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Abstract The production planning problem, that is, to

determine the production rate of a factory in the future,

requires an aggregate model for the production flow

through a factory. The canonical model is the clearing

function model based on the assumption that the local

production rate instantaneously adjusts to the one given by

the equilibrium relationship between production rate (flux)

and work in progress (wip), for example, characterized by

queueing theory. We will extend current theory and mod-

eling for transient clearing functions by introducing a

continuum description of the flow of product through the

factory based on a partial differential equation model for

the time evolution of the wip-density and the production

velocity. It is shown that such a model improves the mis-

match between models for transient production flows and

discrete event simulations significantly compared to other

clearing function approaches.

Keywords Production planning � Transient clearing

functions � Continuum models

1 Introduction

The production planning problem is a well-studied problem

in industrial engineering. Fundamentally, it involves find-

ing the correct starts into a factory such that production

meets demands. The problem is complicated by two dif-

ferent major issues: stochasticity and nonlinearity. Sto-

chasticity manifests itself through the uncertainty of the

demand and the variation of any demand realization. In

addition, variations in the production speed and quality

introduce other fundamental stochastic processes. While

demand fluctuations are covered via suitably sized and

placed inventories, stochasticity in the production process

leads to variable lead times to refill these inventories.

Note that stochasticity is the more fundamental issue

than nonlinearity, since the latter is generated by the former

via queueing: Nonlinearity is generated by the fact that the

variable lead times do not only depend on the stochastic

processes that impact the production, it is mostly generated

by waiting in queues. Such waiting depends crucially on

the amount of material produced concurrently, that is, the

wip. Specifically, the lead times increase dramatically

together with the lengths of the queues, if the flux through

the factory approaches the capacity limit of the factory. A

typical scenario goes like this: Demand is projected to

increase at a certain time in the future. Meeting demand

requires increasing the start rate into the factory by a lead

time earlier than the requested delivery time. However,

increasing the start rate will increase the wip in the factory

and as a result increases the cycle time—the time a product

needs to completely go through the factory increases. The

resulting nonlinear optimization is at the core of the pro-

duction planning problem.

1.1 Clearing function

The baseline for all modeling in production systems is

given by discrete event simulation (DES) models where

every part, every machine and every production step are

modeled with (different) probability distributions
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characterizing the specific stochastic process responsible

for uncertain steps. As the characterization of these sto-

chastic processes is nontrivial and as such simulations are

very expensive, aggregate deterministic models that rep-

resent average behavior have been developed.

The canonical aggregate model has become known as a

clearing function, first introduced by Karmarkar [9], and as

Betriebskennlinen in German by Wiendahl [12]. The

clearing function can be defined for any size of production

unit, that is, a group of machines, a production line, a full

factory or even a supply chain. It is a state equation that

defines the outflux F of the production unit as a function of

the wip W in steady state in that unit, that is,

F ¼ UðWÞ: ð1Þ

The functional form of the clearing function U has been

determined in many different ways: Measured in real

factories, modeled via an M/M/1 queue (i.e., a queue with

exponentially distributed arrivals and exponentially

distributed machine processing times), modeled after the

fundamental diagram of a traffic model [10], etc. (see e.g.,

[5, 6]) ,

U ¼ l0W
1 þ W M=M=1;

U ¼ l0W � W2 fundamental diagram of traffic:
ð2Þ

Aouam et al. [2] notice that the clearing function can be

approximated by piecewise linear functions, making the

production planning problem an Integer-LP optimization

problem.

Notice that the clearing function is used with a wip level

that is a function of time and hence models the outflux as a

function of time. The fundamental assumption here is

known as the adiabatic or quasi-steady assumption: The

wip level changes slowly relative to the damping time of

the underlying stochastic process. Hence, the outflux is

never transient and instantaneously relaxes to its steady-

state behavior.

Missbauer [11] extends the clearing function concept to

capture transient phenomena in a three-parameter clearing

function. He shows that the outflux of a system depends

on the initial wip of the system, the expected number of

arriving lots and the probability distribution for sampling

the initial wip. He studies an M/M/1 single-server queue

with infinite buffer, a mean arrival rate k and a mean

machine process rate l = 1. The number of lots in the

system (queue plus machine) at the beginning of period t

is denoted by W(t) the wip in the workstation. Missbauer

studies a version of the clearing function that character-

izes the expected outflux at time t over a time interval

[t, t ? T] denoted by Xt. The expected outflux is a

function of the expected load E[Lt] in the system given by

the initial wip at time t and the new arrivals over the time

interval

E½Lt� ¼ Wt þ At; ð3Þ

At ¼
Z tþT

t

kðsÞds: ð4Þ

For constant arrival rate k = kc we get kc ¼ At

T . For time

varying influx a DES was used. For further reference, we

define an decreasing and a increasing influx

kDðtÞ ¼
kc

ðt=T þ 1=2Þlnð3Þ ; ð5Þ

kIðtÞ ¼
kc

ðt=T � 3=2Þlnð3Þ ; ð6Þ

corresponding to a linear interpolation of the inter-arrival

times between the two steady states related to the initial

queue and the queue associated with E[Lt]. Missbauer’s

experiments were done for a time interval of T = 5. Fig-

ure 1 shows the expected output generated as averages of

DES simulations for constant k with five different initial

wips. The dependence on the initial wip is obvious.

