
ORIGINAL PAPER

Automated detection of euro pallet loads by interpreting PMD
camera depth images

F. Weichert • S. Skibinski • J. Stenzel •

C. Prasse • A. Kamagaew • B. Rudak •

M. ten Hompel

Received: 28 January 2012 / Accepted: 4 November 2012 / Published online: 21 November 2012

� Springer-Verlag Berlin Heidelberg 2012

Abstract In this study, a novel approach for the detection

of parcel loading positions on a pallet is presented. This

approach was realized as a substantial change in compar-

ison with traditional system design of contour detection in

de-palletizing processes. Complex 3D-vision systems,

costly laser scanners or throughput decreasing local sensor

solutions integrated in grippers are substituted by a low-

cost photonic mixing device (PMD) camera. By combining

PMD technology and a predetermined model of loading

situations, stored during assembling the pallet, this

approach can compensate for the drawbacks of each

respective system. An essential part of the approach are

computer-graphics methods specific to the given problem

to both detect the deviation between the nominal and the

actual loading position and if necessary an automated

correction of the packaging scheme. From an economic

point of view, this approach can decrease the costs of

mandatory contour checking in automated de-palletizing

processes.

Keywords Computer vision � De-palletizing � Contour

check � Automated handling � PMD technology �
3D-Imaging

1 Introduction

Driven by the internationalization of supply chains and

global competition, new trade corridors, privatisation in

emerging countries [50], and typical processes in logistics

became significantly more complex and dynamic during

the last years. Among other things, shorter product life

cycles, mass customization and stricter quality require-

ments [16, 54] demand for an increasing efficiency in this

field of industry. If properly dimensioned and highly uti-

lized, automated systems could be a solution. To keep up in

the global competition, especially in high-wage countries,

an increasing automation in facility logistics is unavoid-

able. But the use of modern technologies is not only limited

to developed countries. For example, german companies

producing intralogistic equipment registered in 2010 the

highest rates of growth in export trade for the so-called

BRIC-states (Brazil, Russia, India and China) [59]. Con-

cerning some industrial sectors like food, brewery, chem-

istry, plastic and wood, automated palletizing is established

as a quasi-standard for production subsequent packaging of

goods [17]. Highly productive systems for specific pallet-

izing tasks are available on the market (cf. [32, 33]).

Unstacking of palletized goods (de-palletizing) is usu-

ally done manually. High demands for flexibility (e.g.,

different size and shape of goods) are just one reason

against fully automation. Formerly mentioned high-per-

formance solutions are often too cost-intensive to make

them economically justifiable. Generally, required infor-

mation for (an automatic) de-palletizing is acquired by

sensor units like laser scanners or expensive computer

vision systems (cf. Sect. 1.1)

Accurate and stable handling of goods is no longer

technical challenging but the detection of an exact gripping

position. Especially, after removing typically used load
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securing measures (e.g., wrapped film, etc.), transportation

of the pallet could cause translational and/or rotatory dis-

placements of the load. Hence, known nominal packing

positions are no longer valid, and this gap has to be

detected individually [61]. Humanization of labor should,

beside the need to make de-palletizing more efficient, be a

main objective. Adverse working conditions and high

physical stress because of manually carrying heavy stocks

(e.g., cold store) can be reduced or avoided by using

automated handling solutions [17, 27]. However, the

advent of new technologies may alleviate these challenges;

especially, Computer Vision using Photonic Mixing Device

(PMD) technology and Embedded Systems are particularly

promising.

In this paper, a new approach is proposed to detect the

loading situation on euro pallets for automated de-pallet-

izing of packages. In the first instance, packages are

automatically stored on a loading device (e.g., euro pallet)

by means of a handling unit (e.g., consisting of an articu-

lated robot and a gripper). In a further process step, single

unit loads will be detached (de-palletized) by a similar

device at the final destination or for order picking. In all

cases, the outline of the loading unit has to be checked

before processing de-palletizing to prevent collisions. To

perform this task, the actual position of at least every object

in the loading units top layer has to be detected. Therefore,

a new challenging method of contour check, which can

provide a reliable and fast gripping position to a handling

unit, is highly desirable—especially if it is economically

competitive to known solutions. An iterative two-stage

algorithm adapted to the special problem of de-palletizing

euro pallet loads will be presented in this paper. It matches

the object geometry directly with the object representing

point cloud and limits the possible transformations to three

degrees of freedom. The new approach combines high cost

efficiency, high robustness of the detection process, high

time efficiency inter alia by reducing the search domain

into three dimensions (translation about x-, y-axis and

rotation about z-axis) and high flexibility in terms of sup-

porting objects with variable dimensions and different

material properties.

The task outlined above is structured in five sections.

Following this introduction containing a general motiva-

tion for this work, state-of-the-art is presented for auto-

mated de-palletizing and detection of loading conditions

and vision technology in Sect. 1.1. Next, an introduction to

the TOF (time-of-flight) and PMD (photonic mixing

device) technology is given (Sect. 1.2). Following these

introductory comments, an overview on various deviation

scenarios and the main challenges from the logistics point

of view is given providing the basis for the following

considerations (Sect. 2) The core of this paper—a novel

automated estimation of the euro pallet load using the PMD

technology—is represented by a pipeline in Sect. 3. Section

4 deals with the proof of concept, including a description of

the used test setup and several results. In Sect. 5, a quali-

tative comparison of existing commercial solutions and the

new approach is presented. Finally, Sect. 6 summarizes the

main statements of the paper and gives an outlook on future

work.

1.1 State-of-the-art

In view of the amount of articles in the field of (automated)

de-palletizing with a focus on logistic environments, the

following presentation only takes contributions into

account which have a direct impact on the current study.

1.1.1 Cases of automated de-palletizing

Two procedures of de-palletizing can be distinguished in

practice. If the position and orientation of the loaded

packages are available—usually stored in a central data-

base—they are transmitted to the processing point (han-

dling device). To prevent collision checking, the outline of

the loading obtained by 3D-scanners or gripper mounted

sensors is mandatory. A vision system has to detect the

position and orientation of the packages, if the necessary

set of data does not exist. This leads either to expensive

solutions or to the extension of handling and processing

times.

In general, the existing solutions for contour detection

can be sorted as shown in Fig. 1. Category A (cf. Fig. 1,

left side) includes all solutions employing a known pattern

model of the pallet load. The majority of systems

employed in industrial de-palletizing applications so far do

not contain any sensors (cf. Fig. 1, A1), for example,

preprogrammed gantry robots process bulk de-palletizing

task in a strictly controlled environment very efficient, but

they fail in adverse environments where the pallet’s posi-

tion is not well defined [28]. Moreover, the grippers could

be equipped with specific sensors (cf. Fig. 2a, b) to detect

the pallet’s outline (cf. Fig. 1, A2), due to iterative

approximation of the detection process, this leads to high

sampling intervals [44]. Further alternatives to the named

solutions are simple systems employing light barriers

(laser sensor) respectively light curtains, but this solution

has no relevance in the industrial practice. An efficient

alternative for contour detection (cf. Fig. 1, A3) is the

combination of packaging pattern models and 3D-sensors

(e.g., time-of-flight sensors), which will be presented in

this paper and discussed in paragraph ‘‘Sensor-based

automated de-palletizing’’ in more details. On the right

part of the systematic B shown in Fig. 1, different ways to

detect the outline of loading goods are represented, without

having any a priori knowledge concerning the packing
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position. In these cases, the shape, position and orientation

of loading goods have to be acquired by using complex

sensor systems.

