposition 1:   
For fixed 𝑄𝑄, 𝑘𝑘𝑣𝑣 and 𝐿𝐿 ∈ (𝐿𝐿𝑏𝑏 , 𝐿𝐿0), 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛) is 
convex in 𝑛𝑛. 
Proof:  Taking the first and the second partial 
derivatives of 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑛𝑛) with respect 𝑛𝑛, we have 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛)
𝜕𝜕𝜕𝜕

= −
𝐷𝐷𝑘𝑘𝑣𝑣

𝑄𝑄𝑄𝑄2

+
𝑄𝑄ℎ𝑣𝑣

2
�
−𝐷𝐷
𝑃𝑃

𝐸𝐸 �
1

1 − 𝜀𝜀
� + 1

+
𝐷𝐷
𝑃𝑃

𝐸𝐸 �
𝜀𝜀

(1 − 𝜀𝜀)2�� 

  
𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛)

𝜕𝜕𝑛𝑛2 =
2𝐷𝐷𝑘𝑘𝑣𝑣

𝑄𝑄𝑄𝑄3 > 0. 

Therefore, for fixed 𝑄𝑄, 𝑘𝑘𝑣𝑣  
and 𝐿𝐿 ∈ (𝐿𝐿𝑏𝑏 , 𝐿𝐿0),𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛) is convex in 𝑛𝑛. 
Now, for fixed 𝑛𝑛 we take the first order partial 
derivatives of 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛) with respect to 
𝑄𝑄, 𝑘𝑘𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎  𝐿𝐿 ∈ (𝐿𝐿𝑏𝑏 , 𝐿𝐿0) respectively, we obtain

 
 
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑄𝑄, 𝐿𝐿,  𝑘𝑘𝑣𝑣 , 𝑛𝑛)

𝜕𝜕𝜕𝜕
= 

 − 𝐷𝐷
𝑄𝑄2 �𝑘𝑘 + 𝑘𝑘𝑣𝑣

𝑛𝑛
+ 𝑅𝑅(𝐿𝐿) − 𝑀𝑀𝑀𝑀𝐼𝐼𝑒𝑒𝜎𝜎√𝐿𝐿 𝜓𝜓(𝜏𝜏) + 𝐹𝐹 + 𝐷𝐷𝑀𝑀2

2
�𝑐𝑐𝑏𝑏𝐼𝐼𝑝𝑝 − 𝑝𝑝𝐼𝐼𝑒𝑒�� 

+
1
2

��ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝�𝑐𝑐𝑏𝑏 + ℎ𝑣𝑣 �
𝐷𝐷
𝑃𝑃

[2 − 𝑛𝑛]𝐸𝐸 �
1

1 − 𝜀𝜀
� + (𝑛𝑛 − 1) +

𝑛𝑛𝑛𝑛
𝑃𝑃

𝐸𝐸 �
𝜀𝜀

(1 − 𝜀𝜀)2���   

 

and 
𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿,  𝑘𝑘𝑣𝑣 , 𝑛𝑛)

𝜕𝜕 𝑘𝑘𝑣𝑣
=

𝐷𝐷
𝑛𝑛𝑛𝑛

−
𝜉𝜉𝜉𝜉
 𝑘𝑘𝑣𝑣

    

(7) 
By setting the above equations (6) and (7) to zero, 
we obtain 

 

𝑄𝑄 = �
2𝐷𝐷 �𝑘𝑘 + 𝑘𝑘𝑣𝑣

𝑛𝑛 + 𝑅𝑅(𝐿𝐿) − 𝑀𝑀𝑀𝑀𝐼𝐼𝑒𝑒𝜎𝜎√𝐿𝐿 𝜓𝜓(𝜏𝜏) + 𝐹𝐹 + 𝐷𝐷𝑀𝑀2

2 �𝑐𝑐𝑏𝑏𝐼𝐼𝑝𝑝 − 𝑝𝑝𝐼𝐼𝑒𝑒��

�ℎ𝑏𝑏 + 𝐼𝐼𝑝𝑝�𝑐𝑐𝑏𝑏 + ℎ𝑣𝑣 �𝐷𝐷
𝑃𝑃 [2 − 𝑛𝑛]𝐸𝐸 � 1

1 − 𝜀𝜀� + (𝑛𝑛 − 1) + 𝑛𝑛𝑛𝑛
𝑃𝑃 𝐸𝐸 � 𝜀𝜀

(1 − 𝜀𝜀)2��
�

1
2

             

(8) 
 
 
 

 
and    
 

𝑘𝑘𝑣𝑣 =
𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉

𝐷𝐷
 

(9) 

Hence, for fixed 𝑛𝑛 and 𝐿𝐿 ∈ (𝐿𝐿𝑏𝑏 , 𝐿𝐿0), we can obtain 
the optimal values of 𝑄𝑄 & 𝑘𝑘𝑣𝑣. 
 