2 Transient clearing functions

While Missbauer restricted himself to a constant arrival

rate, we have studied arrival rates that vary over the sim-

ulated time period but that lead to the same expected total

load. We investigated five cases and generated clearing

functions as a function of the initial wip like Fig. 1 for five

different influx protocols: (1) constant influx, (2) instanta-

neous influx at the beginning of the time period, (3)

instantaneous influx at the end of the time period, (4) a

monotonic decreasing influx rate (Eq. 5) and (5) a mono-

tonic increasing influx rate (Eq. 6). Figures 2a, b shows the
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Fig. 1 Expected total ouflux for an M/M/1 queue for a time interval

of five mean cycle times as a function of the expected total load
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expected outflux for an increasing and a decreasing influx.

Since a decreasing influx introduces more of the load into

the system early in the time period, it is not surprising that

the variance in the outflux due to the initial wip becomes

smaller than for increasing influx. The extremes of these

cases are instantaneous influx at the very beginning of the

time interval leading to high outflux almost independent of

initial wip, and instantaneous influx at the end of the time

interval leading to outflux based entirely on the initial wip.

The conclusion of these DESs is that instead of extending

the clearing function concept to three parameters as sug-

gested in [11], the influx–outflux relationship in a transient

setting is much more complicated: In addition to the total

load, the functional form of the influx over the time interval

of interest is highly important, and therefore, the clearing

function cannot be just a parametric relationship between

input and output.

The applicability of Missbauer’s result [11] that the

probability distribution of the initial wip has a big influence

on the clearing function needs to be clarified further: We

can imagine two fundamentally different scenarios for the

experiments described above:

1. Production has been halted, and the state of the system

can be examined. Hence, the wip in the system is

known exactly. When production is resumed, the

initial wip is known deterministically.

2. Alternatively, one might want to plan a transition of

the state of the factory from a steady state to another

steady state, and initial wip may only be known in the

mean but no specific sample will be taken to determine

the actual initial wip at the beginning of the planning

period. In that case, the initial wip follows the

geometric probability distribution associated with the

probability of finding an M/M/1 queue at a particular

level for a given arrival process and a given exit

process.

Figure 3 shows the clearing functions for different mean

initial wips for constant influxes. Figures 1 and 3 report on

the same experiment—the difference is that in the former

the initial wip is known, whereas in the latter the clearing

function is an average over many samples taken from the

steady-state distribution associated with the mean initial

wip. We confirm that increasing variance of the initial wip

leads to a lower outflux. However, the striking result of

Fig. 3 is the fact that the dependence of the clearing

function on the mean initial wip is almost completely gone.

3 Continuum models

3.1 Transport equations

A clearing function model gives an instantaneous rela-

tionship between outflux and wip in steady state. Since it is

used to model an influx that changes in time, it will not be

able to model the delay associated with the production time

and waiting in the factory [5]. This is the fundamental

reason why the clearing function cannot be parameterized

by a finite number of parameters but depends on the

complete history of the influx function. Attempts for

transient clearing functions will therefore always be

restricted to the special experimental setups.

In an attempt to design a complete time-dependent the-

ory of production flows, we have therefore in recent years

developed an aggregate theory of production flows based on

standard transport equations studied in physics, especially

in fluid mechanics and in some traffic models [3, 4].

Transport equations are partial differential equations that

describe the time and space evolution of a density under an

influx. In our case the spatial variable is given by the degree

of completion of the part or the stage of the production. We

scale the stage or completion variable x 2 ½0; 1� and define
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Fig. 2 Clearing functions for an M/M/1 queue with different initial wips and (a) increasing, (b) decreasing influx protocols

Logist. Res. (2012) 5:133–139 135

123



density of parts at stage x at time t by q(x, t). If the fluid

moves with a velocity field v(x, t), then the flux is described

as F(x, t) = v(x, t) q(x, t). Mass conservation then is given

by the partial differential equation

oq
ot

þ oF

ox
¼ 0: ð7Þ

Since v(x, t) C 0, the fluid moves from left to right, allow-

ing a boundary condition to be imposed at x = 0. Typically,

the boundary condition is F(0, t) = k(t), that is, the local

flux at zero is the arrival rate of the parts into the factory.