1.1.2 Storing and management of palletizing data

Basic requirement of using a known pattern model for

detection—as proposed in this paper—is the availability of

packaging data at the local handling device (de-palletizer).

For that reason, the data from building the unit load

(palletizing) have to be linked to the pallet. Beside a rather

pragmatic approach of storing the packing position in a

central database and marking the pallet with a number, in

[46] detailed concepts using radio frequency identification

(RFID) are introduced. Additionally, a data storage man-

agement is presented in order to assure efficient access

times for reading and writing the tags.

1.1.3 Radio frequent localization

Besides mentioned vision-based solutions, locating the

objects on the pallet by RF technologies would solve

almost all problems. Main requirement is an adequate

accuracy concerning distance and orientation of the pal-

letized goods. Several approaches for the localization of

active and passive RFID tags have been proposed in the

past. For example, a system called LANDMARC uses the

received signal strength (RSS) [39]. Ubisense, developed at

the University of Cambridge, is another commercial ultra

wide band (UWB)-based localization system with active

tags. Localization is performed using both xTime Differ-

ence Of Arrival (TDOA) and Angle of Arrival (AOA)

measurement [34]. In [4], the localization of passive tags

relies on the TDOA. Mojix, an US-american company

designed a real-time localization system called STAR,

which is able to establish standard passive (UHF) RFID

Tags [37]. Choi et al. [12, 13] present a passive tag

localization based on an improved k-Nearest Neighbor

algorithm (KGNN). Using minimal interrogation power

and multilateration, Almaaitah et al. [2] introduce two

methods [adaptive power with antenna array (APAA) and

adaptive power multilateration (APM)] for three-dimen-

sional localization of passive tags. In [43], a concept of

zone-based and exact localization methods for passive tags

Fig. 1 The figure shows different ways to detect the outline of the

single loading goods. Distinction of cases could be done as follows: A
are methods requiring a specific knowledge of the nominal pattern

model; B describes solutions where the position is not necessary to

determine the (gripping) position of the packages

(a) Gripper equipped with spe-

cific sensors for the detection of

the gripping position [1]

(b) Gripper-Camera-System for

pick-up aluminum rims [29]

(c) De-palletizer with laser scan-

ner and camera at Fraunhofer-

Institute for Material Flow and

Logistics

Fig. 2 Different technical

solution for de-palletizing
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is described. An improvement of accuracy and speed is

achieved by a combined cascaded coarse-to-fine approach.

Following a semi-passive tag (Sensatag board) approach,

Athalye et al. [3] describe a method of sensing proximity

and standard backscatter modulation. Sample et al. [52]

present an approach based on both RF and vision using a

wireless identification and sensing platform (WISP). The

tags are equipped with an integrated led light and detected

by two sensors—a camera and a RFID antenna. Finally,

they are able to control a gripping process performed by an

industrial robot. Besides the localization of RFID tags,

Bouzakis et al. [10] present an approach for detection

based on RFID transponders. The method acquires the

exact position of two RFID transponders on each parcel in

order to detect the parcel’s position and is adapted for

detecting and handling with high-frequency accumulating

and non-palletized parcels.

Summing up todays approaches of RF localization sys-

tems (see compare Table 1), an adequate accuracy (espe-

cially orientation) for the mentioned application cannot be

guaranteed in the most cases (1–9). Furthermore, the

monetary cost of localization, using solutions 1, 4, 9, and

10 (see Table 1), exceeds the actual cost of the object being

tracked and hence is economically unfeasible.

1.1.4 Sensor-based automated de-palletizing

In view of falling prices systems incorporating vision (cf.

Fig. 1, A3, B) is an increasing market segment compared to

non-vision-based solutions [14]. Vision systems with

additional assisting sensors like structured light [28, 45,

41], multiple laser spots [61] or laser triangulation sensors

[22, 8] (cf. Fig. 1, B2) are available on the market [6, 18].

Time-of-flight sensors just like 2.5D laser scanner to

acquire a point cloud [7, 40, 26] are widely spread in the

industry [40, 60] (cf. Fig. 1, B3). These systems are

characterized by their high flexibility and robustness (cf.

Fig. 2c). Usually designed for complex bin-picking tasks

computing and cycle times are disproportionately high for

unloading tasks. Additionally, further approaches for

automated detection exist, especially regarding the bin-

picking problem which can be seen as a part of the auto-

mated de-palletizing problem. Zhang et al. [61] describe an

approach for robotic de-palletizing using uncalibrated

vision and 3D laser-assisted image analysis. To compen-

sate the absent calibration, the camera space manipulation

method (CSM) is used which relies on a local calibration

method. The authors do not consider the runtime which is a

main task in the industrial process.

Besides laser scanner with long acquiring times because

of mechanical movement (pan) Photonic Mixing Devices

(PMD) are an innovative approach to Time-Of-Flight

(TOF) sensors. Today PMD technology is used for classi-

fication of single objects [24, 30] providing volume and

coordinates (e.g., for packages [55]) or bin picking [51, 36,

26]. Compared to the presented new approach, these

solutions are adversely affected by the low resolution of

PMD cameras. They have to compensate it with long

acquiring times, for example, caused by the need of mul-

tiple pictures. Even though nominal position data of the

pallet load are not required, complete knowledge of the

object is mandatory (e.g., image or CAD model) for all

mentioned approaches, respectively primitive segmentation

methods are used [41]. An integrated bin-picking concept

based on a hybrid state machine using a PMD camera and a

lightweight robot is presented by Fuchs et al. [21] which is

commercially available. The underlying architecture

includes a human–robot interaction on the one hand to

compensate detection faults by the integrated computer

vision system and on the other hand to serve human safety.

The computer vision system is hierarchically composed

and consists of hough transformation on the coarse level

followed by particle filtering and clustering and finally a

local search with iterative closest point (ICP) algorithm.

