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Abstract New products without historical demand

information or slow-moving items with little such infor-

mation cause difficulties in defining inventory management

policies facing demand uncertainty. The classical approach

using the Normal distribution for describing the random

demand during lead time might lead to a degraded level of

customer service. But the choice for other types of distri-

butions is also no option, so it is realistic that the full

functional form of the distribution is unknown, but the

decision-maker has some but not incomplete information

on the demand distribution during lead time. As the dis-

tribution is only partially specified, several distributions

satisfy the known information. Customer service measures

therefore also take values in an interval between a lower

and an upper bound. In this paper, upper and lower bounds

are determined for two performance measures: the number

of stock-out units and the stock-out probability per

replenishment cycle, given incomplete information about

the demand distribution, that is only the first two moments

and the range, are known. Based on these results, the

optimal inventory level given the desired maximum num-

ber of stock-out units or the desired maximum stock-out

probability is calculated for the case where only the first

two moments are known. The results of our approach are

compared to the more traditional approach where a Normal

distribution of demand during lead time is assumed.

Comparisons with the Gamma, Uniform and symmetric

triangular distribution are made. Furthermore, the

robustness of our bounds to uncertainty in the parameters is

tested.

Keywords Inventory management � Performance

measures � Incomplete information � Demand distribution

1 Introduction

Uncertainty in inventory systems may be due to suppliers

or customers. On the suppliers’ side, uncertainty (such as

lead time, yield and quality) asks for corrective action.

Decisions on lot sizing with uncertain yield are important

especially in production/manufacturing systems (e.g. [24]).

Uncertainty, which is attributable to customers, relates

especially to demand. If insufficient inventory is held, a

stock-out may occur leading to shortage costs or customer

service degradation. As shortage costs are usually high in

relation to holding costs, companies hold additional

inventory, above their forecasted needs, to add a margin of

safety. Some decision models combine both the uncertainty

of yield and demand (e.g. [12]).

Determination of an inventory replenishment policy, of

the quantities to order, of the review period is typical

decisions to be taken by logistics managers. Decisions are

taken making use of optimization models taking a perfor-

mance characteristic into consideration, which might be

cost-oriented or service-oriented. A cost-oriented model

translates non-satisfied demand into a shortage or backor-

der cost. A comprehensive review of the earlier backorder-

cost inventory models can be found in Federgruen [5]. But

estimating the costs associated with backordering and loss

of customer goodwill is difficult. Hence, service-con-

strained inventory problems received more attention. A

review appears in Diks et al. [4], and for distribution
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systems, Ozer and Xiong [16] may be consulted. Perfor-

mance characteristics of the service-oriented type may be

expressed relatively as the proportion of customer demand

met from inventory, or may be expressed absolutely in

terms of number of stock-out units, which is a direct

indication for lost sales. Also the probability of having a

stock-out in a replenishment period is often used as a

performance characteristic.

The probability distribution of demand is an important

input in inventory management. In literature, it is exten-

sively studied. However, in practice, a logistics manager

often faces incomplete information on the distribution of

demand during lead time. This research deals with the case

where the demand distribution during lead time is not

completely specified. This situation is realistic either with

products that have been introduced recently to the market

or with slow-moving products, for example service parts.

In general, with recently introduced products or slow

movers, no sufficient historical data are available to decide

on the functional form of the demand distribution function.

This fact does not imply that no information exists about

the demand distribution as incomplete (or partial) infor-

mation might exist like the range of the demand, its

expected value and/or variance.

This paper concentrates on two service performance

measures: the expected number of stock-out units and the

stock-out probability (in a replenishment period). In the

following sections, lower and upper bounds are obtained

for the performance measures under study, given various

levels of information about the demand distribution. From

a production or trading company’s point of view, a decision

might be formulated to answer the following question:

given an expected number of stock-out units or a stock-out

probability the company wants to face, what should be the

safety inventory at least or at most?

