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Abstract Distribution network design is about recom-

mending long-term network structures in an environment

where logistic variables like transportation costs or retailer

order sizes dynamically change over time. The challenge for

management is to recommend an optimal network configu-

ration that will allow for longer term optimal results despite

of environmental turbulences. This paper studies the

robustness of cost-optimized FMCG (fast-moving consumer

goods) distribution networks. It aims at observing the impact

of changing variables/conditions on optimized logistic

structures in terms of the optimal number and geographical

locations of existing distribution centers. Five variables have

been identified as relevant to the network structure. A case

study approach is applied to study the robustness of an

existing, typical, and optimized FMCG network. First, dis-

tribution network data of a German manufacturer of FMCG

are recorded and analyzed. A quantitative model is set up to

reflect the actual cost structure. Second, a cost optimal net-

work configuration is determined as a benchmark for further

analysis. Third, the variables investigated are altered to

represent changes, both isolated (ceteris paribus) and in

combination (scenario analysis). Each one of the variables

investigated proves to be fundamentally able to suggest a

change of the optimal network structure. However, the sce-

nario analysis indicates that the expected changes will by and

large compensate each other, leaving the network in near

optimal condition over an extended period of time.

Keywords Distribution logistics � Retailing logistics �
Fast-moving consumer goods (FMCG) �
Distribution network analysis � Facility location

1 Robust networks in dynamic environments

Manufacturers of fast-moving consumer goods (FMCG)

operate networks to distribute finished goods produced in

few plants, sold to retailers, and moved to a large number

of points of sale. These networks consist of the manufac-

turing plants, the manufacturer distribution centers (MDC),

the retailer distribution centers (RDC), their cross-docks

and outlets and finally the transportation fleet, which—in

the FMCG industry—is primarily trucks. The network may

be completely or in part self-operated or outsourced to

logistics service providers. Furthermore, the flows within

the network may be organized completely or in part by the

manufacturer or by the retailer.

Network design is concerned with the design of the

physical network as well as with planning, control, and

executive tasks for programing the flow of goods within

these networks consisting of transportation, storage, and

material handling processes (cf. [15]).

Network design faces a typical but important challenge:

It is a long-term decision subject to variables that will

change over time. Among others, fuel prices, toll prices, or

shipment sizes are some of these variables. Recent surveys

prove that these variables will continue to change.1 Despite
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these changes, manufacturers as well as retailers have to

make ‘‘firm’’ decisions on their network structures. The

goal is to establish an optimal network structure. This

paper is based on a case study, will focus on a manufac-

turer’s perspective, and addresses the following research

question: ‘‘Which variables do have a decisive effect on a

given, optimal distribution network structure in the German

FMCG market?’’

‘‘Optimal’’ is interpreted as ‘‘cost minimal’’ and

‘‘decisive’’ as ‘‘changing the optimal number of MDCs’’

(and consequently also the geographical locations of the

MDCs) for a given manufacturer, in our case the manu-

facturer ‘‘Dryco’’. We will consider a (cost) optimal dis-

tribution network as ‘‘robust’’ if the number and

geographical locations of MDCs remain unchanged

despite considerable alterations of the variables.2 It is

important to understand the robustness of optimized dis-

tribution network structures. They are the result of long-

term decisions which cannot be changed easily. For a

manufacturer, it is important to understand the relative

importance of the variables, because it will help putting

management attention on forecasting the development of

the important variables as input into optimization routines.

If, for example, a manufacturer learns that the structure of

his network is primarily driven by the shipment size and

the number of plants, he will allocate more time to

understand how shipment size and plant number will

change over time.

The paper is organized as follows: The literature is

reviewed to understand which variables are considered

fundamentally relevant to network design. Based on this,

we select five variables for further analysis. The analysis is

carried out in three steps: (1) The current network of an

existing, but disguised FMCG manufacturer is represented

in a quantitative network model. (2) The optimal network

structure for this manufacturer is identified. (3) The

robustness of the optimized network is determined. This is

done first per variable and second per scenario, where a

scenario is a combination of particular values of the vari-

ables. Finally, the results are discussed. The paper con-

cludes with some remarks on how to proceed.

2 Dryco: a typical German FMCG manufacturer

2.1 Network structure and shipment data

Dryco is an existing FMCG manufacturer whose true

identity has been disguised for the purpose of this publi-

cation. It operates a network of 22 plants that produce

500,000 tons of dry, that is, nonperishable and non-refrig-

erated FMCG per year split up into 1,200 stock-keeping

units (SKUs), for the German market. Dryco supplies all

major retailers in Germany both via retailer distribution

centers (RDCs; 10 % ship-to locations) and direct store

delivery (DSD; 90 % ship-to locations) out of three man-

ufacturer distribution centers (MDCs), which all carry the

full SKU range. Shipments from the plants to the MDCs are

always done in full truck loads, shipments from the MDCs

to the retailers via full truck loads (FTL, above 11 tons),

less than truck loads (LTL, 2–11 tons), and Groupage

(below 2 tons). The physical logistic operation (warehous-

ing, pick and pack, transportation) has been completely

outsourced to several logistics service providers (LSP).

2.2 Cost breakdown

The distribution costs for Dryco consist of

• Transportation costs: Costs for shipments from the

plants to the MDCs and for shipments from the MDCs

to the RDCs or outlets. The transportation costs are

completely represented by incoming invoices, since all

transportation is outsourced. The logistics service

providers apply tariffs that depend on shipment size

and distance.

• Inventory holding costs: The inventory holding costs of

Dryco consist of cycle and safety stock. The stock

levels are derived analytically.