Because of the light weight robot, the solution is inap-

propriate for handling with high dimensions and heavy

loads as euro pallet loads. While the focus of this solution

lies in the closely human–robot interaction, robots for

automatic de-palletizing euro pallets are due to human

safety isolated by a gate from the environment. A hybrid

state machine as described by Fuchs is due to human safety

inappropriate in relation with heavy weight robots. Hence,

the commercial available solution presented Fuchs tend

special bin-picking scenarios with small dimension and

light weight objects. Another approach for industrial bin

picking can be found in [11] which is based on a modified

RANSAC algorithm [19] in order to match the CAD model

with the laser scan data. Ghodabi et al. [23] describe a

system for detection and classification of moving objects

Table 1 Comparison of accuracy of RF localization systems

No. Approach Tag Accuracy
[distance
error (cm)/
rotation error]

1 LANDMARC (RSS) [39] Active 100/n.a.

2 Ubisence (AOA) [34] Active 15/n.a.

3 TDOA [4] Passive (SAW) 20/n.a.

4 Mojix [37] Passive 100/n.a.

5 KGNN [12, 13] Passive 9.5/n.a.

6 APM (multi reader) [2] Passive 32/n.a.

7 APPA (single reader) [2] Passive 48/n.a.

8 Cascaded coarse-to-fine [43] Passive 37/n.a.

9 Sensatag [3] Semi-passive 14/n.a.

10 WISP [52] Passive and led 0.1/n.a.
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based on support vector machines (SVM) using 3D data of

a PMD camera. To train the SVM classifier, two data sets

are derived from each image set, one based on heuristic

features and the other based on the principal component

analysis (PCA). In [53], the authors in contrast to this paper

mainly focused on a supervised classification (by an arti-

ficial neural network) of universal goods, which limits the

flexibility for multiple environments and industrial

applications.

In contrast to the presented approaches solving the bin-

picking problem, the approach presented in this paper

additionally detects and verifies the complete (visible) euro

pallet load and visualizes it afterward. This allows an early

intervention of the user in case of unacceptable deviations

according to the reference positions of the euro pallet load

respectively in case of the absence of particular parcels.

1.2 TOF and PMD technology

Common 3D-sensors often use time-of-flight measurement

principles for environment detection. In this area, photonic

mixing device sensors have appeared as a cost-efficient

solution for a broad variety of applications in automation

engineering. In the following, a short introduction into the

TOF and PMD technology is given. For more details see,

for example, Kolb et al. [30]. A PMD sensor measures the

distance to an object by emitting modulated infrared light

followed by determining the phase shift between the

emitted and reflected light. Thus, the relation between the

measured phase shift U and the modulation frequency x
results in the object distance d:

d ¼ c � U
2 � x : ð1Þ

The output of the sensor is a two-dimensional depth map

where typical resolutions reach from 16 9 1 to 200 9 200

depth measurement points. In addition to the distance

measurements, the sensor also delivers a gray scale image

with the same resolution.

Figure 3 visualizes the unambiguity range of a PMD

camera using a modulation frequency of fmod = 20 MHz.

Objects that are beyond the range of 7.5 m will be seen at a

distance of d mod 7.5 m. This constraint of the PMD

camera does not have an impact in the test setup as all

objects are less than 7.5 m away from the sensor. The PMD

sensor used in this paper has a resolution of 64 9 50 depth

pixels and a field of view of 30� (horizontal) and 40�
(vertical). The accuracy of the sensor mainly depends on

the used modulation frequency and the reflectivity of the

observed objects. A higher modulation frequency results in

a higher accuracy of the sensor measurements (cf. [47]) as

objects with high reflectivity (e.g., white paper) also do.

The measurement errors are classified into systematic

errors like the integration-time-related error, the wiggling

error or the temperature-related error and non-systematic

errors like signal noise and multiple light reception [20].

While the non-systematic errors are hardly to compensate,

the focus lies on the correction of the systematic errors by

identifying the error function. The measurement principle

also leads to an unambiguity range of the PMD sensor that

is dependent on the modulation frequency.

2 Logistics environment

In this section, possible loading scenarios, the general

approach to detect gaps between the nominal and actual

loading situations and the challenges to solve the defined

task while achieving all logistical demands are described.

2.1 Detection of loading conditions on a pallet

Due to intra-company transportation and handling of

pallets after removing securing measures like wrapped

film, stretch hood etc., translational and/or rotatory dis-

placements of the load are most probable. Possible vari-

ations of the loading situation are visualized in Fig. 4.

Figure 4a shows the ideal state: the actual load is identical

with the nominal one. From the load shown in Fig. 4b, a

parcel (front right) has been removed (e.g., intervention by

a human), and a parcel has been manually added at the top

of the load. Figure 4c shows a possible deviation from the

nominal state caused by an abrupt slow down (e.g.,

braking maneuvers of fork lift). In Fig. 4d, some packages

have been randomly shifted and rotated. The proposed

approach for contour detection contains process steps

shown in Fig. 5. A flow process chart visualizes the

automated load detection. At first, a depth image of the

actual load is acquired by a PMD camera. Further

the nominal model is being compared with certain actual

load represented by the acquired depth image. If both, the

nominal model and the acquired depth image match and

deviations are within tolerance, for example, automated

de-palletizing can proceed. If deviations are too huge or

unidentified objects are present, an operator can be noti-

fied. After adjusting the load, the automated de-palletizing

could continue.Fig. 3 Unambiguity range of a PMDcamera
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2.2 Gap analysis

In order to summarize the main advantages and drawbacks

of the existing approaches, Table 2 shows a survey of the

mentioned solutions. Analyzing the specific characteristics

of the mentioned approaches, most of the solutions promise

an adequate accuracy. Drawbacks are either high cycle

time or high cost for extensive equipment. Hence, the new

approach should stand out due to low cost, high perfor-

mance and adequate accuracy. This leads to the challenges

in a logistics environment.

2.3 Challenges

Depending on the specific handling system, especially the

gripper, accomplishable accuracy of position detection is

the essential factor of success. Only by ensuring a suffi-

ciently low tolerance between real contour and processed

camera data, significant enhancements toward existing

applications could be achieved. In case of necessary

additional sensors to compensate inadequate accuracy,

considerably advantages regarding the price are no longer

likely. Equally reduction of handling speed caused by

additional sampling in the close-up range to prevent col-

lision will increase the cycle time of the whole process.

Beyond accuracy of detection, further requirements con-

cerning robustness and flexibility have to be mentioned. In

this context, robustness can be defined as repeatability and

stability of the implemented algorithms. Flexibility mainly

refers to different surfaces of the loaded goods (bright,

(a) (b)

(c) (d)

Fig. 4 Deviations between different nominal and actual loads

Fig. 5 Flow process chart of the automated load detection
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dark, matt, glossy, etc.) as well as changing environmental

influences (light, temperature etc.). To differentiate from

established solutions, achieving the defined requirements

on the highest level is mandatory. Briefly consolidated the

main challenges are:

– high cost efficiency

– high robustness

– high time efficiency

– high flexibility

In view of these challenges, the automated load detection

pipeline was designated, which is represented in the

following section.

3 Automated load detection pipeline

In order to perform an automatized de-palletizing of euro

pallets, it is crucial to determine the actual positions of all

parcels. As described in Sect. 2.1, the actual and nominal

parcel positions often differ from each other, so that a

refinement of the given model is a must. The novel auto-

mated estimation of the euro pallet load can be presented

by a pipeline—the whole process is visualized in Fig. 6.

