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Abstract In an inter-firm make-to-order production

environment, it is not always possible to satisfy the avail-

able-to-promise (ATP) and capable-to-promise (CTP)

conditions due to untimely and unmatched production

capacity and customer demand. Therefore, it is important

to quickly explore alternate solutions that would satisfy

both the customers and the suppliers. The purpose of this

paper is to present a multi-agent-based system for auto-

mated multi-attribute negotiation in order promising. Our

proposed solution is based on concepts of evolutionary

system design that advocates for continued exploration of

new solutions until a satisfactory solution is found. Based

on a number of real-life ordering situations—changes of

delivery date, price adjustments, and addition/modifica-

tions of value-added services as part of the order package,

we embed multi-attribute multi-utility simulations into a

linear program to search for a negotiated solution when a

typical ATP/CTP function of a supply chain management

system fails to fulfill a customer order.

Keywords Supply chain management � Multiple-criteria

analysis � Multi-agent systems � Heuristics � Group decision

and negotiations � Simulation

1 Introduction

Despite the adoption of seamless integration of supply

chain management and order management applications

using near real-time data in many core industries, finding

an alternate solution to an initial order that cannot be sat-

isfied remains a challenge to manufacturers. For a supply

chain planner, an effective sourcing strategy in a volatile

market is critical to ensure cost-effective replenishment of

products or services between participating firms in their

global operations. As an extension to the available-to-

promise (ATP) function, capable-to-promise (CTP) takes

into consideration capacity information in the supply chain

to generate order promising in a short-term, order-based

production environment. For incoming customer orders,

CTP decides whether or not it is possible to fulfill the

desired order quantity and delivery date. With the use of

online systems, an order promise depends on a number of

complex factors: increasing number of products and ser-

vices requested by an increasing number of customers,

possibility of product customization during the ordering

process, expected shorter cycle time and life cycles, and

flexible pricing (e.g., Kilger and Meyr [31]. Under scarcity

of raw materials and constrained production capacity,

orders may be rejected or not fulfilled based on the initial

terms of the customers. When an initial order is not ful-

filled, the planner needs to quickly find an alternate and

mutually agreeable solution between the supplier(s) and the

customer(s). Yet, a major weakness of the most CTP

functions currently available in supply chain systems is the

difficulty in finding an alternate solution. The planner is

typically given a set of attributes to specify (or to relax),

such as the amount of backward/forward consumption to

cover the current shortage or the time fence. This CTP

procedure is arbitrary and time-consuming. It requires a
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skillful and experienced supply chain planner to success-

fully negotiate an alternate order.

This article combines and extends approaches presented

by the co-authors at the AMCIS conference 2009 [11] and

the HICSS 43 conference 2010 [12]. The paper shows how

a multi-attribute negotiation process can be embedded in a

linear program to solve the severe limitation of current

computer-supported ATP functions. It discusses how to

design a negotiation-augmented supply chain network to

support CTP communication, bargaining, and negotiation

activities. In the absence of an initial, negotiation heuristics

are integrated in optimization routines to generate alter-

native offers.

The paper is organized as follows. First, we briefly

introduce the domain of order promising in the context of a

make-to-order production environment and suggest how

negotiation can be applied to ATP/CTP calculations. We

next extend our analysis to a production–distribution net-

work. Proposed negotiation concepts are operationalized

using multi-attribute utility functions.

2 Order promising in operational supply chain

management

2.1 The standard case of ATP/CTP functions

As previously introduced, available-to-promise (ATP) and

capable-to-promise (CTP) are known activities in the

management of inter-organizational supply chains. Within

a make-to-order or configure-to-order production environ-

ment, production or configuration is not initiated until the

producer receives a customer order demanding the specific

product. Due to the fact that the quantity of materials or

components in stock or the production resources may be

limited at a given point in time and cannot be replenished

or extended before the desired date of delivery, the pro-

ducer has to decide on the following:

• quantity,

• due date, and

• price

to commit to each customer order [30].

ATP and CTP functions are widely discussed in the

supply chain literature (e.g., Ball et al. [3, Kilger and

Schneeweiss 30, Shin and Leem 44]. ATP can be defined

as a simple function that looks up the producers’ finished

products inventory and, if available, reserves the quantity

to satisfy an incoming customer’s order. CTP in turn takes

the whole production process into consideration to look

ahead what quantity may be available within a certain time

frame. (Some authors denote the functionality of CTP as

Advanced ATP [13].)

Figure 1 depicts a basic workflow of the ATP/CTP

functions. The process is triggered by a customer order to

the producer. A customer order typically contains a set of

products (with order positions), the desired quantities, and

a delivery due date. Sometimes, a price is specified with the

order, but price is usually used as a negotiation item. To

check whether the order can be fulfilled, the ATP and CTP

functions are executed consecutively. If the ATP function

is able to fulfill the ordered quantity from existing inven-

tories in the supply chain, the requisition is created and the

products should be delivered on time. If the order cannot be

satisfied, the CTP function checks whether the ordered

products can be produced within the time delivery con-

straint. If this is the case, the CTP function creates a pro-

duction and delivery plan to fulfill the order. Otherwise, the

customer is notified that his order cannot be executed,

unless some modification to that must be negotiated.

Given the ATP/CTP functions, Fig. 2 shows how these

functions operate in a simple pull-based make-to-order

production where one single producer receives customer

Fig. 1 Basic workflow of

available-to-promise (ATP) and

a capable-to-promise (CTP)

functions
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orders. The producer P has an attached warehouse W for

finished products. We will come back to this standard case

in Sect. 2.3.

2.2 Order promising in a production–distribution

network

In supply chain management, order promising refers to the

ability of the SC planner to a global view of supply and

demand in order for him to answer to customer orders. The

global supply chain network consists of several production

sites linked together by a distribution network. The logistics

of these networks depend on the number and type of

products (functional or innovative products), the type of

production (make-to-stock, make-to-order, and configure-

to-order), and the location of the push–pull boundary within

the network. From the perspective of the supplier(s), the

objectives of order promising are to meet customer orders in

such way that minimizes costs (e.g., avoiding production

delays or overtime, missing or excessive inventory, addi-

tional transportation costs due to last-minute shipping

needs), increasing revenues by achieving higher capture

rates given current production capacity, and ultimately

improving customer satisfaction by keeping order promises

accurate and by keeping lead time as short as possible.