• Handling costs: The handling costs represent the costs

of moving pallets in and out of the MDCs and pick and

pack operations.

Table 1 presents the cost breakdown of the current

network.

3 The drivers of turbulence in Dryco’s environment

The literature discusses a wide variety of variables that

potentially affect the network structure of a manufacturer.

These can be organized around internal and external vari-

ables. Chopra [6], arguing that distribution systems need to

address customer expectations, suggests a list of external,

customer-related variables: response time (time between

placing and receiving an order), product variety (expected

number of stock-keeping units), product availability

(probability of stock out), customer experience (ease of

placing an order), order visibility (ability to track an order),

and returnability (ease of returning merchandises). A sec-

ond group of external variables originates in the environ-

ment and in supplier markets: transportation cost, driver

wages, vehicle prices, toll cost, and others. Finally, internal

variables, under the control of the manufacturer, affect the

2 According to Mulvey et al. [27], we will observe the ‘‘solution

robustness’’ of the optimal distribution structure.
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network structure: the number of plants, the desired service

level, the delivery policy (factory gate pricing), the

assortment policy (product proliferation), the value (cost of

goods sold, COGS) of the products, and the interest rate

used to value inventory.

Literature describing the influence of internal and

external conditions on the cost optimal network configu-

ration in FMCG distribution is provided by Boutellier and

Kobler [4] who describe market trends and derive impli-

cations for network configurations. However, their argu-

mentation remains on a qualitative level. Lalwani et al.

[21] present a method to identify those factors that the

structure of a distribution network is sensitive to. Via case

study analysis they find that the optimum distribution

design is highly at risk due to uncertainties associated with

stock holding costs and delivery frequencies.

Since the number of variables which potentially affect

network structure optimality is large, the analysis needs to

be reduced to a smaller subset that can be analyzed with

more detail. In particular, the analysis should focus on

variables that, first, can be argued to have a strong impact

and, second, are expected to change over the next years,

either driven by external or internal changes. Thus, the

need to appreciate certain variables is a reflection of

internal and external conditions. Table 2 explains which

variables are relevant for Dryco. Especially the internally

driven variables, like ‘‘COGS’’ and ‘‘number of plants’’,

appear to be highly idiosyncratic. However, we do expect

that Dryco, with its trend towards centralization of pro-

duction (number of plants) and its ongoing record of

acquisitions (COGS), resembles the situation of multiple

manufacturers in the European FMCG industry to a good

extent. The appraisal of the importance of the variables is

fundamentally in line with earlier analyses as suggested by

Lalwani et al. [21], who studied the relative impact of

transport and inventory costs, delivery frequency, and

demand volume on network structure in the European

automotive aftermarket industry. The authors identified

inventory cost to have by far the highest contribution to the

number of distribution centers in the network.

4 An approach to analyzing network robustness

4.1 Review of the related literature

Network robustness as a design goal: A distribution net-

work represents a major investment, either for the manu-

facturer or the logistics service provider, and is supposed to

be kept stable for a considerable amount of time. During

this time, conditions and parameters may change rendering

the actual network configuration suboptimal. Thus, net-

work robustness becomes important (see [24, 31, 34]).

Much research has been performed during the last decades

to present approaches for designing robust logistic net-

works (see [31]). In contrast to deterministic facility

location problems, for which all input parameters are

known or vary deterministically over time, stochastic

location problems aim at integrating the uncertain/

unknown nature of some variables. Snyder [34] classifies

location problems under uncertainty as robust optimization

problems that typically attempt to optimize the worst-case

performance of the system. The goal is to set up networks

that ‘‘perform well’’ for a broad range of parameter set-

tings. Snyder [34] discusses the meaning of the term

‘‘robustness’’ and describes several robustness measures in

the context of facility location. Klibi et al. [19] present a

review on research concerning the design of robust value-

creating supply chain networks. In this paper and according

to Mulvey et al. [27], we will observe the ‘‘solution

robustness’’ of an optimized distribution network. The aim

is not to propose a distribution network that performs well

under a number of conditions but to investigate network

sensitivity to consider a cost optimal distribution network

as ‘‘robust’’ if it remains unchanged despite (considerable)

alterations of the input variables. In his review on facility

location under uncertainty, Snyder [34] lists suggested

applications of stochastic and robust facility location

models for various industries and purposes. In this frame-

work, the following case study is destined to present an

integral methodology to model FMCG industry specific

variable changes and to estimate the sensitivity of an

optimized distribution network on altering conditions that

might be important in the field of FMCG distribution.

Strategic facility location problems: A comprehensive

literature review on facility location (problem formula-

tions, solution procedures, and applications) is provided by

Melo et al. [25]. Daskin et al. [9], Klose and Drexl [20],

Domschke and Krispin [10], and Aikens [1] present over-

views on existing facility location and supply chain design

models and exact and heuristic solution approaches. Owen

and Daskin [31] review literature on strategic facility

location, both for deterministic and stochastic planning

problems. Deterministic facility location problems in the

FMCG industry have been studied extensively during the

Table 1 Current network–cost breakdown

Cost Percentage of total distribution

costs

Transportation costs 60.35 %

Transportation costs: MDC

inbound

41.35 % in transportation costs

Transportation costs: MDC

outbound

58.65 % in transportation costs

Inventory holding costs 14.02 %

Handling costs 25.63 %

Total distribution costs 100.00 %
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last decades: Wouda et al. [41] present a mixed-integer

linear programing model that was used in a real life case to

identify the optimal supply network for a Hungarian

FMCG manufacturer, to determine the optimal number of

plants, the respective locations, and the allocation of the

product portfolio to these plants, when minimizing the sum

of production, warehousing, and transportation costs.