5. COMPUTATIONAL ALGORITHM  

  
Step 1: Set 𝑛𝑛 = 1. 
Step 2: For each 𝐿𝐿 ∈ [𝐿𝐿𝑏𝑏 , 𝐿𝐿0]  perform (2.1‒2.4). 
2.1 Start with  𝑘𝑘𝑣𝑣1 =  𝑘𝑘𝑣𝑣0. 

  (6) 
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2.2 Substituting  𝑘𝑘𝑣𝑣1 into equation (8) evaluate  𝑄𝑄1. 
2.3 Utilizing  𝑄𝑄1 determine  𝑘𝑘𝑣𝑣2 from equation (9) 
2.4 Repeat (2.2‒2.3) until no change occurs in the 

values of 𝑄𝑄 and 𝑘𝑘𝑣𝑣. Denote the solution  
by�𝑄𝑄,̇  𝑘𝑘𝑣𝑣̇ �. 

Step 3: Compare  𝑘𝑘𝑣𝑣̇  with 𝑘𝑘𝑣𝑣0. 
3.1 If  𝑘𝑘𝑣𝑣̇ < 𝑘𝑘𝑣𝑣0 then  go to step 4. 
3.2 If  𝑘𝑘𝑣𝑣̇ > 𝑘𝑘𝑣𝑣0, then for 𝐿𝐿 ∈ [𝐿𝐿𝑏𝑏 , 𝐿𝐿0], let  𝑘𝑘𝑣𝑣̇ = 𝑘𝑘𝑣𝑣0 

and utilize equation (8) (replace 𝑘𝑘𝑣𝑣by 𝑘𝑘𝑣𝑣0), to 
determine the new 𝑄𝑄,̇  then go to step 4. 

Step 4: Let 𝑄𝑄� = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑄𝑄,̇  (𝜎𝜎/𝛼𝛼)√𝐿𝐿 𝜓𝜓(𝜏𝜏)� then 
determine the new  𝑘𝑘𝑣𝑣̇ (the result is denoted as  𝑘𝑘𝑣𝑣����) by 
putting 𝑄𝑄 = 𝑄𝑄� in equation (9) and perform steps 4.1 
and 4.2. 
4.1 If  𝑘𝑘𝑣𝑣���� < 𝑘𝑘𝑣𝑣0, then go to step 5. 
4.2 If  𝑘𝑘𝑣𝑣���� > 𝑘𝑘𝑣𝑣0, then for this 𝐿𝐿 ∈ [𝐿𝐿𝑏𝑏 , 𝐿𝐿0], let 
 𝑘𝑘𝑣𝑣���� = 𝑘𝑘𝑣𝑣0 then go to step 5. 
Step 5: Compute the corresponding 
𝐸𝐸𝐸𝐸𝐸𝐸�𝑄𝑄� ,  𝑘𝑘𝑣𝑣����, 𝐿𝐿, 𝑛𝑛�by putting 𝑄𝑄 = 𝑄𝑄� and  𝑘𝑘𝑣𝑣 =  𝑘𝑘𝑣𝑣���� in 
equation (5).  
Step 6: Find min𝐿𝐿∈[𝐿𝐿𝑏𝑏,𝐿𝐿0] 𝐸𝐸𝐸𝐸𝐸𝐸�𝑄𝑄� ,  𝑘𝑘𝑣𝑣����, 𝐿𝐿, 𝑛𝑛�.  Let 
𝐸𝐸𝐸𝐸𝐸𝐸�𝑄𝑄(𝑛𝑛)

∗,  𝑘𝑘𝑣𝑣(𝑛𝑛)
∗, 𝐿𝐿(𝑛𝑛)

∗, 𝑛𝑛� =
   min𝐿𝐿∈[𝐿𝐿𝑏𝑏,𝐿𝐿0] 𝐸𝐸𝐸𝐸𝐸𝐸�𝑄𝑄� ,  𝑘𝑘𝑣𝑣����, 𝐿𝐿, 𝑛𝑛�, 
then�𝑄𝑄(𝑛𝑛)