The organization of the paper is as follows: in Sect. 2, an

overview of related literature is provided; Sect. 3 describes

the method used to calculate the bounds; in Sect. 4, the

number of stock-out units is discussed; in Sect. 5, the

stock-out probability is dealt with; in Sect. 6, the robust-

ness of the results is tested and in Sect. 7, conclusions are

drawn from the study.

2 Probability distribution of demand during lead time

In reorder point models for inventory management, the

probability distribution of demand is a vital characteristic.

A decision-maker using an inventory model including

uncertainty on demand must select a probability distribu-

tion as input to the model. But in reality, it is often difficult

to completely characterize the distribution, especially in

the case of little historical data. Most textbooks assume that

the demand for an item is formed by a large number of

smaller demands from individual customers. As a result,

many authors assume that the resulting demand size in a

certain period of time is a continuous random variable and

follows a Normal distribution. In practice, it has been

shown that, for fast-moving items, a Normal distribution is

appropriate.

The use of the Normal distribution for a demand size

distribution can be questioned because (1) the distribution

is defined both on the positive and negative axes; and (2)

the distribution is symmetrical. While the Normal distri-

bution may be approximately correct in many cases, it is

conceptually not. It cannot be used in computer simulation

as negative demand may be generated at random. When of

relevance, one rather should look for a probability distri-

bution, which is defined only for non-negative values and

allows for skewness.

But if the Normal distribution is not considered appro-

priate, the question arises which alternative distribution to

select as they may lead to other values of the decision

variables, like the order quantity. In the literature on

inventory control, many times reference is made to the

Gamma distribution. It is defined only on non-negative

values and, according to the parameters of its distribution,

ranges in shape from a monotonic decreasing function,

through unimodal distributions skewed to the right, to the

Normal distribution. The Gamma distribution is attractive

because of the ease it can deal with fixed lead times and

how the situations can be extended to probabilistic lead

times. For items with low demand, Laplace or Poisson

distributions are proposed [20]. The Poisson distribution

has been found to provide a reasonable fit when the

demand is very low (only a few pieces per year).

But when demand frequency is not too high, an alternative

approach is offered by the use of separate distributions for the

demand occurrence and for the demand size. Models have

been developed using the Poisson distribution for the demand

occurrence. When the demand size is described by an arbi-

trary probability distribution and the demand occurrence

process is described as a Poisson process, the total demand

during a finite time period can be described by a compound

Poisson distribution. A two-echelon spare parts inventory

systems has been studied by Shanker [19] where the ware-

house acts as a centralized repair facility and the depot faces a

compound Poisson demand.

A case study by Vereecke and Verstraeten [22] shows that

demand variance often is a multiple of the average demand,

showing that the Poisson distribution is not a good approxi-

mation of the demand size. They propose a construction called

the ‘Package Poisson’, where the average demand is expres-

sed in numbers of packages of fixed size. The size of the

package is defined by using empirical data on both the average

and variance of the demand in terms of units.
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This paper deals with the case where the demand dis-

tribution during lead time is not completely specified. This

situation is realistic either with products that have been

introduced recently to the market or with slow-moving

products. In both cases, insufficient data are available to

decide on the functional form of the demand distribution

function. In such cases, the assumption of a Normal dis-

tribution shape of the demand distribution might be vio-

lated. Even in a well-defined class of distributions, like the

case of compound Poisson distributions, given some

moments of the demand distribution, the shape might range

from close to Normal, over very skewed distributions even

to bimodal distributions [18]. Bartezzaghi et al. [1] show a

significant impact of the demand shape on required

inventory levels to achieve a predefined service level. The

coefficient of variation is a constant in their experiments.