The schematic representation of the automated load

detection pipeline can be subdivided into three groups of

tasks. The first one is the acquisition of the PMD depth data

and preprocessing as well as of the loading state facilitated

by a central database to store the RFID tag data. Accord-

ingly, the main part of the pipeline, the model fitting, fol-

lows. This step can be again subdivided into two tasks,

coarse fitting of the model T into the PMD point cloud

P and fine fitting of the individual models ti 2 T (repre-

senting single parcels). The result of the previously out-

lined model fitting is the status of the euro pallet load.

Optionally, an additional step for verifying the fitting

results can be applied in order to prevent passing of

uncorrectable load information to the following logistic

process chain. In the following sections, each of these steps

is explained in detail.

3.1 Palletizing model

As proposed in Sect. 2, the nominal model and the initial

orientation by considering the attenuation of the response

signal are obtained from RFID tags attached to each euro

pallet. Furthermore, the new approach is currently designed

and optimized for cuboid-shaped parcels that can be of

different dimensions and proportions arranged on multiple

layers on a euro pallet. The defined model T will be

now initialized and later fitted into the point cloud as

following:

T ¼ ðTiÞ; ti ¼ tz
i ; ax

i ; ay
i ; bx

i ; by
i ; cx

i ; cy
i ; dx

i ; dy
i ; hi; ii; fi; pi

� �
;

1� i� n: ð2Þ

The model T consists of n tuples ti. Each tuple ti describes

one cuboid (e.g., one parcel). Figure 7 visualizes the model

description. The variables ai
x till di

y depict the coordinates

of each of the corners of the cuboid and ti
z [ 0 stands for

the z coordinate of the upper plane of the cuboid, while hi is

describing the distance between the upper and the bottom

plane. The variable ii defines if the specified cuboid needs

individual refinement in the fine fitting state of the pipeline

(see Sect. 3.5). Further fi 2 f0; 1g denotes detected cuboids

Table 2 Main advantages and drawbacks of existing methods for load detection in the field of de-palletizing

Category
cf. Fig. 1

Method cf. State-o- the-art Pro Advantages Contra Drawbacks Accuracy Position
(mm)/Orientation (deg)

A1 No detection Very simple and cheap Inflexible, instable against changing
positioning conditions

Providing an accurate
adjustment of the pile
\10/\2

A2 Border detection using
laser sensors [44]

Simple and cheap Slow (12s per cycle) n.a.

B1 Stereo cameras [1] Simple and cheap (one camera), high
accuracy

Sensitivity to lighting conditions,
quite slow (3s for detection)

±1/n.a.

B1 ? B2 Uncalibrated vision and
3D laser-assisted image
analysis [61]

Reliable gap insertion (gripper),
flexible to perform less complex
2,5D task

Extensive equipment: min. 2
cameras, single laser pointer and
multiple laser pointer

n.a.

B3 2D range imagery [28] No influence of illumination and
appearance, minimal equipment
(one laser scanner)

Manual detection of orientation \20/\5

B2 ? B2 Model based range images
[8]

High accuracy, scalability High computational cost, very
complex object model, sensors
with high resolution

±1/±5

B1 ? B2 2D camera and laser
scanner [9]

Flexible, performs complex 3D task Long cycle times (movement of
scanner), expensive (equipment)

n.a.
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and pi holds the supporting point count of cuboid i. It

should be mentioned that by adapting the model, different

shaped parcels are supported.

3.2 Preprocessing of PMD depth data

As described in Sect. 1.2, the evaluated PMD cameras are

suitable to deliver depth information and intensity infor-

mation in various formats. The approach presented in this

paper focuses, because of robustness concerns, on the depth

imagery only and does not require any intensity informa-

tion. Further the depth information is transformed into

world coordinates. So that each acquired point constitutes

of a tuple Xij of Cartesian xij, yij and zij coordinates. In

order to be able to dismiss points, the formerly introduced

tuple is extended by an additional boolean variable

dij 2 f0; 1g. The whole point cloud data structure P can be

noted as following:

P ¼ ðXijÞ; Xij ¼ xij; yij; zij; dij

� �
; 1� i�m; 1� j� n:

ð3Þ

The resolution m 9 n of the matrix P is given by the res-

olution of the PMD sensor (cf. Sect. 1.2)

Previously to the actual algorithm, a preprocessing step

is essential in order to exclude erroneous pixels caused by

the acquisition process from further model fitting pipeline.

The point here is to distinguish between two characteristics

of artifacts, which are responsible for invalid depth tuples:

– artifact type 1: under- or overexposed pixels

– artifact type 2: outliers.

All sorts of invalid depth tuples have to be removed from

the point cloud in order to ensure robustness of the

detection following. Commonly under- or overexposed

sensor pixels (artifact type 1) are caused by inappropriate

integration times, but can also have their origin in surfaces

of high reflectance, for example, parcel tape. The sensor

center has shown itself as very sensitive to reflecting

surfaces. Overexposed sensor pixels are marked by the

PMD camera with zij = -1 and underexposed sensor

pixels with zij = -2:

zij 2 P ¼
�1; if overexposed

�2; if underexposed:
z� 0; else

8
<

:
ð4Þ

In contrast to over- or underexposed pixels, outliers

(artifact type 2) are not detected automatically by the

PMD camera, so that the outlier detection has to be done by

the proposed pipeline (cf. Fig. 8). Outliers can be caused

like overexposured pixels by surfaces of a high reflectance,

but also by shadowing which comes along with the use of

an active light source for depth measurement. Both types of

outliers can be eliminated by the use of a significance

bound [15]. In order to better differentiate between the two

formerly introduced types of outliers, the computation of

the absolute value is abandoned, so that the formulation of

the outlier detector can be noted as following:

outðzijÞ ¼
1; if

zij�Z
rðZÞ � dmax

1; if
zij�Z
rðZÞ � dmin

0; else

8
><

>:
: ð5Þ

If out(zij) = 1 then zij is supposed to be an outliner and can

be removed. The two constants dmax and dmin define the

threshold from which on values are supposed to be outliers.

Z stands for the arithmetic average and r(Z) for the

standard deviation. So the point cloud P without over- and

underexposured pixels and without outliers that constitutes

the input of the next pipeline step can be formulated like

this:

Fig. 6 Schematic representation of the automated load detection

pipeline. The steps of the detection pipeline can be subdivided into

three groups of tasks. The first one is the acquisition of the PMD

depth data and preprocessing, and the second one does the model

fitting for providing the euro pallet load. Optionally, a third step of

verification of the fitting results is applied

Fig. 7 Visualization of the model coordinates of a particular cuboid

106 Logist. Res. (2013) 6:99–118

123



8i 2 f1; . . .;mg

� 8j 2 f1; . . .; ng zij 2 P ^ zij � 0
|fflffl{zfflffl}

artifacttype1

^ outðzijÞ ¼ 0
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

artifacttype2

_dij ¼ 1

0

B@

1

CA

0

B@

1

CA

0

B@

1

CA:

ð6Þ

The point cloud Z that has been pruned by all for deletion

marked points will from now on be used instead of P and is

defined as following:

8i 2 f1; . . .;mg 8j 2 f1; . . .; ng dij ¼ 0 ) Xij 2 Z
� �� �

:

ð7Þ

The following step is crucial for reducing the search

domain into the three dimensions, translation about x-, y-

axis and rotation about z-axis which requires a planar

alignment of the PMD camera to the ground plane. Hence,

the camera tilt is corrected by calculating the ground plane

using the random sample consensus (RANSAC) [19]

method and transforming the point cloud such that the

ground plane is planar to the x-y-plane of the reference

coordinate system.