Levén and Segerstedt [22] present a capacity analysis

model applied to a FMCG manufacturer. For the investi-

gated case, the authors propose to locate additional storage

capacity in the vicinity of existing production facilities and

to concentrate production capacities. Another facility

location case study in the field of food distribution is

provided by Tüshaus and Wittmann [39].

Methodological approaches to model transportation and

inventory costs in supply chains: Higginson [17] reviews

how transport costs can be modeled for physical distribu-

tion analysis. More insight into how to model transporta-

tion costs for nonlinear cost functions in the framework of

a facility location problem is given by Stolletz and Stolletz

[36]. Fleischmann [15] presents a concrete approach for a

distribution planning model. In this model, the nonlinear

Table 2 Expected changes in Dryco’s network and expected impacts

Variable Expected impact (relevance) on Dryco’s network Expected change

Transportation costs Transportation costs are known to have a major impact on

network structure. Rising transportation costs favor multi-

MDC configurations as the global distance to the

customers (i.e. outlet or RDC) is shortened [2, 6]

Transportation costs can be expected to rise due to rising

fuel costs, rising toll costs, and driving time regulations.

In Germany, during the period from 1990 to 2009, fuel

prices more than doubled.a Furthermore, the digital

tachometer will enforce the strict adherence to driving

time regulationsb

Cost of goods sold

(COGS) of

distributed goods

The COGS of the finished goods influence the cost of

holding inventory. Rising COGS favor fewer MDCs [6]

Dryco, like many European FMCG manufacturers, has a

long record of acquisitions and expects to acquire

additional FMCG producers over the next years. If the

respective distribution volumes become integrated, the

value (COGS) of the distributed products will change.c

On top, a change in the product portfolio (increase

product group A, drop group B, …) will also affect the

average COGS

Number of plants Changes in the number of plants will affect the network

structure since it does affect the distances from the source

to the customer (retailer)

Currently, Dryco is served by 22 European plants.

Centralization is expected to happen over the next years

Shipment size Larger average shipment sizes favor fewer MDCs. To an

extreme, only full truck loads are shipped. In this case,

one central MDC becomes ceteris paribus more attractive

The shipment size is the result of the ordering behavior of

Dryco’s retailers. Various trends are relevant:

First, FMCG retailers in Germany seek to increase the share

of products received via RDCs pushing back the DSD

share (see below), which will increase the shipment size.

Second and contrary to this, the retailers seek to increase

the frequency of restocking the RDCs to allow reducing

the inventory levels. Thus, the resulting trend is unclear.

However, a manufacturer needs to understand the impact

of changing shipment sizes on the optimal network, since

he can offer incentives to the retailer to alter the shipment

size

DSD shared The DSD share will affect the network structure since DSD

shipments are smaller than shipments to RDCs. Thus, a

rising DSD share leads to reduced shipment sizes

Due to multiple reasons, Dryco has an interest in shipping

directly to retailing stores and bypassing RDCs (direct

Store delivery, DSD).e However, over the last years DSD

lost importance. According to Thonemann et al. [38], the

share of DSD deliveries (not volume!) reached 81 % in

1985 and came down to 23 % in 2005

a Average price per liter diesel fuel: 0.4079 Euro per liter in 1990, 0.8528 Euro per liter in 2009 [35]
b Rodrigues et al. [32] present a general, systematic review on literature dealing with causes being able to affect transport operations and cost
c Think, for example, of a salty snack producer with light and low-value products to acquire a chewing gum producer with heavy and high-value

products
d DSD (Direct Store Delivery) share: share of the total of distributed tonnage that is directly transported from MDCs to the outlets, bypassing

retailer distribution centers
e Otto et al. [29], Müller and Klaus [26], and Otto and Shariatmadari [30] give more insight into the concept of DSD and its implication for

retailing logistics
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character of transportation costs regarding shipment size

and transport distance is respected. Eppen [13], Schwarz

[33], and Wanke and Saliby [40] present research to

understand the effect of centralization of stocks on overall

supply chain inventory in a multilocation distribution sys-

tem. An overview on planning and managing inventories in

supply chains is given by Chopra and Meindl [7].

Estimating network sensitivity: Bottani and Montanari

[3] present a simulation model to quantitatively assess the

effects of different supply configurations on the resulting

total costs of a FMCG supply chain. Several supply chain

configurations are examined, based on the combination of

several design parameters: number of echelons, reorder

and inventory management policies, demand information

sharing (absence vs. presence of information-sharing

mechanisms), demand value (absence vs. presence of

demand peak), and responsiveness of supply chain play-

ers. In that study, it is shown that all supply chain

parameters examined affect total logistics cost but to

different extents: In particular, the number of supply

chain echelons and the inventory management policy has

major influence on total cost. More research on modeling

and estimating sensitivities in distribution networks has

been performed by Lalwani et al. [21]. The authors find

that the optimum configuration is most at risk due to the

uncertainties associated with stock holding costs and

delivery frequencies, rather than customer demand vol-

ume changes and transport tariffs. Manzini and Gebennini

[23] present different mixed-integer linear models applied

to the dynamic facility location–allocation problem and

describe the application of the proposed models to a case

study. The authors evaluate the robustness of the optimal

solution and find that the optimal configuration of the

logistic network is always composed of the same ware-

houses for different (simulated) increments/decrements of

demand. With focus on the ecological sensitivity of dis-

tribution networks, Kellner and Igl [18] identify three

network design related leverages to affect greenhouse gas

emissions of a FMCG distribution network, namely

changing the number of distribution centers, engaging a

more efficient logistics service provider, and adjusting

shipment structure. Gross et al. [16] present research on

the impact of the oil price on the optimal degree of

centralization of logistics networks and evaluate the

impact of the degree of centralization (in terms of the

number of warehouses) on greenhouse gas emissions of

transportation. Overall costs vary with the degree of

centralization in the network and the value of traded

goods. The authors find that dependency on the oil price

increases for high-value goods compared to low-value

goods. Furthermore, carbon dioxide emissions diminish

with a lower degree of centralization, as an effect of

lower total transport distance.