The analysis shows that the demand shape is a primary

factor in the determination of the inventories and that the

impact of different demand shapes on inventories is com-

parable to the effect of doubling the coefficient of varia-

tion. This means that even within this limited class of

distributions, like for example the compound Poisson dis-

tribution, which is of application to slow-moving items,

attention should be paid to the parameters influencing the

shape. The experiments by Bartezzaghi et al. [1] are in

conflict with earlier, more limited studies by Naddor [15]

and by Fortuin [7] who observed that inventory decisions

are relatively insensitive to the choice of distribution, when

the mean and variance are specified. This fact keeps the

discussion alive.

The aspect of incomplete information has been addres-

sed several times in literature, for example in the single-

period (newsvendor) inventory problem. It has a wide

variety of applications in industry, typically for products

with short lives, like fashion goods, consumer electronics,

which are rapidly evolving as cellular phones, or vaccines

against a single season influenza. Walker [23] developed a

decision support tool for the single-period inventory

problem. While the newsvendor problem is easily solved in

case of full demand information, mostly in practice, this

information is hard to get in a such real-world applications.

In case only mean and variance of demand are known,

Gallego and Moon [8] propose an approach that maximizes

the worst case profit. Vairaktarakis [21] uses another per-

formance criterion, that is trying to minimize the maximum

regret in the case only a lower and upper bound on the

demand are known. Perakis and Roels [17] use a minimax

regret approach when only partial demand information is

known, like mean, standard deviation or unimodality.

A number of papers deal with the estimation of demand

uncertainty when historical demand data are not available.

Possible approaches are using historical data sets of other

products and advance purchase orders for new products

[13, 14] or using expert opinions on the products to be

offered [6, 9].

In this paper, we address the case where insufficient data

are available to decide on the functional form of the

demand distribution function. This fact does not imply that

no information exists about the demand distribution as

incomplete (or partial) information might exist like the

range of the demand, its expected value and/or variance.

Under this condition of incomplete information on demand,

the optimal inventory level is determined given a desired

performance level.

3 Methodology to support inventory decision-making

in case of uncertain demand

In the following sections, a methodology is developed to

support the decision-maker in finding the best values of

decision variables in the case of uncertainty in demand. It

should be stressed that this approach does not make use of

a cost function in which shortage costs or loss of customer

confidence are included but only performance measures are

included. The sections concentrate on two service perfor-

mance measures: the expected number of stock-out units

and the stock-out probability. Both measures can be

expressed as the expected value of a function, where the

expected value is generated by the probability distribution

of the demand during lead time. In case full knowledge

exists about this distribution, both performance measures

can be computed as a single value. In case only incomplete

information exists about the distribution, the performance

measures take different values for distributions with the

same characteristics, so no single value can be computed,

but rather a range of values. This fact raises the question

whether this range is finite and, if yes, what are the lower

and upper bounds of this range. This information is of great

use to the decision-maker to make his final decision on

decision variables like the re-order point. Therefore, a

methodology is used in which, for both performance

measures, upper and lower bounds can be computed as

support information for the decision-maker. Upper bounds

correspond to a pessimistic viewpoint of the decision-

maker; lower bounds correspond to an optimistic viewpoint

of the decision-maker. Depending on the degree of opti-

mism of the decision-maker, any value between the upper

and the lower bound on the inventory level can be used to

determine decision variables like the re-order point. By

using the upper bounds in his decisions, the decision-maker

protects himself completely as no demand distribution

exists to a higher expected number of stock-out unit or a

higher stock-out probability.

Let X be a random variable indicating the demand

during lead time and d be the inventory level at the start of
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a lead time (henceforth referred to as inventory level).

Further, let W be the number of stock-out units. The rela-

tionship between W and X is given by:

W ¼ 0 if X � d;
X � d if X [ d:

�
ð1Þ

The expected number of stock-out units during a lead

time is defined as EððX � dÞþÞ ¼
R b

a ðx � dÞþ dFðxÞ ¼R b

d ðx � dÞ dFðxÞ; where E is the expected value operator,

F(x) is the cumulative probability distribution with support

on [a,b] (with a [ 0, b C a, a B d B b and a; b\ þ1).