3.3 Initialization of the model

Initialization of the model is mainly done because of per-

formance, but also of robustness considerations. Therefore,

a suitable initial point for the model is needed. As a good

initial point for the model the arithmetic average of all

significant points has proven successful. The set of all

significant points S as all points above average is defined:

8Xij 2 Z zij [ Z ) Xij 2 S
� �

: ð8Þ

After determining the initial point, the whole model is

translated according to the x- and y-axis so that the center

of the model and the initial point correspond. In this

pipeline stage, another performance improvement can be

applied: cuboids which are according to their ti
z value above

the upper bound of the point cloud rz are obviously not

present and can therefore be directly discarded while

considering some additional tolerance factor t[ 0.

Formally the discarding procedure can be noted as

following:

T0 ¼
[

ti2T

ti ) tz
i � rz � ð1 þ tÞ

� �� �
; T ¼ T0: ð9Þ

3.4 Coarse granularity model fitting

In the previous pipeline step, a proper initial position has

been determined (cf. Fig. 10a). Now in the coarse model

fitting step, the position of the whole model is supposed to

be refined. This is done by us using an iterative approach

based on key components of the ICP concept [5]. The basic

idea of the ICP algorithm is to register two point clouds in

a common coordinate system by an iterative approach. In

each iteration step, the algorithm selects the closest points

as correspondences and calculates the transformation

(translation and rotation) for minimizing the deviation

between the two point clouds. Many variants of the ICP

algorithm have been proposed, that is, other strategies for

point selection or parameters affecting the weighting. For a

review of the state-of-the-art refer to the report of Rus-

inkiewicz and Levoy [49]. Despite the similarity to the ICP

algorithm, the algorithm introduced in this work differs in a

fundamental way from the general ICP approach. In gen-

eral, the problem of estimating the point-to-plane corre-

spondence is solved by an orthogonal projection of all

points onto suitable planes. The detection of the euro pallet

load utilizes only the point cloud P respectively Z (the

PMD depth data) in terms of Cartesian coordinates and a

3D palletizing model T but no second (additional) point

cloud. While the general point-to-plane-ICP algorithm

which requires the time-consuming calculation of

(a) (b)

Fig. 8 Occurrences of different invalid depth tuples (circle high-

lighted in orange): a suspiciously high z value, which is caused by a

surface of high reflectance and b suspiciously low z values, which are

caused by shadowing—further all objects of the scene have been

shifted upwards along the z axis. The axis dimensions are given in

meters
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correspondences between the two (source and destination)

point clouds, our approach is based on an efficient detec-

tion of supporting points for the model T in order to match

directly the geometry with the point cloud.

Figure 9 visualizes parts of the following detailed

description. In each iteration step of the coarse fitting

approach, several transformations hi 2 H are computed

(translations regarding the x and y axis at ±s, rotations

regarding the z axis at ±q), and afterward, the best fitting

model is selected. The variable s defines the upper bound

for the sum of all translations and q the upper bound for

all rotations. Both s and q are multiplied after each fitting

iteration by the corresponding factors sf and qf. Addi-

tionally, the number of iterations can be limited by a

constant lmax. For a closer consideration of the conse-

quential trade-off between accuracy and speed refer to the

evaluation (see Sect. 4) Transformations hi that are not

within the point cloud’s bounds are rejected. In order to

prevent worsening the fitting by inappropriate transfor-

mations, the current model is also evaluated and com-

pared with the models resulting from the current iteration

step:

H ¼ h0 ¼ hp
0 ¼ pointðT;ZÞ;he

0 ¼ euclidðT;ZÞ;hT
0 ¼ T

� �� �
:

ð10Þ

A transformation triple hi = (hi
p, hi

e, hi
T) is compound of

the number of points Z that are covered by the model

T (hi
p), the overall costs of this coverage (hi

e) and the model

(hi
t). The function that computes the point count can be

defined as follows:

pointðT;ZÞ

¼
X

Xij2Z

1; if 9 tk 2 T inrectxk ;ij ¼ 1 ^ ez
k;ij �/c

� �

0; else

( !

:

ð11Þ

It mainly consists of two components, the point in

rectangle test and the calculation of the Euclidean distance:

inrectxk ;ij ¼ xk; xij; yij

� �
ð12Þ

ez
k;ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tz
k � zij

� �2
q

: ð13Þ

The first one is called inrectx_k,ij assures that only points

xij, yij whose orthogonal projection lies interior the bounds

(a) (b)

(c) (d)

Fig. 9 Particular steps of the detection algorithm. The relevant points

with euclidean distance to the model according the z-coordinate serve

as supporting point candidates to the model. The orange rectangle
visualizes the bounds. a Model and point cloud before initialization

(perspective view) b initialization of the model (orthogonal view) c an

iteration step with the original and two (of six) modified templates,

shifted and rotated (orthogonal view) d the resulting template

maximizes the number of supporting points (relevant points which

lie in the rectangle) (orthogonal view)
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xk of at least one rectangle is counted—xk are the

coordinates of the upper surface of a cuboid k. The

second one, ek,ij
z , asserts that only point-to-plane

correspondences are counted which fulfill some upper

bound threshold concerning the Euclidean distance. The

cost function based on the Euclidean distance can be noted

formally similar to the former points function. In practice,

the values of both functions can be determined together by

using a joined computation:

euclidðT;ZÞ

¼
X

Xij2Z

min ekjtk 2 T ) inrectxk ;ij ¼ 1
� �

^ ez
k;ij �/c

� �n o� �� �
:

ð14Þ

In each iteration of the coarse model fitting step, a decision

has to be made according to the selection of the best

suitable model hT
i 2 H. This approach tries to maximize

the number of points matched and to minimize the cost

function. If multiple models are equal, one can be

randomly picked afterward. Formally, the selection rule

can be written as following:

selectðHÞ ¼ hT
k 2 one mine maxp Hð Þ

� �� �
: ð15Þ

3.5 Fine granularity model fitting

In the previous step, a fitting of the whole model into the

formerly acquired point cloud was performed. Because

misplacements of packages are very likely to be locally

present, a individually refinement of each detected cuboid-

shaped parcel ti 2 T (cf. Fig. 10b) is needed. Induced by

the 2.5D depth image and performance considerations the

refinement procedure is performed always only for the top-

most layer of parcels called R:

R ¼ rj r ¼ ti 2 Tð Þ ) ii ¼ 1 ^ fi ¼ 1 ^ tz
i

� �� �
ð16Þ

with

tz
i ¼ max tz

j jtj 2 T ) ðij ¼ 1Þ ^ ðfj ¼ 1Þ
n o

: ð17Þ

An initial parcel detection can be achieved by computing

the area A(ti) of the upper parcel side, followed by a

multiplication with the average number of points per unit

of area. The number of expected points is now compared

with the number of points actually covered. Additionally, a

threshold /a is considered. Formally, the initial parcel

detection can be written as following:

8 ti 2 T fi ¼
1; if pi �AðtiÞ � k � /a

0; else


� �
: ð18Þ

In contrast to the coarse fitting step, transformations have

to be computed for each ti 2 R and all supported kinds of

transformations j. The parameters k and /a define the

expected number of points per unit area and factor for the

permissible deviation respectively. All transformations

have to fulfill two requirements in order to be appended

to the set of possible transformations H. At first, the

model must stay interior the bounds of the point cloud

(ensured by the ‘‘inrange’’ function). Second, the

transformation of a singular parcel must avoid any kind

of intersection with other detected parcels (ensured by the

‘‘intersects’’ function). Considering this, both assumptions

H can be defined for one fine granularity iteration as

following:

H¼
[

ti2R

[

j2f0;...;6g
h

¼ fhijg; if inrangeðhT
ij ;ZÞ¼1

� �
^ intersectsðhT

ij Þ¼0
� �

;; else

(

:

ð19Þ

(a) (b)

Fig. 10 Schematic representation of the comparison of two the steps of the model fitting: a global model T for each layer for the coarse

granularity model fitting and b individual models (representing a single parcel) ti 2 T for the fine granularity model fitting
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3.6 Verification of the automatic detection

Finally, after the coarse and fine granularity fitting proce-

dures, the results have to be verified in order to ensure

robustness and prevent passing of maybe uncorrectable

load information (cf. Fig. 11) to the following process

chain. Because of the restriction to the top-most load layer,

a corresponding subset of the point cloud called I is

defined:

I ¼ xj x ¼ Xij 2 Z
� �

) zij [ tz
max � hz

max

� �
� 1 þ /f

� �� �

ð20Þ

The number of points Xij 2 I, that are mapped by the model

T, are determined for the set of the significant points I. The

final verification step can then be noted as following:

verifyðI;TÞ ¼
0; if

P

Xij2I

matchðXij;TÞ�/v

1; else

(

; ð21Þ

with

matchðXij;TÞ ¼ 1; if 9tk 2 T inrectxk ;ij ¼ 1^ ez
k;ij�/f

� �

0; else

(

:

ð22Þ

If the number of unmatched points is above a threshold /v,

the verification function returns 0 (in the other case 1). By

altering the threshold parameter, the tolerance of the veri-

fication step can be adjusted.

4 Evaluation

The evaluation of the automated load detection presented

in this paper is divided into three parts. First, the test set-up

is described. Second, the accuracy of automated detection

is examined for a diversity of test setups followed by a run-

time analysis of the detection algorithm.

4.1 Test set-up

The basic experimental setup is shown schematically in

Fig. 12. A euro pallet with standardized dimensions

1,200 9 800 9 144 mm (length 9 width 9 height) serves

as a test object regarding the evaluating measures. The test

load of the euro pallet consists of parcels with different

material properties as shown in Fig. 12c, white parcels

with the dimensions 400 9 300 9 260 mm, and brown

parcels with the dimensions 380 9 280 9 280 mm in

three different variants, (1) without additional materials,

(2) with plastic envelope, (3) with plastic envelope and

label. Different scenarios with up to three layers were

constructed resulting in a maximal total height of 924 mm.

The sensor being used for capturing the scene is a PMD

camera (type: O3D201, company: ifm electronic) which is

mounted 3.1 m above the ground plane. This construction

ensures parcel loads up to 1.2 m height lying completely in

the angular view of the sensor. In the optimal case, the

PMD sensor is parallel to the ground plane. In practice, the

ground plane often is not entirely parallel. Therefore,

the calculation of a correction plane, for example, using the

RANSAC-algorithm is a remedy. Afterward, the image

plane of the PMD sensor is parallel to the ground plane,

and the center point of the sensor on ground plane serves as

point of origin for measurements of the positions of the

euro pallet and the particular parcels. The system config-

uration according to the evaluation of the run time consists

of an Intel Q6700 3GHz (Quad-Core Processor) with 2GB

DDR2 PC1066 (Main Memory).

4.2 Testing of the automated detection of euro pallet

loads

The quality of the detection algorithm depends on two

main aspects, namely the accuracy and the runtime of the

load detection process. The following experimental results

are based on the detection of one specified parcel on par-

ticular layers of the euro pallet. An important factor for the

quality of the raw data of the PMD camera is the integra-

tion time. The measures were done with an automatic

calibration of integration time that is supported by the used

PMD camera.

4.2.1 Detection quality

According to the evaluation of the accuracy, one particular

parcel was picked out on a specified (first, second or third)

visible layer. Based on a reference configuration, the

selected parcel was displaced as shown in Fig. 13a, b. The

test parcel was shifted toward the x- and y-axis by

the specified values 5, 10, 15 cm and rotated around the

z-axis by the specified values 5, 15, 30 deg. The deviation

(a) (b) (c)

(d) (e) (f)

Fig. 11 Schematic representation of possible collision situations:

collisions a, b are allowed, in contrast to the collisions c, d, that are

not allowed. The occurrence in (e) is a special but also a not allowed

case—there is no intersection between the line segments. Finally, case

(f) shows that it is not sufficient to check whether the points of a

rectangle lie inside of another rectangle
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between the detected parcel position and the calculated

reference position regarding to the fix position was recor-

ded. The evaluation process was proceeded for each type of

the parcel with special material properties as shown in

Fig. 12c.

Figure 13 visualizes the detection process in direct

relationship to the real scene and the raw data of the PMD

camera. The detection algorithm uses the known reference

template (cf. Fig. 13c). The raw data (point cloud) of the

PMD camera are shown in Fig. 13d as an interpolated

surface. The detection process is accomplished in two steps

as described in Sect. 3. In the coarse step (cf. Fig. 13e), the

reference template as a whole is adapted into the point

cloud while the fine step (cf. Fig. 13f) fits each particular

element of the template into the local point cloud.