Together with an initial wip profile q(x,0) = q0(x), this sets

up a well-defined hyperbolic problem. Notice that we are

describing a flow that is continuous in its parts and contin-

uous in its spatial direction. This should be distinguished

from the so-called fluid equation models of queueing theory

[8] which are continuous in its parts but describes a flow

through a finite and distinct number of queues, leading to a

set of ordinary differential equations (ODEs).

In [4] we extended the fluid analogy even further and

derived macroscopic transport equations from kinetic

models leading to Boltzmann equations, which is akin to

deriving the Euler equations of fluid dynamics from first

principles based on Newton’s law. Defining a particle den-

sity f(x, v, t) describing the number of parts at state x at time

t moving with a velocity v in completion space, we derive

equations for the first moments of this density of the form:

oqðx; tÞ
ot

þ ovðx; tÞqðx; tÞ
ox

¼ 0; ð8Þ

ovðx; tÞ
ot

þ vðx; tÞ ovðx; tÞ
ox

¼ 0: ð9Þ

An initial value problem appropriate for the DES experi-

ments described in Sect. 1.1 can be defined by setting

q(x,0) = w0 and v(x,0) = v0 with w0 and v0 constants.

3.2 Boundary conditions

Determining the right boundary conditions to describe the

DES experiments is the major modeling issue here.

Equations (8, 9) are a set of hyperbolic partial differential

equations whose solutions travel from left to right as long

as v(x,t) [ 0. Hence, boundary conditions have to be

imposed at the boundary x = 0, and the outflux at the other

boundary x = 1 is a result of the transport. Clearly, the flux

has to be given by the production start rate, hence

qð0; tÞvð0; tÞ ¼ kðtÞ: ð10Þ

The other boundary condition is based on the relationship

between queuing theory and Eq. (9): Equation (9) is Bur-

gers equation and can be solved via characteristics. Hence,

ignoring the initial conditions, after a while the solution

v(x, t) is determined by the value of the velocity at the

boundary. As a result, a mass q dx arrives at the boundary

and travels downstream with the velocity it acquires at the

moment of arrival at the boundary. Translating this into the

M/M/1 setting and defining the velocity at the boundary as

vð0; tÞ ¼ 1

cycle time
we see that the velocity v(0,t) should

depend on the queue length wðtÞ ¼
R 1

0
qðx; tÞdx at the

moment a part arrives at the end of the queue.

The problem therefore reduces to finding the expected

cycle time, conditioned on the length of the queue. For a

steady-state queue, the cycle time is determined by the

PASTA (Poisson Arrivals See Time Averages) property of

M/M/1 queues: In steady state a part arriving at the end of

queue will find an average queue length w0, and the resulting

cycle time for this part will be s ¼ 1
l ð1 þ w0Þ. Hence,

vssðtÞ ¼
l

1 þ wðtÞ ð11Þ

is the velocity related to the well-known M/M/1 clearing

function (cf Eq. 2).

The same PASTA property gives us the initial condition:

At the beginning of the experiment, we have an initial wip

w0 that we assume is a known deterministic quantity. This

initial wip is the length of the queue. For a Markov process,

the history of arrivals—whether they arrived in packets or

spaced out—is not important. Hence, we can use the

average cycle time formula for a M/M/1 queue or the

heuristic extensions discussed below to determine the ini-

tial condition for the velocity in the factory.

To improve on the steady-state result requires signifi-

cantly more queuing theory machinery: Since we are

describing transient phenomena, the system is not ergodic

any more and hence ensemble averages and time averages

are not the same. We therefore need to be more specific

about the ‘‘expected’’ cycle time. The natural setup fol-

lowing the experiments in Sect. 2 is to determine the
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Fig. 3 Expected ouflux for an M/M/1 queue as in Fig. 1. Here, the

outflux represents an ensemble average over a steady-state probability

distribution for the initial wips with a mean as indicated
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probability distribution of the cycle times given that we

restart a factory with a given initial wip w0 over many

instances of this scenario—that is, we are interested in the

ensemble average, conditioned on the initial wip.

Our current models for the expected value of the cycle

time are preliminary and based on fitting heuristic boundary

condition models to the DES. We distinguish two regimes:

1. If the production start rate k(t) is less than the mean

production rate l, then we expect that any initial wip

distribution exponentially fast decays to the wip distri-

bution associated with the steady state related to the

arrival rate. Hence, the boundary condition is determined

by the solution to an ordinary differential equation

dvð0; tÞ
dt

¼ �r vð0; tÞ � vssðtÞð Þ

¼ �r vð0; tÞ � l

1 þ
R 1

0
qðx; tÞdt

 !
ð12Þ

where the decay constant r will be determined

experimentally.