When a company holds d units of a specific product in

inventory starting a period between order and delivery, any

demand X less than d is satisfied, while any demand

X greater than d results in a shortage of X - d units. A

lesser number of stock-out units results in a better service

to the customer.

From a mathematical viewpoint, the expected number of

stock-out units has a counterpart in insurance mathematics

as the stop-loss premium. Using the same symbols, it can

be stated that a stop-loss premium limits the risk X of an

insurance company to a certain amount d [11]. In that field,

results have been obtained for deriving lower and upper

bounds on the stop-loss premium where the risk is allowed

to vary under some constraints such as given known range,

first and second order moments, unimodality etc. [3, 10].

If U is an indicator for the stock-out probability, the

relationship between U and X is given by:

U ¼ 0 if X � d;
1 if X [ d:

�
ð2Þ

The stock-out probability is defined as

PðX � dÞ ¼ E½1½d;b�ðXÞ� ¼
Zb

a

1½d;b�ðxÞ dFðxÞ ¼
Zb

d

dFðxÞ

Bounds on the stock-out probability during a

replenishment period in inventory management can be

simply translated into bounds on tail probabilities. Upper

and lower bounds on tail probabilities under varying levels

of information on the demand distribution like mode, mean

and/or variance have been deduced by De Schepper and

Heijnen [2].

Before moving towards the remainder of this paper, it

should be stated that the bounds and their use in applications

can be translated from any distribution defined on [a, b] (with

a [ 0, b C a and a; b\ þ1) into the bounds with a distri-

bution defined on [0,b0]. Furthermore, the first two moments

of the distribution are assumed to be known. Let l1 = E(X)

and l2 = E(X2). If a = 0 and a, b, l1 and l2 are known, the

parameters for the distribution defined on [0,b0] can be cal-

culated using the following formulas:

a0 ¼ 0; ð3Þ
b0 ¼ b � a; ð4Þ
l1;0 ¼ l1 � a; ð5Þ

l2;0 ¼ l2 � 2al1 þ a2: ð6Þ

The following paragraphs, without loss of generalization,

make use of distributions defined on [0,b0]. Furthermore,

b will be used instead of b0 since there is no risk of confusion.

The demand X is a positive random variable with an

upper bound b. From a mathematical point of view, when

calculating bounds on both performance measures, the

problem is to find

sup
F2U

Zb

0

f ðxÞ dFðxÞ ð7Þ

and

inf
F2U

Zb

0

f ðxÞ dFðxÞ ð8Þ

where U is the class of all distribution functions with range

[0,b] and moments l1 and l2 and where f(x) = (x - d)? in

the case of the expected number of stock-out units and

f(x) = 1[0,b](x) in the case of the stock-out probability.

For any polynomial P(x) of degree 2 or less, the integralR b
0

PðxÞ dFðxÞ only depends on l1 and l2, so it takes the

same value for all distributions in U: Polynomials P are

looked for such that

• P C f on [0,b] (in case of upper bound) or P B f on

[0,b] (in case of lower bound)

• there is some distribution G in U for which equality

holds:

Zb

0

PðxÞ dGðxÞ ¼
Zb

0

f ðxÞ dGðxÞ ð9Þ

As distribution G, a two- or three-point distribution is

used. For such distributions, the equality mentioned above

is attained when P(x) and f(x) are equal in the mass points

of G. The best upper and lower bounds on this term with

given moment l1 and l2 are derived. To apply this

method, the formula for a unique parabola g(x) taking

values f(u) and f(v) in u and v with derivative f0(v) in v (u

and v any points in [0,b]) is needed:

gðxÞ ¼ 1

ðv � uÞ2
½f ðvÞðv � uÞðx � uÞ þ f ðuÞðu � vÞðx � vÞ

þ ½f 0ðvÞðv � uÞ � f ðvÞ þ f ðuÞ�ðx � uÞðx � vÞ�:
ð10Þ
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The deductions for the expected number of stock-out

units [3, 10] and the expected stock-out probability [2] can

be found in Appendix.