4.2 A three-step analysis

We suggest studying the impact of the identified variables

on the optimal network structure in the following proce-

dure: (1) Represent an existing FMCG distribution network

(number and locations of plants and MDCs, shipment data,

cost structure) in a quantitative model. Accept cost dif-

ferences between the model and reality as an indicator of

modeling quality. (2) Optimize the network in terms of

number and geographical locations of MDCs. Use the

optimized network as a reference to study the impact of the

identified variables on the network. (3) Change the ship-

ment data to simulate changes in the identified variables

and determine the new optimal network. These steps are

explained in more detail in the remainder of this chapter.

4.2.1 Step 1: Modeling Dryco’s network

Estimating transportation costs: Dryco mandates logistics

service providers. The respective tariffs depend on distance

and shipment size (measured in tons). However, the tariffs

have not been transferred into the optimization model but

have been represented by transport cost functions. The

parameters of the functions were estimated using regres-

sion analysis based on Dryco’s shipment and tariff data.3

Production flows (PF) Shipments from plants to MDCs

are always full truck loads. The costs only depend on the

distance:

Total shipment cost PFij ¼
X

f

�
a þ b � kmfj � demandi

�fqfi=AvgTons
�

ð1Þ

PFij corresponds to the costs for all shipments supplying

MDC j with the demand of customer i. a and b are regression

coefficients and have been estimated as a = 87 and

b = 1.13. kmfj is the distance between plant f and MDC j. We

use distances proposed by EWS (‘‘Entfernungswerk Stra-

ße’’) that serves as basis of computation for tariffs in German

truck freight traffic. fqfi is the ‘‘factory quota’’ of plant f

related to customer i and represents the percentage of

demandi that is produced in and shipped from plant f. Finally,

to compute the number of shipments, the average shipment

size is calculated and represented by AvgTons. This step is

necessary, since Dryco’s data did not reveal the number of

shipments from the plants to the MDCs.

Delivery shipments–DS-FTL The costs of larger ship-

ments ([11 tons) from MDCs to RDCs or to outlets are

also calculated as full truck loads, that is, depending on

distance. a and b are regression coefficients and have been

3 A similar approach to represent transportation costs and their

dependence on distance and tonnage can be found in Tempelmeier

[37].
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estimated as a = 153 and b = 0.85. kmij is the distance

between MDC j and customer i. nb_shpmtic is the total

number of DS-FTL shipments that was done to deliver the

demand (in tons) of customer i in this shipment class c

during the observed period.

Shipment cost DS-FTLij ¼ a þ b � kmij

� �
� nb shpmtic

ð2Þ

Delivery shipments–DS-LTL The costs of medium-sized

shipments (2–11 tons) from MDCs to customers are

calculated as less than truck load shipments, that is,

depending on distance and tonnage. a, b, c are regression

coefficients: a = 2.86, b = 0.336, and c = 0.34. nb_shpmtic
now is the total number of DS-LTL shipments that was done

to deliver the demand toic of customer i during the observed

period in this shipment class.

Shipment cost DS-LTLij ¼ a � kmb
ij � toic=nb shpmticð Þc

� �

� nb shpmtic ð3Þ

Delivery shipments–DS-Grp The costs of small

shipments (\2 tons) from MDCs to customers are

calculated as Groupage shipments, that is, depending on

distance and tonnage. a, b, c are again regression

coefficients. However, they differ from the parameters

used for LTL shipments: a = 3.21, b = 0.24, and c = 0.71.

Shipment cost DS-Grpij ¼ a � kmb
ij � toic=nb shpmticð Þc

� �

� nb shpmtic ð4Þ

Estimating inventory holding costs: Inventory holding

costs consist of cycle and safety stock. Dryco’s order sizes

per article are represented by the EOQ (economic order

quantity) model. Thus, we are able to derive cycle stocks:

Cycle stockjp ¼ sqr 2 � F � demandjp=cp

� �
=2 ð5Þ

Cycle stock at MDC j for product p depends on the fixed

cost per order (F), the demand for product p of all

customers allocated to MDC j, and on the value of product

p that influences the stock holding costs cp. Safety stock for

product p at MDC j is determined by a safety factor k that

implies a fixed probability of stock out per replenishment

cycle, the standard deviation of demand for product p for

all customers that are allocated to warehouse j, and the

replenishment cycle time RC.4

Safety stockjp ¼ k � rjp � sqr RCð Þ ð6Þ

Dryco calculates its inventory holding costs at a fixed

percentage of the stock value held.

Estimating handling costs: Handling costs are calculated

by the number of pallets per MDC. This number is calcu-

lated by the aggregated demand of all customers allocated

to the MDC per article and the number of articles per pallet.

Inbound pallets (plant-MDC) are homogeneous and lead to

a larger number of products per pallet than the heteroge-

neous outbound pallets (MDC-customer). The load losses

are calculated based on Dryco’s historical data. All han-

dling costs within the MDCs are proportional to the number

of pallets with no differences between the MDCs. This

represents Dryco’s experience of being able to negotiate

identical rates between locations. For each MDC, Dryco

estimates overhead costs that correspond to one man-year.