The experimental results of detecting a selected parcel

of a specified material type on the first, second and third

layer of the euro pallet are visualized in Fig. 14 in terms of

box-whisker-plots. Each plot embraces thirty independent

calculations. In cases of translations (x- and y-axis), each

plot represents the absolute deviation of the barycenter of

the real parcel position to the barycenter of the detected

parcel position. In cases of rotations (about z-axis), each

plot represents the absolute deviation of the rotation about

z-axis of the real parcel to the detected parcel. The average

deviation of the detected parcel position and the real parcel

position is in cases of translation in average between 10

and 15 mm. In consideration to the fact that the image size

of the middle pixel of a PMD sensor in a distance of

2-3 m to the ground plane is approximately 22 9

22–33 9 33 mm the detection result are good for the low

resolution (64 9 50 pixels) of the PMD camera. In the case

of rotations, the average deviation is in most cases under

4 deg. The small rotation of 5 deg was in most cases not

detected which depends on the low resolution of the

camera. Larger rotations are detected in all cases. An

important fact is, the ignoring small deviations, the

detection accuracy does not depend on the material of the

test objects—the approach is regardless of the color of

the parcel (white or brown) and of variants of additional

material (cf. Fig. 12c).

Furthermore, accurate z-values are essential for the

de-palletizing process. Large deviations according the z-value

may cause a damage of the euro pallet load by the

de-palletizing robot. The threshold concerning the z-value

should lie under 1 cm which satisfies the height of the

foam buffer of the robot gripper. In conjunction with

the accuracy of the z-values, the discussion of the PMD

(a) View of test setup (b) Schematic setup

(c) Test objects

Fig. 12 a Real and b schematic

view of the test setup used for

image acquisition to evaluate

the quality of estimation

between the nominal and actual

package positions. The PMD

camera is mounted 3.1 m above

the ground plane. This ensures

that euro pallet loads up to

1.2 m height are fully visible to

the camera (including 10 % of

additional tolerance). c Parcels

with different material types

serve as test objects
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camera typical artifacts is important. The non-systematic

noise can be compensated by a temporal filter which is

supported by the PMD camera (O3D201) we used. Many

literature sources [20, 30, 57, 35] discuss the systematic

artifacts in detail. The manufacturers reacted with a

technological review in order to compensate some of the

systematic artifacts. The temperature of the used PMD

camera (O3D201) stays constant after a operation duration

of ten minutes. Hence, the thermal drift does not affect the

measurements. Furthermore, the reflectivity-related error

seems to be internally compensated the PMD camera we

used. We demonstrate this fact in Fig. 15. The four dif-

ferent types of parcels were placed side by side, white

parcels with the dimensions 400 9 300 9 260 mm, and

brown parcels with the dimensions 380 9 280 9 280 mm

in three different variants, (1) without additional materials,

(2) with plastic envelope, (3) with plastic envelope and

label. The z-values of the PMD camera in terms of a point

cloud were recorded. Besides the fact that the parcels do

not fit perfectly the dimensions, the z-values of the brown

parcels diverge in few millimeters only. The z-value of the

white parcel differs in approximately 5 mm from the real

z-value and is the impact of another systematic artifact as

mentioned in the following. Figure 16 visualizes in terms

of four box-whisker-plots the deviation regarding to the

z-value of the real object’s dimension and the raw data of

the PMD camera. Each box-whisker-plot represents the

measure of a particular z-value, 144 mm (euro pallet),

404 mm (1st layer), 664 mm (2nd layer), 924 mm (3rd

layer). All four plots have in common that the raw data of

the PMD camera underlies a random noise in a range of

approximately 5 mm. Interpreting the diagram notices that

the deviation depends on the distance of the measured

object. It seems to be a systematic relationship between

the deviation error and the measured distance called the

wiggling error [20, 35] which is caused by the non-ideal

(a) reference position (b) load with shifted parcel

(c) reference template (d) interpolated PMD data

(e) coarse step (f) fine step

Fig. 13 Visualization of the

detection process for evaluation.

a According to the reference

position b the parcel on 2nd

layer is shifted. c Based on the

reference template and d the

PMD data, the actual position is

detected in two steps: e the

coarse step and f the fine step
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demodulation of the modulated light. Despite the fact that

the deviation error lies under the required threshold of

1 cm, one of the future steps is the detection of the

wiggling error function in order to optimize the detection

quality. Another significant systematic artifact is the offset

error depending on the integration time. We experimen-

tally adjust the integration time in our special scenarios in

order to minimize the offset error. The detection of the

white parcel (translation x-axis) white parcel (translation y-axis) white parcel (rotation)

brown parcel (translation x-axis) brown parcel (translation y-axis) brown parcel (rotation)

brown parcel with plastic enve-
lope (translation x-axis)

brown parcel with plastic enve-
lope (translation y-axis)

brown parcel with plastic enve-
lope (rotation)

brown parcel with plastic envelope
and label (translation x-axis)

brown parcel with plastic envelope
and label (translation y-axis)

brown parcel with plastic envelope
and label (rotation)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 14 Visualization of the accuracy of the detection process when shifting and rotating one specified parcel at each layer. The box-whisker-
plots represent the deviation between the detected to the real package position
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offset error in general cases is also one of the our future

steps.

The evaluation results confirm the potential of our detection

algorithm for automatic unloading systems in praxis. The

detection results with the current low-cost camera meet

the accuracy requirements from logistical point of view as the

critical z-value lies under 1 cm. The planar deviation in x- and

y-axis allows more tolerance. The grip point of a particular

parcel is defined by the barycenter of its top layer. Since the

dimensions of parcels in practice a deviation in x- and y-axis

under 20 mm cause no damage of the load due to unex-

pected collisions and are acceptable. The usage of higher

resolution cameras as the Cam Cube (200 9 200 pixels)

will further increase the accuracy. Due to our concept of a

low-cost-system, Cam Cube is not integrated in our project

yet. But in future, falling prices for higher resolution

cameras are expected.

4.2.2 Runtime

Efficiency is a key criteria in the field of automatic

de-palletizing according to time and consequently cost

economy. The diagram shown in Fig. 17 illustrates the

measures of runtime that depend on the one hand on the

number of layers and on the other hand on the number of

parcels on each visible layer. While the runtime of the

coarse step mostly is independent of the number of parcels,

the runtime of the whole calculation step including the fine

step shows a linear behavior according to the number of

parcels. Overall, in most cases, the detection of a euro

pallet load requires in average 400 ms and in worst case

below 1,100 ms. Hence, the presented approach reaches

real-time requirements.

5 System comparison—economical competitiveness

Finally, the new approach has to be compared with existing

solutions in terms of cost, flexibility, accuracy, robustness

and performance to prove the economical potential. For this

reason, a utility-cost-analysis has been performed [58, 48].

This type of multi criteria analysis works with quantified

parameter values for different technical alternatives. In

(a) Test objects with different material properties and the dimensions 380× 280× 280mm (brown parcels)
and 400× 300× 260mm (white parcel).

(b) Orthogonal view projection (x-z plane) of the point cloud generated with the PMD camera (O3D201).