4 Expected number of stock-out units

Using the method described in the previous section, upper

and lower bounds on the expected number of stock-out

units can be obtained, given the inventory level and

incomplete information about the demand distribution.

However, for a production or trading company, the inverse

problem is more important. They are interested to know,

given an expected number of stock-out units the company

wants to face, what the inventory level should be at least or

at most.

First, the case of a known (finite) range, expected value

and variance is discussed: upper and lower bounds on the

number of stock-out units are determined, and the optimal

inventory level is calculated given the desired maximum

number of stock-out units. Afterwards, a numerical

example is used to illustrate the use of the bounds. In the

last subsection, the results are compared with results for

other distributions: the Normal distribution, the Gamma

distribution, the Uniform distribution and the symmetric

triangular distribution.

4.1 The case of a known (finite) range, expected value

and variance

Table 1 shows the results for the upper bounds. The

domain of the parameters is

0� l1 � b ð11Þ

and

l2
1 � l2 � l1b: ð12Þ

Further, let l1 and l2 be chosen that inequalities (11)

and (12) hold, then let r0 = (l2 - l1r)/(l1 - r) for every

r 2 ½0; b� and r = l1.

Table 2 shows the results for the lower bounds. The

domain of the parameters is the same as in Table 1.

From Tables 1 and 2, upper bounds on d, which corre-

spond to a pessimistic viewpoint, and lower bounds on

d, which correspond to an optimistic viewpoint, can be

derived. In Table 3, the optimal inventory level is expres-

sed in terms of the desired number of stock-out units, using

the upper bounds on the expected number of stock-out

units. By choosing the inventory levels in Table 3, the

decision-maker protects himself completely as no demand

distribution exists leading to a higher expected number of

stock-out units. In Table 4, the lower bounds on the

expected number of stock-out units are used to calculate

the optimal inventory level in terms of the desired number

of stock-out units. By choosing the levels in Table 4, the

decision-maker nearly always will be faced with an

expected number of stock-out units higher than the target.

Depending on the degree of optimism of the company,

any value between the upper and lower bound on the

inventory level can be used to determine the inventory

level that needs to be held at the beginning of a lead time

period.

4.2 Numerical example

In this section, a numerical example demonstrates the use

of bounds on performance measures. In this example, the

following information on demand during lead time is

Table 1 Upper bounds on the expected number of stock-out units

when l1 and l2 are known

Conditions Upper bound

d � 00

2

l1

l2
ðl2 � l1dÞ

00

2
� d � bþb0

2
l1�dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2�l2

1
Þþðd�l1Þ2

p
2

d � bþb0

2
ðl2�l2

1
Þðb�dÞ

ðl2�l2
1
Þþðb�l1Þ2

Table 2 Lower bounds on the expected number of stock-out units

when l1 and l2 are known

Conditions Lower bound

0 B d B b0 l1 - d

b0 \ d \ 00 l2�l1d
b

00 B d B b 0

Table 3 Optimal inventory level using the upper bounds of the

expected number of stock-out units when l1 and l2 are known

Conditions Inventory level

EðWÞ� l2�l2
1

2ðb�l1Þ b � EðWÞ½ðl2�l2
1
Þþðb�l1Þ2 �

l2�l2
1

l2�l2
1

2ðb�l1Þ
�EðWÞ� l1

2
ðl2�l2

1
Þ�4EðWÞ2þ4EðWÞl1

4EðWÞ

EðWÞ� l1

2
ðl1�EðWÞÞl2

l2
1

Table 4 Optimal inventory level using the lower bounds of the

expected number of stock-out units when l1 and l2 are known

Conditions Inventory level

EðWÞ� l2�l2
1

b�l1

l2�bEðWÞ
l1

EðWÞ� l2�l2
1

b�l1

l1 - E(W)
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known: the mean l1 = 25, the second moment l2 = 725

and the range of demand is [0,b] with b = 50.