2.2.1 A dynamic model of a production–distribution

network

In this Sect. 2.2.1 we explain the network and define

parameters in particular orders, decision variables, and

constraints. This is the basis of a collection of submodels

which will be introduced in Sect. 2.2.2 by selection of a

subset of constraints from Sect. 2.2.1 and by adding two

objective functions.

For the sake of clarity, we focus on a production–dis-

tribution network for make-to-order products with con-

vergent manufacturing process. In this logistic network,

both the supplier stage and the end-customer stage of the

entire supply chain are not considered explicitly (see

Fig. 3). The end-customer demand is modeled by customer

orders which are generated by retailers.

Similar systems have been considered in the literature

(e.g., Cohen et al. [14, Vidal and Goetschalckx 46]). Thus,

and for the purpose of this paper that focuses more on the

negotiation heuristics at the first level of actors, the supplier

layer (S1,…, S4) and the customer layer of the supply chain

in Fig. 3 will not be considered in the discussion below. The

configuration of the production–distribution subsystem of

the supply chain is characterized as follows:

• There is one producer Pfocal (the focal enterprise of the

SC) with n manufacturing facilities at different loca-

tions PLi, i = 1,…, n. Without loss of generalizability,

we consider one functional product manufactured at all

n production locations. Of course, there are several

variants of the considered product, such as different

configurations of a laptop computer, but we do not deal

in this model with a configure-to-order production

environment. We assume to have a make-to-stock

production environment, and we assume that the order

penetration point within the supply chain is given. For

example, generic products are manufactured at the

production sites, and the places where the variants are

built are the warehouses.

We consider a simple case of a pure push-oriented

system (e.g., Olhager and Ostlund [39]. In this make-to-

stock environment, the variants are manufactured at the

production locations using demand forecasts and dis-

tributed to the retailers. However, as seen later, the

included negotiation process will result in a combina-

tion of make-to-stock and make-to-order.

The production locations PLi have given capacities Ci

(number of items produced per time unit) and given

production costs Ki (unit per item), i = 1,…, n. Each

manufacturing facility PLi has an inventory at its

location (attached stock) with a stock level It(PLi),

i = 1,…, n, at time t which is available for direct

delivery to the warehouses or to the retailers.

• There are retailers RTk, k = 1,…, l, that represent ‘‘the

customers’’ in the supply chain. Each retailer predicts

the demand of its customers and generates ‘‘customer

orders’’ to the supply chain.

Fig. 2 Basic scenario of an

aggregated view of a supply

chain from the perspective of

ATP/CTP functionality

Fig. 3 An example of a production–distribution network
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• The distribution system consists of warehouses WLj,

j = 1,…, m, and transportation links.

• The inventory level of the considered product at time

t is given by It(WLj), j = 1,…, m, measured in number

of items.

• If we denote P = {PLi|i = 1,…, n}, W = {WLj|j =

1,…, m} and R = {RTk|k = 1,…,l}, we can represent

the transportation relations or links as follows:

• Producer–warehouse links: ðPLi;WLjÞ 2 A1 �
P � W

• Links between warehouses: ðWLj1;WLj2Þ 2 A2 �
W � W

• Warehouse–retailer links: ðWLj;RTkÞ 2 A3 �
W � R

• Direct transportation links: ðPLi;RTkÞ 2 A4 �
P � R

Each transportation link has an assigned transportation

time, which is assumed to be deterministic and known. The

respective sets of links are denoted by A1, A2, A3, and A4.

An order Ot
(k) of retailer RTk at time t is represented by:

O
ðkÞ
t ¼ ðQ kð Þ

t ;RLT
kð Þ

t Þ;

where Qt
(k) is quantity of the order of RTk at time t and

RLTt
(k), requested lead time of the order

(We use (k) in order to assign the order to the retailer

RTk and to avoid confusion when considering the notations

in Table 1. In Table 1 we introduce three types of order

sets by aggregating with respect to the set of retailers.

Therefore, k is not needed within the respective notations.)

At time t, the supply chain is faced with the following

subsets of orders (Table 1).

Note that in the following we do not distinguish between

the different sets of orders in order to keep the model

tractable. Adding more variables to the supply chain net-

work would unnecessarily increase the complexity in

comparison with the aggregated basic scenario in Fig. 2.

However, a subsequent extension of the model is possible.

To trigger the process, assume that the retailers RTk,

which represent the customers, generate a stream of orders

at time t to the supply chain. To respond to this stream of

orders, the focal enterprise Pfocal can:

• accept all orders,

• accept only a subset of orders and reject the remaining,

or

• start negotiation with the retailers to modify the

existing orders (see Table 1).

A reasonable decision-making using a CTP system can be

based on a quantitative model that takes into consideration

both the production–distribution system introduced above

and the order-stream. The detailed consideration of the

network gives much more degrees of freedom (many

decision variables) for such a network-CTP in comparison

with a standard-CTP described above. For example, the

decision space of a network-CTP includes the following:

• delivery from warehouses (from which warehouses,

how many items)

• direct delivery from the producers inventories (from

which producers, how many items)

• where to produce (how many items of the product), and

• replenishment for the warehouses.

This leads to the definition of decision variables in

Table 2.

With the decision variables defined in Table 2, the

decision model as the basis for the network-CTP can now

be formulated as follows:

Constraints:

Warehouse replenishment:

Xm

j¼1

yi;j t þ tm xi tð Þð Þð Þ� xiðtÞ; where tmðxi tð ÞÞ ¼ xiðtÞ
Ci

ð1Þ

for all i = 1,…, n and t = 0, 1, 2, …
Delivery assignment of retailers:

Xm

j¼1

wj;kðtÞ þ
Xn

i¼1

pi;kðtÞ�Q
ðkÞ
t ð2Þ

for all k = 1,…, l and t = 0, 1, 2, …
Inventory dynamics—warehouses and producers:

Itþ1 WLj

� �
¼ It WLj

� �
þ

X

i: PLi;WLjð Þ2A1

yij t � dij

� �

�
X

k:ðWLj;RTkÞ2A3

wjkðtÞ ð3Þ

for all j = 1,…, m and t = 0, 1, 2,….