Model quality: Costs estimated as explained above do rep-

resent the real data to a good extent (see Table 3). The total

distribution costs sum up to 99.92 % of the real cost as

reported by Dryco. Their reports are based on inbound

invoices. The same high level of fit has been achieved also for

single shipments and inventory estimations per product.

Regression analysis for the transport cost functions deter-

mined an R2 between 85 and 94 %.

4.2.2 Step 2: Optimizing the current network

Dryco’s current network represents the status quo (number

and locations of MDCs). However, as it turned out, this

network was not cost minimal. In order to study the impact

of the variables on network robustness, the network needs

to be optimized first. The following two subheadings

explain the optimization.

Solution approach: The solution approach for identify-

ing the cost optimal distribution network configuration

corresponds to a p-median problem formulation:

Minimize
X

ij

ðcij � xijÞ ð7Þ

subject to
X

j

xij ¼ 1 8i ð8Þ

X

j

yj ¼ p ¼ number of MDCsð Þ ð9Þ

xij � yj 8i; j ð10Þ

Table 3 Model quality

Cost component Real data

(initial configuration)

(%)

Cost

estimation

(%)

Total distribution costs 100 99.92

Transportation costs 100 99.34

Inventory holding costs 100 99.73

Handling costs 100 102.10

4 Theoretical background to the EOQ model and to the safety stock

policy that is applied by Dryco is presented, for instance, in Chopra

and Meindl [7].
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xij takes the value 1 if customer i is allocated

to warehouse j; 0 otherwise ð11Þ

yj takes the value 1 if a warehouse is installed

on site j; 0 otherwise ð12Þ

The model allocates each customer i (i, out of M

customers) to a warehouse j ( j, out of N sites), thereby

minimizing the sum of the customer-warehouse allocation

costs (7). Equation (8) ensures that each customer is served

by exactly one MDC, which also resembles Dryco’s current

practice. Equation (9) fixes the number of MDCs to a

predefined value. This will allow later on to observe how

costs develop for different MDC configurations (in terms of

the number) when the influencing variables will change.

Equation (10) guarantees that a customer can only be

allocated to a site where a MDC is opened. Capacity

restrictions concerning the MDCs do not exist, as sufficient

capacities are assumed for all N preselected sites. This is

based on Dryco’s policy to outsource all physical logistic

operations to logistics service providers. Dryco does not

own any warehousing or transportation assets. Experience

shows that, over a planning time frame of 1–2 years, Dryco

has always been able to secure sufficient warehousing and

transportation capacity. cij captures the total costs for

allocating customer i to MDC j. These costs consist of the

transportation costs between plant and MDC that occur for

supplying MDC j with the demand of customer i plus the

transportation costs that occur for delivering the demand

of customer i from MDC j to customer i (customer: RDC

or outlet; made up of FTL, LTL, and Groupage

shipments). This allows integrating the nonlinear nature

of the transport cost functions (see above) into the

optimization model.

Costs for holding inventory as well as handling costs are

not integrated into the optimization model but are subse-

quently derived for the identified solution. As the MDC

cycle and safety stock are determined by the demand

(variations) of the customers that are allocated to the MDC,

inventory holding cost must be integrated into the model in

order to guarantee optimality. As for the safety stock,

Dryco computes the safety stock per product by the stan-

dard deviation of the demand during the lead time r and a

fixed safety factor k. For a particular MDC j, it is deter-

mined by rjp, the standard deviation of demand per product

p that depends on the allocation of all customers (xij). The

effect of the customer-MDC allocation on inventory

becomes important if the demand variations of the different

customers are correlated:

rjp ¼ sqr
X

a

rap
2 þ 2 �

X

a;b¼aþ1

rap � rbp � qabp

 !
ð13Þ

where qabp [ [-1;1] is the correlation coefficient of demand

of customer a and b (that are allocated to site j) regarding

product p (see [5, 13]). In order to estimate the effect of

different customer-MDC allocations on inventory holding

costs—and the importance of integrating these costs into the

optimization model—a pre-analysis has been performed.

Within this pre-analysis, we allocated Dryco’s customers

several times to given numbers of MDCs in a random way.

Total inventory holding costs varied for given numbers

of MDCs and different customer-MDC allocations at a low

degree as it is shown in Table 4. The maximum deviation

from the average total inventory holding costs is about

1.5 % for each sample. We observed coefficients of varia-

tion of about 1 %. Regarding to the apparently low influ-

ence of customer-MDC allocation on total inventory

holding costs and the minor importance of inventory hold-

ing costs on overall distribution costs (see Table 1),

inventory holding costs do not need to be integrated into the

optimization model but can be derived for the transport cost

optimal solution found. We might say that the deviation of

the optimum exclusively based on transportation costs from

the overall optimal solution, integrating transportation,

inventory, and handling cost should be marginal.5

Lagrangian relaxation: Within the presented analysis,

several thousand customer destinations were allocated to a

given number of warehouses out of a set of several hundred

potential sites. To cope with the huge amount of data and the

fact that only integer/binary variables enter the model, the

problem was reformulated resorting to a Lagrangian relax-

ation: Based on the p-median problem given above, the

single-sourcing constraints (8) are relaxed. When these

constraints are multiplied by Lagrange multipliers, we

obtain the following model formulation:

Maximize kð ÞMinimize x; yð ÞOF ¼
X

ij

cij � xij

� �

þ
X

i

ki � 1 �
X

j

xij

 !