The upper and lower bounds on the number of stock-out

units are presented in Tables 5 and 6. Figure 1 shows the

upper and lower bounds on the expected number of stock-

out units for a given inventory level.

Tables 7 and 8 show the optimal inventory level, given

the desired level of maximum number of stock-out units.

Figure 2 shows the upper and lower bounds on the inven-

tory level for a given expected number of stock-out units.

These results are illustrated in a specific case. If, for

example, the company wants to face a maximum of 5

stock-out units in a period, the upper bound on the inven-

tory level equals 25 and the lower bound on the inventory

level equals 20. This means that if the company is very risk

averse, an inventory level of 25 units is held, and if the

company is more risk seeking, an inventory level of 20

units is held.

4.3 Comparison with results for other distributions

In this section, the results above are compared to results

obtained by using the Normal distribution, the Gamma

distribution, the Uniform distribution and the symmetric

triangular distribution.

In literature, for fast-moving items, the safety stock is

mostly determined using the Normal distribution for

describing demand during lead time. Therefore, the results

are first compared to results for the Normal distribution.

Determining bounds on the inventory level using the

number of stock-out units corresponds to using the service

level approach for the Normal distribution. For the same

mean and variance, the inventory level is calculated using

the service level approach, and the bounds on the inventory

level are calculated using the approach above. Calculations

are made for the maximum number of stock-out units in a

Table 5 Numerical example of upper bounds on the expected num-

ber of stock-out units when l1 and l2 are known

Conditions Upper bound

0 B d B 14.5 25 � 25
29

d

14.5 B d B 35.5
12:5 � 1

2
d þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100 þ ðd � 25Þ2

q

35.5 B d B 50 200�4d
29

Table 6 Numerical example of lower bounds on the expected num-

ber of stock-out units when l1 and l2 are known

Conditions Lower bound

0 B d B 21 25 - d

21 B d B 29 14:5 � 1
2

d

29 B d B 50 0

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50

E
(W

)

d

Fig. 1 Upper and lower bounds on expected number of stock-out

units given the inventory level d

Table 7 Numerical example of the optimal inventory level using the

upper bounds on the expected number of stock-out units when l1

and l2 are known

Conditions Inventory level

E(W) B 2 50 � 29
4

EðWÞ
2 B E(W) B 12.5 25�EðWÞ2þ25EðWÞ

EðWÞ

E(W) C 12.5 725�29EðWÞ
25

Table 8 Numerical example of the optimal inventory level using the

lower bounds on the expected number of stock-out units when l1

and l2 are known

Conditions Inventory level

E(W) B 4 29 - 2E(W)

E(W) C 4 25 - E(W)

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20

d

E(W)

Fig. 2 Optimal inventory level using upper and lower bounds on the

expected number of stock-out units
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period ranging from 1 to 20. The results are visualized in

Fig. 3. However, when the demand distribution during lead

time is not completely known, the use of the Normal dis-

tribution may result in more stock-out units than assumed.

In Fig. 4, results are shown for the minimum and maxi-

mum number of stock-out units when the inventory level is

determined by the service level approach (the advice from

Fig. 3). For example, if a maximum number of 3 stock-out

units is targeted, the service level approach leads to an

inventory level of 27 (see Fig. 3). However, when the

demand distribution is not completely known, the actual

number of stock-out units for an inventory level of 27

varies between 0.91 and 4.03.

The same calculations are done for the Gamma distri-

bution, the Uniform distribution and the symmetric trian-

gular distribution. The parameters of all three distributions

are chosen in such a way that the mean and variance cor-

respond to the mean and variance used in the calculations

of the example in the previous section. The parameters for

the Gamma distribution are a = 6.25 and b = 4. The range

of the Uniform distribution is [7.68,42.32]. The symmetric

triangular distribution has a lower limit a = 0.5, an upper

limit b = 49.5 and a mode c = 25. Calculations are made

for the maximum number of stock-out units in a period

ranging from 1 to 20. The results are visualized in Figs. 5,

6 and 7. For all three distributions, we can conclude that

using one of these distributions to determine the inventory

level may lead to more stock-out units than assumed.