Itþ1 PLið Þ ¼ It PLið Þ þ
X

j: PLi;WLjð Þ2A1

yij tð Þ

�
X

k:ðPLi;RTkÞ2A4

pik tð Þ þ xiðtÞ ð4Þ

for all i = 1,…, n and t = 0, 1, 2, …

Table 1 Possible order sets

Ot ¼ fO
kð Þ

t k ¼ 1; . . .; lj g ‘‘New set’’ of orders at time t

Oac
t
0\t

Accepted orders at time t0 \ t,
S

t0\t

Oac
t0\t :

accepted orders before t

Ore
t
0\t

Rejected orders at time t0 \ t,
S

t0\t

Ore
t0\t :

rejected orders before t

Oneg

t
0\t

Orders arrived at time t0 and selected for

negotiation,
S

t0\t

Oneg
t0\t : orders selected

for negotiation before t
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Distribution decision constraints:

X

k: WLj;RTkð Þ2A3

wjk tð Þ� It WLj

� �
þ

X

i: PLi;WLjð Þ2A1

yij t � dij

� �
ð5Þ

for all j = 1,…,m
X

j: PLi;WLjð Þ2A1

yij tð Þ þ
X

k: PLi;RTkð Þ2A4

pik tð Þ� It PLið Þ þ xi tð Þ ð6Þ

for all i = 1, 2, …, m and, both, (5) and (6) for all t = 0, 1,

2, …
Now, we discuss the constraints (1) to (6). PLi produces

a quantity xi(t) starting at time t. Then, the manufacturing

time tm of this quantity xi(t) (denoted by tm(xi(t)) becomes:

tm xi tð Þð Þ ¼ xiðtÞ
Ci

ð7Þ

We further assume that transportation of the produced good

to the warehouses does not start before the whole pro-

duction order quantity xi(t) has been produced and that

there is no inventory available at the production site. Then,

we get the constraint (1). Equation (1) shows that con-

straints are becoming more difficult to formulate if we

assume a continuous time parameter t and if we explicitly

consider time lags caused by production capacity con-

straints and the missing inventories from the producers.

Therefore, we assume discrete time t, t = 0, 1, 2, …, and

inventories are integrated to the producers PLi. We also

assume xiðtÞ�Ci. Then, we replace constraint (1) with the

constraints (4) and (6).

We also define the constraints related to an order

quantity Qt
(k).

(a) Delivery from warehouse stock or direct delivery

from manufacturers stock to a retailer RTk should not

be bigger than the ordered quantity Qt
(k) of this

retailer. Formula (2) assumes that the respective links

in the network exist. If not, the respective decision

variable is set to 0. The delivery starts at time t

provided that the inventory levels at time t allow the

following:

wj;kðtÞ� ItðWLjÞ for all j and k

pi;kðtÞ� ItðPLiÞ for all i and k
ð8Þ

(b) To support multistage decision-making, our model is

dynamic in nature with discrete time periods and state

variables.

Equation (3) shows how the inventory levels of the

warehouses are changing over time. Formula (4) models

the state transformation for the producer inventories.

(c) If we use stock variables It(PLi) and It(WLj) to model

producer and warehouse inventories, we have to make

sure that these variables remain nonnegative over

time. Therefore, from (3) and (4) we derive (5) and

(6) with Itþ1ðWLjÞ� 0 and Itþ1ðPLiÞ� 0. With initial

values I0ðWLjÞ� 0, I0ðPLiÞ� 0, and inequalities (5)

and (6) fulfilled, nonnegative inventory levels are

guaranteed.

Also, we have to take into account the capacity

constraints:

0� xiðtÞ�Ci

where Ci are maximal production capacities per time

interval.

2.2.2 A simple strategic procedure for a CTP network

In 2.2.1, we developed a dynamic model for the production–

distribution network as a subsystem of a supply chain. This

model might become very large in terms of the number of

time-dependent variables and constraints. This model can be

used in order to simulate the processes (i.e., production,

storage, transportation) of the supply chain. For a given set of

orders Ot = {Ot
(1),…, Ot

(l)} at time t, we can use the data

Ot
(k) = (Qt

(k), RLTt
(k)), respectively. The ordered quantity and

requested lead time define possible situations. Then we

define a strategy which means mainly a sequence in which

situations are checked. Perhaps, the most intuitive strategy

related to the network is the four-step procedure below:

Table 2 Decision variables

Decision Variable Description

Delivery from warehouse stock wj,k(t) Quantity sent from warehouse WLj to RTk starting at time t

(If transportation time is d�
j;k , then the quantity arrives at the retailers place at time point t þ d�

j;k)

Direct delivery from the

manufacturer’s stock

pi,k(t) Quantity sent from producer PLi to RTk directly starting at time t

(If transportation time is d
0

i;k , then it arrives at time t þ d
0

i;k

at the retailers location)

Production orders for the

manufacturers

xi(t) Quantity which producer PLi starts to manufacture at time t (With Ci number of items produced by

PLi per time unit, the manufacturing time for any single order can be computed.)

Distribution (replenishment)

decisions

yi,j(t) Quantity sent from producer PLi to warehouse WLj

(in order to store the amount of goods there) at time t

Logist. Res. (2013) 6:25–41 29
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I. If possible, fulfill the order-set from warehouse inven-

tories only.

II. If I is not possible, try to fulfill the order-set by using

both the warehouse inventories and the goods which

are in transport from the producers to the warehouse

(regular replenishment processes of the warehouses)

III. If II is not possible, additionally select direct delivery

from producers to the retailers.

IV. If III is not possible, additionally create new

production at time t.

Each situation (I–IV) corresponds with a submodel that can

be built from the set of decision variables and constraints

we have introduced before. It is obvious that model I. is the

simplest one (the network-ATP) and the other models

become subsequently more complex in the sequence I, II,

III, and IV.

To illustrate the proposed approach, we will first con-

sider situation I (see Fig. 4).