∗,  𝑘𝑘𝑣𝑣(𝑛𝑛)
∗, 𝐿𝐿(𝑛𝑛)

∗, 𝑛𝑛� is the optimal solution 
for fixed 𝑛𝑛. 
Step 7: Set 𝑛𝑛 = 𝑛𝑛 + 1, repeat steps 2-6 to 
get  𝐸𝐸𝐸𝐸𝐸𝐸�𝑄𝑄(𝑛𝑛)

∗,  𝑘𝑘𝑣𝑣(𝑛𝑛)
∗, 𝐿𝐿(𝑛𝑛)

∗, 𝑛𝑛�. 
Step 8: If   

𝐸𝐸𝐸𝐸𝐸𝐸�𝑄𝑄(𝑛𝑛)
∗,  𝑘𝑘𝑣𝑣(𝑛𝑛)

∗, 𝐿𝐿(𝑛𝑛)
∗, 𝑛𝑛� ≤

𝐸𝐸𝐸𝐸𝐸𝐸�𝑄𝑄(𝑛𝑛−1)
∗,  𝑘𝑘𝑣𝑣(𝑛𝑛−1)

∗, 𝐿𝐿(𝑛𝑛−1)
∗, 𝑛𝑛 − 1�,  

then go to step 7, otherwise go to step 9. 
Step 9: Set 
�𝑄𝑄(𝑛𝑛)

∗,  𝑘𝑘𝑣𝑣(𝑛𝑛)
∗, 𝐿𝐿(𝑛𝑛)

∗, 𝑛𝑛∗� =
�𝑄𝑄(𝑛𝑛−1)

∗,  𝑘𝑘𝑣𝑣(𝑛𝑛−1)
∗, 𝐿𝐿(𝑛𝑛−1)

∗, 𝑛𝑛 − 1�,  
then 𝐸𝐸𝐸𝐸𝐸𝐸�𝑄𝑄(𝑛𝑛)

∗,  𝑘𝑘𝑣𝑣(𝑛𝑛)
∗, 𝐿𝐿(𝑛𝑛)

∗, 𝑛𝑛∗� is the optimal 
solution. 
 
6. NUMERICAL EXAMPLE  
 
In order to illustrate the above solution procedure, let 
us consider an inventory system with the following 
characteristics: 
𝐷𝐷 = 1000 units/year, 𝑃𝑃 = 1500 units/year, 𝑘𝑘 = 
$200/order, 𝑘𝑘𝑣𝑣0  = $400/setup, ℎ𝑏𝑏= $4/unit/year, ℎ𝑣𝑣= 
$2/unit/year,  𝐹𝐹 = $25/delivery, 𝑐𝑐𝑏𝑏= $25/unit, 𝑝𝑝 = 
$30/unit, 𝜏𝜏 = 0.75 (the value of 𝜓𝜓(𝜏𝜏) can be found 
directly from the standard normal table and is 
0.1311), 𝜎𝜎 = 7 units per week, where 1 year = 52 
weeks, the service level (1 − 𝛼𝛼) = 0.985,  𝑐𝑐𝑖𝑖= 
$0.5/unit, 𝑐𝑐𝑑𝑑= $30/unit, 𝑀𝑀= 0.166year,  𝐼𝐼𝑣𝑣= 
0.02$/year, 𝐼𝐼𝑒𝑒=0.02$/year, 𝐼𝐼𝑝𝑝= 0.06 $/year, 𝐵𝐵= 800, 
𝜉𝜉=0.1/dollar/year and the crashing cost 

𝑅𝑅(𝐿𝐿) = �
0             𝑖𝑖𝑖𝑖 𝐿𝐿 = 10

𝑒𝑒𝐶𝐶/𝐿𝐿  𝑖𝑖𝑖𝑖 1 ≤ 𝐿𝐿 < 10 where 𝐶𝐶= 5. 

If the defective percentage follows a uniform 

distribution with 𝑓𝑓(𝜀𝜀) = �
1
𝛽𝛽

, 0 ≤ 𝜖𝜖 ≤ 𝛽𝛽 

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

then 
 

𝐸𝐸 �
1

1 − 𝜀𝜀
� = �

1
1 − 𝜀𝜀

𝑓𝑓(𝜀𝜀)𝑑𝑑𝑑𝑑 = −
ln (1 − 𝛽𝛽)

𝛽𝛽

𝛽𝛽

0
. 