5 Stock-out probability

In this section, the methodology described in Sect. 3 is used

to obtain upper and lower bounds on the stock-out proba-

bility in inventory management, given the inventory level

and incomplete information about the demand distribution.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2  4  6  8  10  12  14  16  18  20

d

E(W)

normal distribution
lower bound
upper bound

Fig. 3 Comparison of service level approach with lower and upper
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Again, from a production or trading company’s point of

view, it is more interesting to know, given an expected

stock-out probability the company wants to face, what the

inventory level should be at least or at most.

First the case of a known (finite) range, expected value

and variance is discussed. Next, the use of the bounds is

illustrated by means of a numerical example. In the last

subsection, the results are compared with results for the

Normal distribution.

5.1 The case of a known finite range, expected value

and variance

The range of the variable is [0,b] with b [ 0. This means

that the domain of the parameters is

0� l1 � b ð13Þ

and

l2
1 � l2 � l1b: ð14Þ

Further, let l1 and l2 be chosen that the inequalities

(13) and (14) hold, then let r0 = (l2 - l1r)/(l1 - r) for

every r 2 ½0; b� and r = l1.

Table 9 shows the results for the upper and lower

bounds.

The results in Table 9 can be used to determine the

optimal inventory level given a desired maximum stock-out

probability. Table 10 presents the results for the optimal

inventory level, given the desired stock-out probability,

using the upper bounds on the expected stock-out proba-

bility. Table 11 shows the optimal inventory level in terms

of the desired stock-out probability, using the lower bound

on the expected stock-out probability.

The choice for the upper bound to calculate the required

inventory level reflects a pessimistic view, while the choice

for the lower bound reflects an optimistic view.

5.2 Numerical example

The numerical example from Sect. 4.2 is used to demon-

strate the use of bounds on the stock-out probability. In the

numerical example, l1 = 25, l2 = 725 and b = 50. The

upper and lower bounds on the stock-out probability are

presented in Table 12. Figure 8 shows the upper and lower

bounds on the stock-out probability as a function of the

inventory level.

Tables 13 and 14 show the optimal inventory level,

given the desired level of stock-out probability. Figure 9
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Table 9 Upper and lower bounds on the stock-out probability

when l1 and l2 are known

Conditions Upper bound Lower bound

0 B d B b0 1 ðl1�dÞ2

l2�l2
1
þðl1�dÞ2

b0 \ d B 00 ðbþdÞl1�l2

bd

l2�l1d
bðb�dÞ

00 \ d \ b ðl2�l2
1
Þ

ðl2�l2
1
Þþðl1�dÞ2

0

d = b 0 0

Table 10 Optimal inventory level using the upper bounds of the

expected stock-out probability when l1 and l2 are known

Conditions Inventory level

EðUÞ� l2�l2
1

b2�2bl1þl2

b

l2�l2
1

b2�2bl1þl2
\EðUÞ\ l2

1

l2

l1EðUÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðUÞ2�EðUÞÞðl2

1
�l2Þ

p
EðUÞ

EðUÞ� l2
1

l2

bl1�l2

bEðUÞ�l1

Table 11 Optimal inventory level using the lower bounds of the

expected stock-out probability when l1 and l2 are known

Conditions Inventory level

EðUÞ� l2�l2
1

b2�2bl1þl2

l1ðEðUÞ�1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1
ðEðUÞ�1Þ2�ðEðUÞ�1Þðl2EðUÞ�l2

1
Þ

p
EðUÞ�1

EðUÞ\ l2�l2
1

b2�2bl1þl2

l2�EðUÞb2

l1�EðUÞb

Table 12 Numerical example of upper and lower bounds on the

expected stock-out probability when l1 and l2 are known

Conditions Upper bound Lower bound

0 B d B 21 1 ð25�dÞ2

100þð25�dÞ2

21 B d B 29 21þd
2d

725�25d
50ð50�dÞ

29 B d \ 50 100

100þð25�dÞ2 0

d = 50 0 0

40 Logist. Res. (2012) 5:33–46

123



shows the upper and lower bounds on the optimal inven-

tory level given a desired stock-out probability.