Situation I is given; if
Xm

j¼1

ItðWLjÞ�
Xl

k¼1

Q
ðkÞ
t ð9Þ

In this case, it is possible to fulfill the overall ordered

quantity by the aggregated warehouse stock
Pm

j¼1 ItðWLjÞ
at time t. However, inequality (9) does not check whether

the delivery from warehouse inventories is possible or

partly possible within the requested lead times. Also, there

is no decision which quantities should be delivered from

which warehouse to which retailer. In order to come up

with optimal decisions from the supply chain from the

point of view of focal enterprise (the producer Pfocal), we

define two objective functions by considering the cost Kt of

delivery from the warehouses, and the lead time LTt for

this delivery process.

Kt ¼
Xm

j¼1

Xl

k¼1

Kjk � wjkðtÞ ð10Þ

where Kjk denotes transportation cost per item with regard

to the relation WLj ? RTk. (If the link WLj ? RTk is not

included in the network, we have wjk(t) = 0 by definition.)

We define the lead time for order Ot
(k) = (Qt

(k), RLTt
(k))

of retailer RTk by:

LT
ðkÞ
t ¼ max

j¼1;...;m
d�

jkjwjk tð Þ[0
n o

and
Xm

j¼1

wjk tð Þ¼Q
ðkÞ
t ; ð11Þ

where d�
jk denotes the transportation time from warehouse

WLj to retailer RTk.

(Lead time refers to the maximal transportation time

from the warehouses to RTk, provided the entire ordered

quantity is delivered.)

In sum, we have l ? 1 objectives, if we do not aggregate

lead times of the retailers. If we define an overall lead time

by:

LTt ¼ max
k

LT
ðkÞ
t ð12Þ

we get two objectives where both—costs and lead time—

need to be minimized.

The task at hand for producer Pfocal, as the focal enter-

prise in the supply chain, is to set the problem up as a series

of multi-criteria problems and use the solutions of these

problems initial offers to engage in a negotiation process

between the producer P = Pfocal (the Supply Chain Agent)

and the retailers RT1,…, RTl (the Retailer Agents). In order

for us to embed negotiation in the model, we provide in the

next section a brief discussion and justification of using

negotiation processes in order promising.

3 Negotiation in order promising

3.1 Order promising as a compromise

between producers and consumers

The main objective of the producer in order promising, of

course, is to maximize revenue and earnings by manufac-

turing and selling as many products to as many customers

as possible. As we are considering a pull-based production

environment, customer satisfaction is of high importance in

the long run. In general, there are three critical factors that

determine the quality of an order promising system from a

customer satisfaction point of view:

• Reaction time of the system: The duration of the

decision-making process should be as short as possible

to get the orders to the customers.

Fig. 4 The network-ATP

(situation I)

30 Logist. Res. (2013) 6:25–41

123



• Quality of promised due date: The customer desires a

short delivery time and a reliable prediction on it.

• Order acceptance rate: Only a small number of

customer orders should be rejected unless the selection

of accepted orders is solely based on short-term profit

maximization considerations. A customer with a

rejected order may choose to buy the product from

another producer—and may not come back in the

future.

There are multiple decisions apart from the ones

mentioned above that are commonly incorporated into

ATP and CTP to achieve these objectives. For example, to

be able to accept more customer orders, order splitting or

quantity splitting may be considered. Order splitting allows

the delivery of order positions of a customer order at

different dates. Quantity splitting allows splitting the

ordered quantity into multiple orders and delivering these

orders at different delivery dates. The workflow for the

CTP function described above is rather common and is

widely discussed in the literature. The issue in this paper,

one that is not yet studied in depth in the current literature,

is how to proceed once a customer order is rejected by the

CTP function. This step requires some form of negotiation

with the customers until an alternate solution is satisfactory

for all parties.

3.2 Automated negotiation

Research in negotiation support tends to focus on two

major areas: communication support and bargaining and

group decision support. Experience has shown that the

more antagonists engage in exchanging information and

expression of their positions in a clear and concise manner,

the more likely that they will move toward a solution that is

acceptable to all. The underlying principle is that to steer or

redirect communication leads to conflict to one that

encourages conflict resolution, and better yet, collaboration

[29]. A number of researchers propose the creation of

computer-based platforms to support communications

through structured language such as argumentation lan-

guage (e.g., Bui et al. [7, Karacapilidis and Papdias 28]) or

language to help structure negotiation issues (e.g., issue-

based dialogue management) [15, 32]. Another area of

research is to search for techniques to improve the nego-

tiation outcomes (e.g., Bui [6], Yan et al. [48]). These

techniques range from optimization to heuristics, from

game theory to simulation (e.g., Bichler et al. [4] for a

review). Among negotiation systems, there are negotiation

support systems (NSS) and negotiation mediation systems

(NMS). NSS are designed to assist negotiators in reaching

mutually satisfactory decisions by providing a means

of communication and through analysis of available

information with a variety of appropriate decision methods.

NMS implement negotiation processes between multiple

entities. Their aim is to improve the efficiency of the

negotiation processes through communications support and

assistance toward integrative bargaining.

Most NSS seek to improve the outcome of the party that

uses the system. In contrast, and as their name suggests,

NMS are used to help the negotiation party to gain a more

effective result. In this paper, we define negotiation in its

broadest context, that is, any activity that helps avoid a

solution impasse, or better yet, one that would yield a win–

win situation to both customers and suppliers when the

initial order by the customers cannot be met by suppliers.

Acknowledging the existence of more than one issue in a

typical negotiation, the general literature in multiple-attri-

bute utility theory advocates for the continued exploration

of solution until a compromise is found (e.g., Bui [6]). The

exploration of ‘‘solution space’’ can be achieved by looking

for new solutions that had not been thought of, adjusting or

refocusing on views of the problem, or adding/replacing

actors. This concept is known as evolutionary in the design

of negotiation processes [10]. As shown in the next section,

the consideration to split the quantity of an order that

cannot be fulfilled or the adding of some additional ser-

vices to a late delivery are examples of evolving the initial

solutions to a new feasible set of possible solutions that are

acceptable to all involved parties.