𝐸𝐸 �
𝜀𝜀

1 − 𝜀𝜀
� = 𝐸𝐸 �

1
1 − 𝜀𝜀

− 1� = 𝐸𝐸 �
1

1 − 𝜀𝜀
� − 1 = −

ln (1 − 𝛽𝛽)
𝛽𝛽

− 1. 

𝐸𝐸 �
1

(1 − 𝜀𝜀)2� =
1

1 − 𝛽𝛽
,   𝑎𝑎𝑎𝑎𝑎𝑎   

𝐸𝐸 �
𝜀𝜀

(1 − 𝜀𝜀)2� = 𝐸𝐸 �
1

(1 − 𝜀𝜀)2 −
1

1 − 𝜀𝜀
� =

1
1 − 𝛽𝛽

+
ln(1 − 𝛽𝛽)

𝛽𝛽
. 

Applying the proposed computational algorithm, the 
optimal values (when𝛽𝛽 = 0.02 ) are 
 𝐿𝐿∗ = 2  weeks,  
𝑄𝑄∗ = 129.37 units, 
 𝑘𝑘𝑣𝑣

∗ = $62.10/setup, 
number of deliveries 𝑛𝑛∗ = 6 and 
 the corresponding minimum integrated optimal total 
expected cost 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄∗, 𝐿𝐿∗,  𝑘𝑘𝑣𝑣

∗, 𝑛𝑛∗) = $3976.80. 
 
7. SENSITIVITY ANALYSIS   
 

Now, we examine the effects of changes in the 
system parameters 𝑘𝑘, 𝑘𝑘𝑣𝑣, 𝐷𝐷, 𝛽𝛽 and 𝑀𝑀 on the optimal 
ordering quantity 𝑄𝑄 and setup cost 𝑘𝑘𝑣𝑣 and total 
expected annual cost. The optimal values of 
𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛 and 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄, 𝐿𝐿, 𝑘𝑘𝑣𝑣 , 𝑛𝑛) are obtained when 
one of the parameters changes (increases or 
decreases) by 25% and all the other parameters 
remain unchanged. The results of sensitivity analysis 
are presented in Table 1.  On the basis of the results 
obtained, the following observations can be made: 
1. From Table-1, we infer that the demand rate 𝐷𝐷 is 

sensitive to its expected total cost.  𝑄𝑄∗ and the 
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integrated expected total 
cost 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄∗, 𝐿𝐿∗,  𝑘𝑘𝑣𝑣

∗, 𝑛𝑛∗) increase while  𝑘𝑘𝑣𝑣
∗ 

decreases with an increase in the value of the 
parameter 𝐷𝐷. The results obtained are given in 
Fig 2. 

2. When the ordering cost 𝑘𝑘 increases, the optimal 
order quantity 𝑄𝑄∗ and the total expected cost 
𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄∗, 𝐿𝐿∗,  𝑘𝑘𝑣𝑣

∗, 𝑛𝑛∗) increases without affecting 
the lead time. The graphical representation is 
shown in  Fig 3. 

3. From Fig 4, we see that, when the holding cost ℎ 
increases, there is an increase in the optimal order 
quantity 𝑄𝑄∗ and the total expected cost 
𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄∗, 𝐿𝐿∗,  𝑘𝑘𝑣𝑣

∗, 𝑛𝑛∗). 
4. From Fig 5, we see that, increase in 𝛽𝛽 , results in 

increase in the expected total cost 
𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄∗, 𝐿𝐿∗,  𝑘𝑘𝑣𝑣

∗, 𝑛𝑛∗)of the integrated system. 
5. When duration of the credit period 𝑀𝑀 increases, 

the expected total cost 𝐸𝐸𝐸𝐸𝐸𝐸(𝑄𝑄∗, 𝐿𝐿∗,  𝑘𝑘𝑣𝑣
∗, 𝑛𝑛∗) of 

the integrated system decreases. The graphical 
representation is shown in  Fig 6. 
 