Fig. 15 The test objects with

different material properties

a are visualized as point cloud

b in orthogonal view projection

(x-z plane)

Fig. 16 Visualization of the deviation regarding the z-value of the

real object’s dimension and the raw data of the PMD camera (middle
line represents the average deviation)
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Table 3, several solutions are compared with the presented

approach. The columns represent the set A ¼ f‘‘A1’’;

‘‘A2’’; ‘‘PMD Sensor’’; ‘‘B2+B3’’; ‘‘B1+B2’’; ‘‘B2+B3’’g
of the different solutions, an example for every solution is

given in the references. The number of elements in the set A
is defined as jAj. On the left side of Table 3, a set

of five criteria C ¼ f‘‘Cost’’; ‘‘Flexibility’’; ‘‘Accuracy’’;

‘‘Robustness’’; ‘‘Performance’’g with a certain quantifier

qc 2 R and a different number of sub criteria i ¼ 1; . . .;N

are listed. The degree of fulfillment da;c 2 R with indices

a ¼ 1; . . .; jAj and c ¼ 1; . . .; jCj for every sub criteria

pa,c
N on a scale from 0 (insufficient) to 4 (ideal) is defined in the

solution columns. Finally, an overall utility value uva 2 R can

be calculated for every solution. The alternative with the

highest value represents the best approach. The following

equation shows the calculation of the utility value uva:

uva ¼
XjCj

c¼1

qc � da;c: ð23Þ

Further the degree of fulfillment is given by

da;c ¼
p1

a;c þ p2
a;c þ � � � þ pN

a;c

N � pmax

for c ¼ 2; . . .; jCj ð24Þ

for every criteria except the cost effectiveness. In case of

cost da,c with c = 1 is calculated as follows

da;1 ¼ pa;1 � minðpa;1Þ
maxðpa;1Þ � minðpa;1Þ

: ð25Þ

Hence, the cost of the single solutions gets a value for da,c

between 0 and 1. The used criteria of the set C can be

defined as:

– Cost including sensor and hardware cost without

handling device and software license fee (most prices

are estimations)

– Flexibility including range of detectable object (size,

shape, color, material, etc.) and range of object setup

(pile height, sensor distance, number of sensors),

– Accuracy including xy-axis, z-axis and rotation,

Fig. 17 Visualization of the runtime regarding the number of layers

and the number of parcels on each visible layer

Table 3 Utility-cost-analysis

Criteria Quantifier Alternatives

A1:

centering

frame [31]

A2: proximity

sensors in gripper

[42]

PMD

sensor

B2?B3: 3d

sensor, force

sensor [25]

B1?B2: 2 camera pairs

and structured light [56]

B2?B3: 2 webcams

and 2 kinect sensors

[38]

Cost 0.4 0.0 1.00 0.94 0.71 0.64 0.93

Cost in Euro 15,000 1,000 1,800 5,000 6,000 2,000

Flexibility 0.1 0.25 0.25 0.63 0.88 0.75 0.63

Objects 1 1 2 3 3 3

Pallet 1 1 3 4 3 2

Accuracy 0.2 0.83 0.67 0.58 0.58 0.75 0.75

xy-axis 4 3 2 2 3 3

z-axis 2 3 3 3 3 3

Rotation 4 2 2 2 3 3

Robustness 0.2 1 0.75 0.75 0.75 0.625 0.375

Light

conditions

4 3 3 3 2 2

Industrial

environment

4 3 3 3 3 1

Performance 0,1 0,5 0,25 0,75 0,5 0,75 0,75

Cycle time 2 1 3 2 3 3

Utility value 0.38 0.70 0.75 0.66 0.63 0.68
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– Robustness including sensitivity against light condi-

tions and suitability for daily use in an industrial

environment, and

– Performance with the cycle time for detection.

As a result for a specific scenario of depalettizing [shown

in Table 3 with a priori knowledge with focal points on

cost (q1 = 0.4), accuracy (q3 = 0.2) and robustness

(q4 = 0.2)], the presented solution has the highest utility

value uv3 = 0.75. Compared with other solutions costs are

limited to one PMD sensor and an evaluation unit (about

1,800€), flexibility could be ranked as middle with a wide

range of detectable materials and surfaces but limited by

package size because of the low resolution of the sensor,

accuracy is rather low but adequate for the application,

robustness is quite high because of a single industrial

sensor, and performance is high with cycle time under 1

second (with potential to reduce it significantly).

In order not to limit the perspective to a certain appli-

cation, different focuses have been investigated in a sen-

sitivity analysis (cf. Fig. 18). For this reason, all scenarios,

excluding application, have a quantifier of 0.6 for the focus

and 0.1 for the other criteria. Finally, the presented solution

is quite stable to changing focuses. Therefore, the pre-

sented approach has one of the highest utility values in

most cases.

The main drawback of the used methodology is the

partial not quantifiable definition of the degree of fulfill-

ment. Hence to assure a serious comparison, it is necessary

to define a specific test scenario under uniform evaluation

conditions. Depending on the market situation, volume

discount and especially the specific application of the user,

cost, flexibility, accuracy, robustness and performance are

not comparable from the data sheet. For this reason, a

benchmark test of existing market solutions is planned in

the near future at the Fraunhofer-Institute facilities.

6 Conclusions

In this study, a novel approach for the detection of parcel

loading positions on a pallet was presented. Based on the

predetermined model of the loading situation and the raw

data of the PMD camera, the innovative registration algo-

rithm produces accurate results regarding the position

detection. The detection phase of the algorithm consists of

the two detection steps, the coarse step and the fine step

while a final verification step serves the correctness of

detection results. Overall, this new approach constitutes a

competitive alternative in comparison with existing com-

plex and costly 3D-vision systems and reduces from an

economic point of view the costs of contour checking in the

automated de-palletizing process by concurrently moderate

runtime (less than 1 s on the given test system). The pre-

sented stable test set-up in combination with a robust PMD

camera suits for a static installation in an industrial envi-

ronment, for example, with belt conveyors.

Future work will focus, in particular, on the integration

of the algorithm into a real automated robot application for

de-palletizing in order to improve the practical suitability.

Quantifiable values of the new approach and existing

solutions will be compared within a benchmark test under

uniform conditions. Further capabilities lie on the one hand

Fig. 18 Sensitivity analysis for

several focal points. All

scenarios excluding application

have a quantifier of 0.6 for the

focus and 0.1 for the other

criteria. Within the parameter

from 0 to 1, the certain numbers

represent the utility value of the

different solutions. A fulfillment

of 1 represents the optimal

solution

116 Logist. Res. (2013) 6:99–118

123



in the calibration of the PMD camera and the identification

of the systematic error functions and on the other hand in

increasing the accuracy, for example, by a fusion of the

PMD depth data with the gray scale image. Another

challenge is the detection and estimation of flying pixels

which distort the detection. Using a high-resolution sensor

is also possible which will provide more accurate results

but may lead to an increase of runtime which can be

compensated by mapping the calculation on the today

highly parallel graphics processor units (GPUs).

After all the presented approach is not limited to the

presented use case of de-palletizing, other possible appli-

cation areas are: incoming goods inspection, automated

guided vehicles (AGV) and adjustment of speed of, for

example, a rack feeder.
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