The notion of automated negotiation implies that some

aspects of a negotiation are either conducted or at least

supported by autonomous computer agents or parties [8]. In

the context of ATP or CTP, this automated negotiation

could be of routine procedures (e.g., fast and expanded

search of ‘‘matching solutions,’’ quick estimation of

delivery time, or instantaneous reporting of inventory

levels). Furthermore, the agents could also be pre-pro-

grammed to act as a trained mediator looking for heuristic-

based problem solving (e.g., Emerson and Piramuthu [17]).

For example, the first procedural rule of an automated

agent would be to immediately acknowledge the reception

of a customer’s order and the generation of an alternate

solution should the initial order cannot be satisfied. In a

distributed platform linking customers to suppliers, the

automation of negotiation processes could be implemented

by a series of simple to more functional agents, thus a

multi-agent system.

3.3 Potential benefits of introducing negotiation

capabilities to CTP

As mentioned above, the success of an order promising

system depends on three critical factors, that is, short

reaction time, quality of promised due date, and a high

acceptance rate. Unfortunately, the objectives of producers
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and customers regarding the order attributes are, at least in

some cases, divergent (see Table 3). This discrepancy

needs to be taken into consideration by the focal producer

whenever a customer order is rejected by the order prom-

ising system and a counteroffer is needed. As discussed

earlier, any order that is not fulfilled is an opportunity loss.

Table 4 shows suggested strategies on four typical nego-

tiable order attributes for the producer. Obviously, nego-

tiation concepts especially a negotiation support system for

the computation of counteroffers may enhance the overall

efficiency of the order promising system.

The potential need for, and benefit of, introducing

negotiation support to the domain of order promising is

discussed in recent literature (e.g., Rupp and Ristic [41]).

Yet, most authors consider negotiation just for contracting

before the ATP or CTP functions are executed, that is,

producer and customer settle on fixed values or intervals

for quantities and due dates (e.g., Sadeh et al. [42, Shin and

Leem 43]). Other authors claim in their research that

negotiation processes have been implemented, but they do

not explain or even formalize these processes in details

(e.g., Makatsoris et al. [34]). To our knowledge and at the

time of this writing, very few specific negotiation processes

or systems have been proposed to support post-ATP/CTP

negotiation. Dudek and Stadtler [16] discuss a system for

negotiation-based collaborative planning between supply

chain partners, which consists of a supplier and a buyer.

The supplier offers an initial quantity that can be revised by

the buyer. Yet, their work assumes a collaborative

partnership and not a situation in which producers and

customers are confronted with divergent objectives.

Thus, there is potential for further research on enhancing

the efficiency and effectiveness of order promising systems

by introducing negotiation concepts and systems. Table 5

is a brief review of relevant literature supporting our

research work. It classifies recent research literature on

ATP/CTP, negotiation or Multi-Agent Systems (MAS),

and, most relevant to this research, work that attempts to

integrate these four topics.

3.4 Implementation of a multi-agent simulation

framework for automated negotiation in order

promising

Multi-agent systems (MAS) are information systems that

have been of great interest in research over the last years.

They consist of several intelligent agents that can exchange

information or objects with each other. By doing so, agents

can be designed to address complex problems which would

be very difficult or impossible to solve with a single

intelligent agent. In a distributed environment, MAS and

their agents are naturally well suited to replicate real-world

organizations or units. Agent-based technology can today

be found in a wide range of applications like disaster

response and modeling social systems (e.g., Jennings et al.

[26]). The intelligent agents of a MAS share some impor-

tant characteristics: They are mostly autonomous. They

only have a limited, local view of the global environment.

And there is no single agent that is able to control all the

others. The agents are defined by their objectives, attri-

butes, and behavior [27].

We have developed a multi-agent system (MAS) pro-

totype that consists of different agents representing the

retailers business and its customers as shown in Fig. 2. The

implemented MAS focuses on the decision column of

Table 4, but it can be extended to support activities during

the pre- and post-decision phases.

Table 3 Multiple issues in CTP and conflicting objectives

Order Attributes Producer Customer

Due date Late Early

Quantity High Ordered amount

Price Low Low

Value-added services (VAS) Low High

Table 4 Suggested negotiation strategies to deal with CTP issues

Decision

attributes

Pre-decision Decision Post-decision

Due Date Forecast arriving orders and build

stock and production capacity

accordingly

Produce in advance or negotiate later date Evaluate forecast accuracy, and

if necessary adjust forecast

techniques

Quantity Forecast incoming orders and build

stock and production capacity

accordingly

Reduce quantity or split it Evaluate forecast accuracy, and

if necessary adjust forecast

techniques

Price Conduct market research on

competitive pricing

Reduce price to compensate for later due date and/

or smaller quantity

Check whether pricing was right

Value-added

services

(VAS)

Build up competence in customer

services and preferences research

Offer customers value-added services to

compensate for late delivery and/or delivery with

smaller quantity

Assess customer satisfaction
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3.5 System architecture

To illustrate our negotiation framework, we use the case of

a computer retailer (producer). The customers place orders

that typically consist of a specified number of computer

systems. Since the retailer cannot accurately predict these

orders with specific configurations and reliability of

ordered products, it has little choice but adopting a make-

to-order environment.

The Order Collection agent receives customer orders

and passes them on to the Supply Chain Central Control

unit. This agent communicates with Production and

Inventory Control to get the necessary information to call

the CTP solver. A linear program is used to decide whether

Table 5 Selected literature on

ATP/CTP, MAS and

negotiation

SCM Order promising/ATP/CTP Negotiation support MAS

SCM/ATP/CTP

Agatz et al. [1] x x

Azevedo and Sousa [2] x x

Bixby et al. [5] x x

Chen et al. [13] x x

Fischer [18] x x

Meyr [35] x x

Moses et al. [37] x x

Rupp and Ristic [41] x x

Kilger and Schneeweiss [30] x x

Kilger and Meyr [31] x x

Vidal and Goetschalckx [46] x

Wu and Liu [47] x x

Zhao et al. [50] x x

Argumentation and negotiation

Bichler et al. [4] x x

Bui et al. [8] x x

Bui and Shakun [10] x

Karacapilidis and Papdias [28] x

Larsson [32] x

Louta et al. [33] x x

MAS

Bui and Lee [9] x

Julka et al. [27] x x

SCM and MAS

Fulkerson [20] x x x

Sadeh et al. [42] x x x

SCM and negotiation

Gallien et al. [22] x x x

Grieger [24] x x

Shin and Leem [43] x x x

Moodie and Bobrowski [36] x x x

Zhang et al. [49] x x x

SCM, MAS and negotiation

Bui et al. [11] x x x x

Dudek and Stadtler [44] x x x

Frey et al. [19] x x x

Fung and Chen [21] x x x x

Makatsoris and Chang [34] x x x x

Richards et al. [40] x x x x

Stadtler [44] x x x x

Tan et al. [45] x x x x
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or not the orders are accepted or rejected. These decisions