subject to 9ð Þ; 10ð Þ; 11ð Þ; 12ð Þ ð14Þ

Based on an iterative solution procedure, the objective

function OF (14) is maximized with respect to ki and

minimized with respect to the original decision variables to

5 An approach, as proposed by Croxton and Zinn [8], to integrate

inventory holding costs into the above presented network optimization

model is to estimate the holding costs related to a certain network

configuration by using the Square Root Law: in case that the demand

variance for a product is the same at all customer locations and that the

demands for a product at all customer locations are uncorrelated, savings

due to centralization of inventory are proportional to the square root of the

ratio of the new number of stocking locations over the original number of

stocking locations [13]. As we did not suppose the two conditions to meet

perfectly the situation of Dryco, we derive inventory holding costs for

given network configurations analytically as presented above.
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obtain a lower bound for the original problem, that is, the

largest value of OF overall iterations. In case that lower and

upper bounds converge, we can identify optimal solutions

for the original problem. Before starting the iterative

procedure, the values for the Lagrangian multipliers

ki C 0 have to be set. The upper bound UB is initialized

to ?, the lower bound LB to 0. The number of iterations the

procedure needs to converge depends on the pre-initialized

values as well as on the strategy to update the Lagrangian

multipliers (see step c). Within each iteration t, we…

(a) Solve the simplified problem: We determine matrix

Lt = ltij = min (0; cij [ C - kit) and compute

ljt =
P

i ltij. We set yjt = 1 for all sites where

ljt B the p smallest value of all ljt, 0 otherwise. For

matrix Xt
* we set xijt

* = 1 where yjt = 1 and cij \ kit,

and 0 otherwise.

(b) Update LB and UB: We calculate the lower bound

LBt =
P

j ljt ?
P

i ki where yjt = 1, as well as the

upper bound UBt =
P

ij (cij * xijt
u ) where xijt

u = 1, if

yjt = 1 and cij = min[y(jt) = 1 (cij), and 0 otherwise.

Set LB: = max (LB; LBt) and UB: = min (UB; UBt).

(c) Modify the Lagrange multipliers: If LB = UB the

optimal solution for the original problem has been

found. Otherwise, we modify the Lagrange multipliers:

ki;tþ1 :¼ max 0; kit � at � UB � LBð Þð Þ=
X

i

X

j

xijt

� � 1

 !2
0

@

1

A

0

@

�
X

j

xijt

� � 1

 !!

ð15Þ

at determines the step size at iteration t to modify the

Lagrangian multipliers and decreases during the procedure.

After updating the multipliers, we return to step a and

repeat steps a to c until (a) a certain number of iterations has

been done or (b) LB = UB and
P

i (
P

j xijt * - 1)2 = 0.6

In our case, the solution approach converges within a

couple of minutes (about 900 iterations), and optimal

solutions are identified.

A more pragmatic approach that reduces the data

entering the optimization model would be to aggregate

customers to clusters and to allocate these clusters (e.g.

German districts) to MDCs. In Germany, MDCs are often

allocated to postal regions, that is, 2-digit postal code areas.

This was also current practice for Dryco as it reduces the

complexity significantly since only 99 remaining postal

code areas have to be allocated. However, we found that

this procedure leads to an increase in total transportation

costs of 0.15 %. Thus, all results presented in this article

rest on more exact 5-digit postal code assignments.

Determining the cost minimal network: As a starting

point for the subsequent robustness analysis, the cost

minimal network for the given (real) data was determined

using the approach explained above. Setting the cost

components of the current network to 100 %, a configu-

ration with 2 MDCs (as opposed to 3 MDCs in the current

network) is optimal and reduces the costs down to 96.47 %

(bold value in Table 5), an improvement of 3.53 % (see

Table 5).

Figure 1 displays the development of the cost compo-

nents for given numbers of warehouses. As expected,

transportation costs decrease with the number of MDCs

whereas inventory holding and handling costs increase

resulting in a parabolic shape for the total cost curve.

Table 4 Inventory holding costs for given numbers of MDCs: statistical results

Simulation runs… … for 2 MDCs (%) … for 3 MDCs (%) … for 4 MDCs (%)

Total inventory holding costs: coefficient of variation 0.73 0.73 1.10

Total inventory holding costs: maximum deviation from average 1.30 1.50 1.50

Table 5 Distribution costs for given numbers of cost-optimized networks

Aggregated

cost drivers

Initial

situation

(%)

Config.: 1

MDC opt (%)

Config.: 2

MDCs opt (%)

Config.: 3

MDCs opt (%)

Config.: 4

MDCs opt (%)

Config.: 5

MDCs opt (%)

Config.: 6

MDCs opt (%)

Total costs 100 96.68 96.47 97.56 99.09 101.08 102.90

Transportation

costs

100 106.14 99.59 95.97 94.45 93.39 92.46

Inventory

holding costs

100 51.58 77.41 99.91 116.57 134.48 150.57

Handling costs 100 99.07 99.53 100.00 100.47 100.93 101.40

6 For a more comprehensive overview of the solution procedure we

refer to Drezner and Hamacher [11] and Eiselt and Sandblom [12]. An

introduction to the Lagrangian relaxation method for solving integer

programming problems is given by Fisher [14].
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4.2.3 Step 3: Manipulating selected input variables

To understand the impact of the described variables on the

network configuration, the input data have been manipu-

lated in order to simulate the changes in the variables

introduced above.

Transportation costs: The manipulation of the transpor-

tation costs has been done by altering the transportation costs

(as estimated by the cost functions and as driven by the

regression factors) by a multiplier. A multiplier below/above

1 represents a decrease/increase in transportation costs. Note

that the multiplier affects all components of the transportation

costs, like fuel prices, driving time regulations, tolls, etc.