2. If the production start rate k(t) is bigger than the mean

production rate, there is no associated steady state

since the queue length will become unbounded. In this

case, the cycle time at arrival of a part at a queue

length of w(t) will become just s ¼ 1
l wðtÞ which would

lead to a velocity equation of

vhwðtÞ ¼
l

wðtÞ : ð13Þ

It turns out that for small wip and for k - l\\ 1, this

model creates a velocity that is too high and hence the

production in the PDE simulations is overestimated

relative to the DES. This is due to the fact that basing

the ensemble average only on the stochastic properties

of the exit process it not a good model in these cases

since for small wips, machines do occasionally idle as a

result of missing arrivals. We settled for a model that

averages between the steady state Eq. (11) and the high

wip model (13) of the form

vðtÞ ¼ l
0:5 þ wðtÞ : ð14Þ

Hence, the full boundary conditions for Eq. (9) become

vð0; tÞ ¼ l

0:5þ
R 1

0
qðx;tÞdx

for k� l;

dvð0;tÞ
dt

¼ �r vð0; tÞ � l

1þ
R 1

0
qðx;tÞdt

 !
for k\l;

vð0; 0Þ ¼ l

0:5þ
R 1

0
qðx;tÞdx

:

ð15Þ

The last equation describes the initial condition for the

ordinary differential equation. It is based on the assumption

of a deterministic initial condition, that is, the initial wip is

exactly known, and hence, the ensemble average will be

mostly affected by the stochasticity of the machine process

and little affected by the stochasticity of the arrival process.

4 Numerical results

We have been reproducing the DES of Sect. 2. Since there

are only a small number of lots involved in these simula-

tions, the discretization error between the DES and the

partial differential equation becomes an issue. In the dis-

crete case, wip measures whole lots whereas the continuous

model registers infinitesimally small lots. This is not a

problem for large wips, but for these experiments, partial

lots in the PDE are counted earlier than they really appear in

the DES, and hence, they lead to lower velocities than in the

DES. We compensate for this by calculating wip with a

floor function, that is, wðtÞ ¼ 1
2
b2
R 1

0
qðx; tÞdxc: In that way

the PDE system observes partial lots only after half of the

lot has already appeared. Figure 4a and b compares the

outflux of the PDE simulations for different constant

influxes and initial wip of w0 = 0 and w0 = 3 with the

corresponding DES. The clearing functions of the DES for

these wips as well as others for different initial wips are

very well reproduced by the PDE simulations. The decay

constant r has been adjusted to give the best fit of the two

curves over all the data points. Notice that the best fit

depends on the initial wip: For w0 = 0 the best fit is

r = 2.3, indicating fast relaxation to the steady state, and

for w0 = 3 the best fit is r = 0.3, indicating a very slow

relaxation that has not yet equilibrated after the five time

intervals used in the experiment.

The advantage of a PDE simulation becomes apparent in

the Figs. 5a and b which shows the clearing functions for

an influx that corresponds to a linearly increasing inter-

arrival time and a linearly decreasing inter-arrival time for

an initial wip of w0 = 1. Although the decreasing case

Figs. 5a shows a slight overproduction of the PDE com-

pared to the DES, the overall trend of the PDE simulations

captures the DES simulations very well.

5 Conclusion

We have developed a PDE model for a transient M/M/1

queuing experiment representing the most simplified case

of a production model. We used a coupled system of

evolution equations for the part density and the velocity to

describe the production system as transport equation and

showed that the crucial modeling aspect of the problem is

the boundary condition of the velocity equation.
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We showed that a heuristic model based on exponential

relaxation of initial queue lengths to their steady-state

values given by M/M/1 queuing theory in addition to a high

wip limiting model of queueing behavior leads to very

good agreement between the PDE simulations and the

DES. Specifically, we compare the two approaches visually

via plots presenting the expected throughput over five time

units for an ensemble average of repeated experiments as a

function of the average total load in the factory similar to

clearing function models. The mean relative error for each

of the clearing functions experiment is of the order of 6 %,

which is far better than any other modeling approach for

these experiments. Overall, the heuristics requires data

fitting of a single decay parameter (r) and a global choice

of the functional dependence of the ensemble average of

the velocity for the case when there is no steady state.

The current state of the project to model the ensemble

average of transient behavior of production systems is

clearly unsatisfactory. While the heuristic model presented

here is a clear improvement for any practical considerations

of the production planning problem that can easily be

implemented for a practical code, the theoretical state of the

model is very unsatisfactory. Research based on exact and

approximate solutions of transient queueing theory [1, 7] is

currently underway to bridge the gap between theoretical

and heuristic models.
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