are in turn returned to the Central Control agent. The latter

attempts to derive alternatives for the rejected orders.

These counteroffers are then passed on to the Order

Negotiation agent that uses an algorithm described later to

modify the counteroffers using new price and value-added

services as terms of negotiation with the hope that they will

be considered and accepted by the customer. The Order

Negotiation then offers the counteroffers to the customers

who are asked to take positions. In Fig. 5 a system archi-

tecture is given which is able to realize the negotiation-

assisted make-to-order approach described above. Finally,

the distribution agent takes care on realizing the decisions

within the physical distribution network. A UML sequence

diagram of this CTP and negotiation process shows the life

span of and communication between the agent processes in

[11].

3.6 Software framework and tools

The MAS was implemented using the Repast Simphony

framework (North et al.’s Web site [38]). This Java-based

environment provides a graphical user interface for running

simulations within a MAS. The different agents are

implemented using plain Java classes. The GNU Linear

Programming Kit (GLPK Website) [23] and its Java

interface (GLPKJNI website) [25] are used to solve the

CTP model.

The system details as well as the results of computa-

tional experiments are published in [11]. As a proof of

concept, the simulation of the automated negotiation

showed that the number of rejected orders could be reduced

while the overall revenue increased.

The successful simulation experiments encouraged us to

continue the integration of multi-criteria approaches and

negotiation techniques to the production–distribution net-

work (see Fig. 3) and the model-based approach outlined in

Sect. 2.2.2. The novelty here is to use interactive instead of

automated negotiation and to develop a hybrid approach.

4 Outline of a negotiation approach within a CTP

environment

Bui and Shakun [10] published a negotiation approach

and software tool (NEGOTIATOR) to support distributed

negotiation using multiple-criteria Pareto optimization.

As discussed earlier, the underlying principle is the

Evolutionary System Design approach that advocates for

a systematic search of new solutions until a satisfactory

is found. Although this evolutionary approach was

originally applied to fields such as corporate strategies or

public policies, the technique lends itself well to a CTP

environment in supply chain management. Therefore, in

order to show how a negotiation approach could be

applied to a CTP environment, we explain the approach

by Bui and Shakun [10] using an example. First, we

apply the general concepts of the method to this appli-

cation area.

4.1 A combined optimization: negotiation approach

illustrated by an example

We consider the production–distribution network example

from 2.2 with only one retailer.

4.1.1 Definition of values, goal variables, control

variables, and weights

• General values are high performance, reliability in

delivery, and safety.

• Operational expressions of the general values are

formulated by goal variables, delivered quantity (of

the requested good), lead time, cost, and price

• Notations of the control variables of the example-

Supply Chain:

Qt—ordered quantity by the retailer (party A)

OQt—offered quantity by the SC in reply to the order

(SC—agent (this means the focal enterprise Pfocal) is

party B of negotiation)

Kt—cost of the ordered quantity Qt

Pt—price of the ordered quantity Qt

LTt—lead time of the ordered quantity Qt

t—is the time index t [ {0, 1, 2, …}

The SC-agent computes cost and lead time using an opti-

mization submodel (introduced in 2.2.2) and calculates a

price Pt.

• Control variables of party A (retailer) are as follows:

ordered quantity (number of items), price (e.g., EURO,

Dollars), and lead time (e.g., days, weeks)

• Control variables of party B (Retailer) are as follows:

offered quantity (number of items), price, and lead time

Fig. 5 System architecture of a negotiation-assisted make-to-order

environment
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4.1.2 The first round of negotiation

To illustrate the first round of negotiation triggered by

initial offers, and for the sake of clarity, we consider the

following special numerical example:

Party A places an order of 500 units. The buyer (party

A) does not propose a price, but the SC-agent (party B) has

to. The SC-agent seeks to satisfy this order using price and

lead time as decision variables. Each agent starts the

negotiation with an initial offer. The initial offer of party B

(Supply Chain) is derived from the solution of an optimi-

zation problem (see 2.2.2) which is considered next.

Because the SC has to meet the ordered quantity of 500

items (or to reject the order), it uses submodel I and selects

a solution which is closest to the requested lead time 4.

Figure 6 shows a simple numerical example.

Price:         –       Price:         $5,500 

Lead-time:  4 Lead-time: 6

Initial offer from party A (Retailer) Initial counteroffer from party B (Supply Chain) 

    Ordered Quantity: 500                      Offered Quantity: 500 

The condition for submodel I, It WL1ð Þ þ It WL2ð Þþ
ItðWL3Þ�Qt, is fulfilled for Qt = 500.

The minimal-lead-time solution is bw11 ¼ 400, bw21 ¼
100, bw31 ¼ 0

with related costs: k11 � 400 þ k21 � 100 ¼ Kt Maxð Þ ¼
4800.

Therefore, the initial-offer delivery of the whole order of

500 items for a price of $5,500 with lead time of 6 weeks

was made.

The lead time of 6 for the whole order is much longer

than the requested lead time of 4 weeks. Therefore, a

negotiation with respect to lead time and price is required

to avoid an impasse. Since negotiation parties have

different views, we introduce weights that express the

importance of these two attributes using a cardinal scale

from [1,10] [10]. Weights can be normalized onto [0,1]. In

the example, wA and wB denote the normalized weights,

respectively, for Parties A and B

Weights of Party A: Weights of Party B:

Weights | Normalized Weights Weights | Normalized Weights

Price:         5,      wA(Pt)    = 0.357 Price:         10,      wB(Pt)   =0.666

Lead-time: 9,      wA(LTt) = 0.643 Lead-time: 5,        wB(LTt) = 0.333

.