COGS of finished goods: The manipulation of the COGS

of the finished goods is done by changing the COGS values

in the respective product master data file.

Number of plants: In the initial situation, 6 out of 22

European plants were serving about 70 % of the total

demand of the German market. These were located in

Germany, the Netherlands, and Belgium. By ‘‘closing

down’’ one or several plants (i.e. output equals zero), the

total number of plants is altered and the output of the single

plants that is destined for the German market is changed

(between 0 and 50 %).7 When closing down one plant, the

plant-customer supply quotas fqfi given in the initial situ-

ation are respected, that is, the other plants adapt their

output in such a way that all customer demands remain

satisfied and that the relative contribution of each factory to

satisfy the individual customer demands respects the con-

tribution in the initial situation.

Shipment size: As per definition, a manipulation of the

shipment size will change the relative share of FTL, LTL,

and Groupage shipments and vice versa. Table 6 displays

the initial situation.

When manipulating data and thereby moving tonnage

from one shipment class to another, it is important to

maintain the initial situation as far as possible in order to

create realistic scenarios. To fix the tonnage toic transported

to a certain customer i within shipment class c, we use the

following approach:

(a) The sum of tonnage that is transported in a certain

shipment class c must correspond to its relative share

RSc within the delivery shipments:

X

i

toic ¼ RSc �
X

ic

toic8c ð16Þ

(b) Each customer i must be satisfied:

X

c

toic ¼ demandi8i ð17Þ

(c) The tonnages per customer and shipment class

generated shall be as near as possible to the tonnages

transported in the initial situation toic
I . For each

loading class, we determine a factor ac that corre-

sponds to the minimum increase/decrease in tonnage

transported in a shipment class and that adapts the

new transported tonnage to that of the initial situation:

toic � ac � toic
I 8i; c ð18Þ

toic � 1=acð Þ � toic
I 8i; c ð19Þ

Maximize
X

c

ac Objective function ð20Þ

DSD share: Redirecting the flow of goods from DSD

destinations towards RDC and vice versa will change the

average shipment size and the total number of shipments

since DSD deliveries are smaller than RDC deliveries. In

the initial situation, the average delivered tonnage per DSD

shipment is about 1.6 and 8.1 tons for RDC deliveries (see

Table 7). Within the simulation, we respect individual

customer demands (toic) as well as order sizes (toic/

nb_shpmtic), separately for each shipment class c.

5 The sensitivity of FMCG distribution networks:

findings from the analysis

5.1 Single variable changes

Table 8 reports the results of the threshold value analysis,

that is, for isolated, single variable changes. All reported

Fig. 1 Distribution costs for given numbers of cost-optimized

networks

7 The output is measured in tons. As factories are specialized in the

production of different segments of consumer goods, one or two

factories cannot produce 100% of the total distributed tonnage.
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results are ceteris paribus. The table lists the threshold

values that change the cost optimal distribution network

configuration, from currently 2 MDCs to either 1 or 3

MDCs (Fig. 2).8

Transportation costs: An increase of transportation costs

of 1 % will increase the total distribution costs by 0.6 %. If

the transportation costs increase by 50 %, the optimal

network will need to have 3 MDCs. If the transportation

costs will decrease by 10 % or more, a 1-MDC network

becomes cost minimal.

COGS: The effect of an increase of COGS of 1 %

increases the total distribution costs by 0.1 %. A 1-MDC

network will become optimal if the COGS increase by

10 %. Three MDCs become optimal once the COGS fall by

50 % or more.

Shipment size: Larger shipments call for fewer MDCs.

However, a 1-MDC network only becomes optimal if, for

example, the Groupage share is reduced to 2 % and the

FTL share is increased to 70 %. In this case, the average

tonnage per shipment (over all 145,000 shipments) would

rise from 3.3 tons per shipment in the initial situation to

4.8 tons per shipment. On the other hand, only if, for

example, FTL shipments go down to 38 % and Groupage

shipments increase to 25 %, a 3-MDC network becomes

optimal. These percentages are associated with an average

tonnage per shipment of 1.2.

DSD share: An alteration of the DSD share changes the

FTL-, LTL- and Groupage-shares (compare values in

brackets in Table 8). Only if the DSD share increases to

70 %, a switch to a 3-MDC configuration becomes nec-

essary. On the other hand, if the DSD share goes down to

27 %, a 1-MDC configuration becomes optimal.

5.2 Joint variable changes—scenarios

In order to study how current developments in the German

FMCG market may affect the structure of the distribution

network over the next years, sets of variables have been

composed into scenarios. Scenario 1, called ‘‘Steady

Change’’, expects an ongoing trend, that is, moderate

increases in transportation costs, constant COGS, an

ongoing concentration of production which results in fewer

plants serving the German market, smaller shipments sizes,

and a decreasing DSD share (which in part compensates for

the decreasing shipment sizes). Scenario 2, ‘‘Fast Change’’,

assumes changes for all variables in the same direction but

with higher amplitude. Scenario 3, ‘‘Reverse Change’’,

assumes that the current trends are stopped or reverted, that

is, constant transportation costs, COGS, and number of

plants complemented by increasing shipment sizes and

increasing DSD shares (Table 9).

Table 10 presents the estimated development of distri-

bution costs per scenario and compared to the optimized

2-MDC configuration. For each scenario, the optimal and

the second best configuration is displayed.