8. MANAGERIAL IMPLICATIONS 
 
In this section, we present some managerial insights 
of the proposed model based on the numerical results 
and sensitivity analyses. When the demand rate is 
high, the vendor may lose production efficiency 
which results in high total cost.  Therefore, the design 
of production capacity is important in controlling the 
production cost. Also, the benefit of the integrated 
model is more significant for high values of demand 
rate. From inventory point of view, the retailer should 
order more quantity per order when the ordering cost 
is high. Also, it is advised that the retailer should take 
steps to reduce the ordering cost per order by some 
capital investment. The obtained result shows that the 
integrated expected total cost of our system is 
sensitive with increase in ℎ. From Fig 5, we infer 
that, increase in 𝛽𝛽 , results in increase in the expected 
total cost of the integrated system. For higher values 
of 𝛽𝛽, the total expected cost is high and the order 
quantity is low. From the managerial view point, it is 
advised that the supplier should find some measure to 
decrease the defective rate.  That is, the supplier 
should entertain quality production to reduce the total 
expected cost of the supply chain. From economical 
point of view, if the supplier provides a permissible 
delay in payments, the retailer will order lower 
quantity in order to take the benefits of the 
permissible delay more frequently. 
 

9. CONCLUSION AND FUTURE WORK 
 
In this article, a mathematical model is developed to 
determine an optimum integrated vendor-buyer 
inventory policy for defective items where 
permissible delay in payment is offered by the vendor 
to the buyer. The vendor's setup cost is crashed by an 
extra crashing cost. Lead time is considered and the 
lead time demand follows a normal distribution. The 
lead time, order quantity, setup cost and the number 
of shipments per production cycle are obtained 
considering the service level constraint so that, the 
expected total system cost can be minimized. By 
controlling the setup cost by an investment, 
significant amount of savings can be achieved. Our 
results show that, when the vendor offers trade credit 
period, the buyer should use it to the maximum 
extent and order more quantity so that the expected 
total cost of the integrated system is reduced. From 
our analysis, when the defective rate is high, the 
buyer should order less, i.e., the quality of the 
product plays a vital role in the integrated model and 
necessary steps may be taken by the vendor to reduce 
the defective rate.  The proposed model can be used 
in industries like refrigerator, air-conditioner, 
washing machine, television, printers etc. 
In future, possible extension of this work may be 
conducted by considering the minimax distribution 
free procedure to determine the optimal values and 
also it would be interesting research topic to consider 
general types of investment functions and their 
associated marginal cost behavior. This model can be 
further extended by considering the reorder point as a 
decision variable. 
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Table 1. Sensitivity analysis with respect to the major parameters 
Parameter % change 𝒏𝒏 𝑳𝑳 𝒌𝒌𝒗𝒗 𝑸𝑸 𝑬𝑬𝑬𝑬𝑬𝑬(𝑸𝑸∗, 𝑳𝑳∗,  𝒌𝒌𝒗𝒗

∗, 𝒏𝒏∗) 

 

𝑫𝑫 

+50% 7 2 67.23 186.77 5877.10 

+25% 7 2 82.34 123.71 4920.30 

-25% 6 2 98.16 104.86 3230.23 

-50% 6 2 101.45 90.58 2750.10 

 

 

𝒌𝒌 

+50% 6 2 69.56 149.11 4012.80 

+25% 6 2 90.81 133.58 3981.76 

-25% 6 2 102.30 119.86 3101.92 

-50% 6 2 112.59 102.31 2633.10 

 

 

𝜷𝜷 

0.04 6 2 87.12 119.03 3013.56 

0.06 6 2 80.56 101.45 3470.91 

0.08 6 2 71.63 95.63 3601.78 

0.10 6 2 56.01 87.52 3846.12 

 

 

𝑴𝑴 

+50% 6 2 58.76 141.02 3763.45 

+25% 6 2 63.18 134.53 3870.93 

-25% 6 2 76.03 122.15 4002.86 

-50% 6 2 88.43 120.63 4131.12 

 

 

𝒉𝒉 

+50% 6 2 86.11 155.12 5021.87 

+25% 6 2 103.45 136.40 4783.03 

-25% 6 2 119.61 119.81 3986.41 

-50% 6 2 123.46 107.09 3401.30 
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Figure 1: The inventory pattern for the vendor and the buyer 
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Figure 2: Effect of change in D on the optimal solution. 
 

 
 

 

Figure 3: Effect of change in k on the optimal solution. 
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Figure 4: Effect of change in ℎ on the optimal solution 
 

 
 
 

Figure 5: Effect of change in β on the optimal solution 
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Figure 6: Effect of change in M on the optimal solution. 
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