4.1.3 Ranges of the values of control variables (attributes)

The ranges (intervals) of the control variables can be

derived by solving an optimization problem (Fig. 7). For

example, the SC-agent solves submodel I with the ordered

quantity Qt(= 500) as input and gets.

This generates intervals bKt �Kt �KtðMaxÞ and

LbTt �LTt �LTtðMaxÞ for the control variables, provided

the ordered set is Qt(= 500) and this quantity Qt(= 500) can

be realized within submodel I.

The SC-agent derives a price interval Pt B Pt B Pt(Max)

from the given cost interval. In this numerical example, the

requested lead time is smaller than the minimal lead time.

Therefore, the SC-agent proposes the minimal lead time 6

and a price corresponding to Kt(Max).

If we do not require that the ordered set of Qt(= 500) to be

completely realized by submodel I, we can explore other

combination of prices and lead times based on utility functions.

We assume now that there are known intervals:

Pt Minð Þ�Pt �Pt Maxð Þ and

LTt Minð Þ�LTt �LTt Maxð Þ

4.1.4 Utility functions

Conditional utility functions:

The method is based on the use of utility functions of

each party A and B.

Fig. 6 Computation of an

initial offer; lead-time minimal

solution
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Each party defines a weighted and conditional utility

function (under the condition of ordered quantity Qt(= 500)).

uA(Pt, LTt|Qt), in our example uA(Pt, LTt|500)

uB(Pt, LTt|Qt), in our example uB(Pt, LTt|500)

uA, uB: utility of party A, B of a price Pt and lead time

LTt under the condition that the order is Qt(= 500)

(defined over the ranges introduced in 4.1.3.)

It is very important to understand, that in this example,

both utilities uA and uB depend on two variables Pt and LTt.

It means that it is not possible to define the utility of a

particular value of the price variable without knowing the

lead time values (Fig. 8).

If we deal with two-dimensional utilities, weights are, of

course, not needed.

Weighted utility function:

We get the weighted utility functions, if we introduce

one-dimensional utility functions uA(Pt|Qt) and uA(LTt|Qt)

of the party A (and analogously for party B) with respect to

only one variable Pt or LTt, respectively (Fig. 9).

Then we get for the weighted utilities

uw
AðPt;LTtjQtÞ ¼ wAðPtÞ � uAðPtjQtÞ þ wAðLTtÞ

� uAðLTtjQtÞ

uw
BðPt;LTtjQtÞ ¼ wBðPtÞ � uBðPtjQtÞ þ wBðLTtÞ

� uBðLTtjQtÞ

Of course, we cannot expect that the weighted utility

functions are identical with the conditional (two dimen-

sional) utility functions uA, uB. Details of this weighted

utility approach are discussed in [10].

In the following discussion, we consider simple exam-

ples related to the numbers in the initial offers and the

respective submodel I (Fig. 9).

Joint utility functions:

Multiplication of uA, uB with normalized weights and

adding the resulting curves of A and B results in ‘‘joint

utilities of A and B with respect to each of the attributes

price and lead time’’.

uPrice
Joint ðPtjQt ¼ 500Þ ¼ wAðPtÞ � uAðPtjQt ¼ 500Þ

þ wBðPtÞ � uBðPtjQt ¼ 500Þ

ulead�time
Joint ðLTtjQt ¼ 500Þ ¼ wAðLTtÞ � uAðLTtjQt ¼ 500Þ

þ wBðLTtÞ � uBðLTtjQt ¼ 500Þ

Using the weights given in Sect. 4.1.2 we get (Figs. 10,11):

uPrice
Joint ¼ 0:357 � uAðPtj500Þ þ 0:666 � uBðPtj500Þ

ulead�time
Joint ¼ 0:643 � uAðLTtj500Þ þ 0:333 � uBðLTtj500Þ

Bui and Shakun (1996) use a simple additive function to

derive the maximum of the joint or social utility functions

in order to get a solution which maximizes the sum of

weighted utility functions with respect to one attribute. In

our example (see Figs. 10, 11), the highest joint utility for

price is given by any value of the interval [Pt*, Pt(Max)]

(Fig. 10). The highest joint utility for lead time lies in the

interval [LTt(Min),LTt*] where LTt* = 5 in our example.

For Pt* = 6,000 and Pt(Max) = 7,000, (Pt(Min) =

4,800), we find from Figs 10 and 11 that any pair

Pt; LTtð Þ 2 6000; 7000½ 	 � ½4; 5	 maximizes the joint utili-

ties for prize and lead time as well and is, therefore, a

candidate for a compromise solution.

This result is based on the one-dimensional utility

analysis prescribed above.

Another approach would be to use the joint conditional

two-dimensional utility functions by maximizing

Max uAðPt; LTt QtÞ þ uBðPt; LTt QtÞjj

with respect to (Pt, LTt) over [LTt(Min), LTt(Max)] 9

[Pt(Min), Pt(Max)] and using the optimal solution (Pt
*, LTt

*)

for further negotiation. In that case, weights are not needed.

Fig. 7 Ranges of control variables

Fig. 8 Two-dimensional conditional utility function
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Price:       [$6,000, $7,000] 

lead-time: [4, 5]weeks 

The negotiation support system offers a compromise

solution in case that the whole ordered quantity 500 items

will be delivered. (There are of course other possibilities,

e.g., changing Qt, splitting Qt in subquantities with differ-

ent lead times.) This concludes the first round of

negotiation.