It turns out that, for each scenario, a 2-MDC configu-

ration proves to be optimal (bold values in Table 10). The

geographical locations of the MDCs either do not change

significantly (max. ±90 km) or not at all. Whereas we

observe for the initial situation as well as for Scenario 3 a

single MDC as second best solution, this is not the case for

the Scenarios 1 and 2 where the optimal configuration

‘‘tends’’ to a 3-MDC configuration.

6 Discussion and implications

6.1 Single variable changes

(1) Transportation cost: As expected, increasing trans-

portation costs will favor additional MDCs. However,

already an increase by 50 % (based on 2007 price level!)

will leave the current 2-MDC network suboptimal. (2)

COGS: On the other hand, already a slight increase by

10 % in the COGS of the stored products requires a

move to a 1-MDC network. Such a change may be a

result of manufacturing cost fluctuations. But it may as

Table 7 Relative importance

of RDC and DSD shipments in

the initial situation

Destination type Delivered tonnage (%) Number of shipments (%) Avg. tonnage per shipment

DSD destinations 35 73 1.6 tons/shipment

RDC destinations 65 27 8.1 tons/shipment

Table 6 Relative importance

of FTL, LTL, and Groupage

shipments in the initial situation

Shipment class Delivered tonnage Number of shipments Avg. tonnage per shipment

FTL shipments 61 % 11 % 18.7 tons/shipment

LTL shipments 33 % 37 % 2.9 tons/shipment

Groupage shipments 6 % 52 % 0.4 tons/shipment

Sum 500,000 tons 145,000 shipments 3.3 tons/shipment

8 Certainly, larger changes per variable lead to optimal networks

consisting of 4 or more MDCs, but these threshold values are not

reported in this analysis.
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well be driven by changes in the assortment due to

takeovers. For example, think of a FMCG manufacturer

with a low-value assortment that takes over a manufac-

turer with higher value products which will be distrib-

uted via the same network. (3) Shipment size and DSD

share: The strategy of retailers to reduce inventory levels

will lead to smaller shipment sizes and more frequent

replenishment of the RDCs by the manufacturer. How-

ever, this will be compensated in part by the strategy of

retailers to reduce the DSD share which will increase the

product volume that is shipped to the RDCs. As the

analysis reveals, the optimal network configuration is

robust to changes in shipment size. Only if the average

shipment size is reduced to 1.2 tons, a 3-MDC configu-

ration becomes optimal.

6.2 Scenarios

Due to complex interdependencies, the effect of several

variable changes on the optimal number of MDCs is not

obvious. In this context, the presented scenarios give

insights into how a cost-optimized distribution network

actually reacts to changing conditions. On the basis of the

scenarios analyzed, it is not possible to derive a general

strategy in terms of the optimal number of MDCs (‘‘one

more or one less’’). A central insight is that the current

optimized 2-MDC configuration is quite robust. No sce-

nario recommends a change of the current network struc-

ture. However, as the single variable analysis reveals, the

high level of robustness is the result of compensating

developments (transportation costs versus shipment size).

Table 8 Threshold values changing the cost optimal distribution network configuration (values are rounded)

Variable 1 MDC is optimal if… Initial values of current optimal network (2 MDCs) 3 MDCs are optimal if…

Transportation costs 90 % 100 % 150 %

COGS 110 % 100 % 50 %

Shipment size

FTL–LTL–Grp shipments

Avg. tonnage per shipment

70–28–2 %

4.8 tons/shipment

61–33–6 %

3.3 tons/shipment

38–37–25 %

1.2 tons/shipment

DSD share (DSD–RDC)

(FTL–LTL–Grp shipments)

27–73 %

(65–30–5 %)

35–65 %

(61–33–6 %)

70–30 %

(43–46–11 %)

Fig. 2 Threshold values (ceteris paribus) changing the cost optimal distribution network configuration
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So, the most likely trends offset each other and leave the

networks ‘‘in good shape’’.

7 On the generalizability of the findings and need

for further research

The generalizability of the findings presented above is

subject to a set of restrictions: (1) All results presented in

this paper are obtained by modeling the distribution system

of Dryco, an existing but disguised German FMCG man-

ufacturer. Dryco certainly does not represent all German

FMCG manufacturers. They may differ in terms of ship-

ment structure (size, ship-to addresses), number of plants

supplying the MDCs, and COGS. Other modeled data may

resemble industry averages more closely, like the estimated

tariffs of the logistics service providers for transportation,

inventory storing, and handling. (2) Service levels were no

concern during the analysis. It is assumed that all network

configurations in the relevant realm (1–5 MDCs) will allow

to meet the replenishment cycle time as requested by the

retailers (72 h). However, this may not hold true for fresh/

perishable products (which Dryco does not offer) where

cycle times are shorter and tend to become ‘‘much

shorter’’. However, once cycle times become a concern, the

analysis becomes far more complex, since the configura-

tions need to be checked for resulting cycle times and cycle

time violations need to be quantified by cost.

Further research may be directed at least into three

directions: (1) First, the scenarios may be formulated in a

joint effort between retailer and manufacturer to compose a

‘‘most likely’’ scenario. Despite joint efforts, this may only

make sense for particular segments of the FMCG market.

(2) By recognizing that cooperative distribution becomes

more important to cope with the future developments,

cooperation partners may use the proposed approach to

feed their joint distribution volumes into the model and

study the effect of cooperation on the optimal network, that

is, understand which and how many MDCs will be needed

in a cooperative, joint network. (3) Finally, manufacturers

will feel a need to complement cost-based optimization by

pollution-based optimization. As this always encounters

massive valuation problems, it should be started by deter-

mining a pollution minimal network which may differ in

number and locations of MDCs.
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