100

100
100

100

Pt(Min) Pt(Min)Pt(Max) Pt(Max)

LTt(Min)=4 LTt(Max)=85 LTt=6LTt(Min)=4LTt(Max)=8LTt=6 7

(Independent of lead-time)

(Independent of price)

uB(Pt | Qt = 500)uA(Pt | Qt = 500)

uA(LTt | Qt = 500) uB(LTt | Qt = 500)

Fig. 9 Examples of one-

dimensional utility functions

Fig. 10 Joint utility for price Fig. 11 Joint utility for lead time
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4.1.5 Second round of negotiation using submodel III

The compromise reached in the first round of negotiation

seems to be very reasonable for the SC (party A), because

it is very close in terms of lead time compared to the initial

offer. For party B, the new solution is still far away from

the initial request (lead time of 6), because lead time of 5 is

not possible in the ATP scenario (submodel I). However,

the retailer (party A) only knows that the interval

4 B LTt B 5 has also for the SC maximal utility. For

example, party A offers a price of $6,000 for Qt = 500

with lead time of 5. Therefore, let us assume that the

retailer agent does not accept the compromise in terms of

lead time but is willing to pay more instead.

That means the SC-agent is faced with an order of 500

for a price of $6,000 and a lead time of 5 weeks. As seen in

Fig. 6, it is clear that a lead time of 5 is not possible within

submodel I. The SC-agent needs now to look for other

submodels to find a solution.

To illustrate the approach, we assume QA1

In � Transportð Þ tð Þ ¼ 0 and consider submodel III. The

respective subnetwork looks as follows (Fig. 12):

We analyze this network under the requirements

Qt
(1) = 500 and lead time = 5. With Inv(Prod)t we denote

the total inventory of all producers at time t.

Then, we have

It WL1ð Þ ¼ 400\Q
ð1Þ
t ¼ 500;QA1

In � Transportð Þ ¼ 0;

InvðProdÞt ¼ 600

and therefore:

It WL1ð Þ þ QA1
In � Transportð Þ þ InvðProdÞt �Q

1ð Þ
t ¼ 500

That means, the constraints for submodel III are now

fulfilled. Party B tries to fulfill the required lead time = 5

with minimal cost.

After pre-processing using the retailer requirement: lead

time = 5, we can set: w21 = 0, w31 = 0.

Therefore, we get: w11 tð Þ þ p11 tð Þ þ p21 tð Þ ¼ 500

0�w11 � 400; 0� p11 � 200; 0� p21 � 400

such that 10 � w11ðtÞ þ 20 � p11ðtÞ þ 15 � p21ðtÞ ! Min:

The minimum-cost solution is: bw11 tð Þ ¼ 400; bp11

tð Þ ¼ 0; bp21 tð Þ ¼ 100;

and the assigned minimal cost value is: 10 � 400þ
15 � 100 ¼ 4; 000 þ 1; 500 ¼ $5; 500

With this new solution, the SC-agent will perhaps accept

the retailer offer without further negotiation, because it

realizes maximal joint utility.

Let us now consider another case: d0
21 ¼ 6 (instead of

d0
21 ¼ 5, see Fig. 12).

Then we get p21ðtÞ ¼ 0, and therefore, the optimization

problem becomes:

w11 tð Þ þ p11 tð Þ ¼ 500

0�w11ðtÞ� 400; 0� p11ðtÞ� 200

such that 10 � w11 þ 20 � p11 ! Min:

The optimal solution is: bw11 tð Þ ¼ 400, bp11 tð Þ ¼ 100,

and minimal cost is $6,000.

In this scenario, the SC-agent cannot offer a price of

$6,000. Therefore, parties might need to reconsider the

problem (i.e., re-examine the values of the decision out-

comes—price and lead time in their utility functions), and

another round of negotiation is needed.

Fig. 12 Network for

submodel III
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The main reason is that the intervals for price and lead

time are in a strong sense valid only for each of the sub-

models. If we change the submodels, we need to define new

intervals and utilities. For example, within submodel I, a lead

time of 5 is not possible given the overall ordered quantity,

and a lead time of 4 is not feasible as well. Therefore, instead

of defining uBðLTtj500Þ ¼ 0 for 4�LTt � 5, we could use

negative utilities for agent B (see Fig. 13).

Fig. 13 Using negative

utilities–utility function for lead

time in the case of submodel I

(lead times 4 and 5 are not

possible within the scenario of

submodel I)

Fig. 14 An agent-based multi-attribute negotiation procedure for order promising
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An utility function with negative values for an undesired

subinterval is better than a smaller interval, because it gives

more space for modified order fulfillment and negotiation.

This illustrates the approach. Of course, the description

is not complete yet. After a positive result of the negotia-

tion, a re-optimization of the whole supply chain is needed.

Also, other types of offers are possible, for example,

splitting the ordered quantity into parts with different lead

times, etc.

In Fig. 14, we outline an algorithmic approach of the

combined optimization–negotiation method we have

introduced by a simple numeric example above.

5 Conclusion

With the increasing adoption of industry-wide supply chain

systems, there is a real and urgent need to find negotiated

solutions between suppliers and customers instead of

rejecting orders that appear to be unable to match with

supply capacity. In the context of available-to-promise

(ATP) and capable-to-promise (CTP) functions, experience

has shown that order promising has turned out to be a

rather difficult process. It is rather common that, in an

inter-firm supply chain, finding a solution (that includes

delivery of available stocks and make-to-order production)

to an incoming customer order is not possible. More often

than not, orders are rejected, thus failing customers and

incurring lost revenues. Acknowledging the impossibility

of using optimization techniques to find an alternate solu-

tion, we have presented in this paper a multi-attribute,

multi-utility model that can be integrated in a CTP solver

to explore alternate solutions. First, we set up a basic

supply chain model with the usual constraints: production,

warehouse replenishment, and delivery and distribution.

Next, we introduced the concept of weighted utilities for

the suppliers and buyers to help them explore a variety of

feasible solutions based on price, lead time, and quantity

and demonstrated how the Pareto optimization can be used

to search for solutions that maximize joint utilities. The

proposed model has been implemented and tested using

life-like scenarios. Results of our simulations suggest that

negotiation procedures did reduce the number of rejected

orders and increase the overall revenues when negotiation

concepts and algorithms are applied. A major benefit of

this research is that, unlike many suggested approaches in

the recent literature, the proposed solution to solve order

promising impasse is intuitive enough for supply chain

participants to understand and appreciate and tractable

enough to be implemented in a multi-agent system.
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