The use of these results is illustrated for a specific case.

If the company wants to face a maximum stock-out prob-

ability of 10 % in a replenishment period, the upper bound

on the inventory level equals 50 and the lower bound on the

inventory level stock equals 23.75. This means that if the

company is very risk averse, an inventory level of 50 units

is held, and if the company is more risk seeking, an

inventory level of 23.75 units is held.

5.3 Comparison with results for other distributions

Similar to Sect. 4.3, the results for the stock-out probability are

compared to results obtained by using other distributions: the

Normal distribution, the Gamma distribution, the Uniform

distribution and the symmetric triangular distribution.

Determining bounds on the inventory level using the

stock-out probability corresponds to using the probability

approach for the Normal distribution. Given a mean and

variance, the required inventory level is calculated using

the probability approach using the Normal distribution. The

upper and lower bounds on the inventory level are calcu-

lated using the approach above, with the additional

assumption of finite range. Calculations are made for the

stock-out probability in a period ranging from 1 to 10 %.

The results are visualized in Fig. 10. However, when the

demand distribution during lead time is not completely

known, using the Normal distribution can result in a higher

stock-out probability than assumed. In Fig. 11, results are

shown for the minimum and maximum stock-out proba-

bility when the inventory level determined by the proba-

bility approach was used. For example, if a maximum of

1 % stock-out probability is presupposed, the probability

approach leads to an inventory level of 48. However, when
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Fig. 8 Upper and lower bounds on stock-out probability given the

inventory level d

Table 13 Numerical example of the optimal inventory level using

the upper bounds on the expected stock-out probability when l1

and l2 are known

Conditions Inventory level

E(U) B 0.138 50

0.138 \ E(U) \ 0.862 25EðUÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100ðEðUÞ�EðUÞ2Þ

p
EðUÞ

E(U) C 0.862 525
50EðUÞ�25

Table 14 Numerical example of the optimal inventory level using

the lower bounds on the expected stock-out probability when l1

and l2 are known

Conditions Inventory level

E(U) B 0.138 29�100EðUÞ
1�2EðUÞ

E(U) C 0.138 25ðEðUÞ�1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
625ðEðUÞ�1Þ2�ðEðUÞ�1Þð725EðUÞ�525Þ

p
EðUÞ�1
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Fig. 9 Optimal inventory level using the upper and lower bounds on

the stock-out probability
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the demand distribution is not completely known, the

actual stock-out probability for an inventory level of 48 can

vary between 0 and 15.6 %.

The same calculations are done for the Gamma distri-

bution, the Uniform distribution and the symmetric trian-

gular distribution. The parameters of all three distributions

are given in Sect. 4.3. Calculations are made for the stock-

out probability in a period ranging from 1 to 10 %. The

results are visualized in Figs. 12, 13 and 14. For all three

distributions, we can conclude that using one of these

distributions to determine the inventory level may lead to a

higher stock-out probability than assumed.

6 Robustness of the results

Recall that this research deals with the case where the

demand distribution during lead time is not completely

known: not sufficient data are available to decide on the

functional form of the demand distribution function.

Incomplete but not full information exists: the range of the

demand, its expected value and variance. Upper and lower

bounds are determined for the expected number of stock-

out units and the expected stock-out probability.

In practice, however, it is improbable that, in a situation

where demand information is incomplete, both the first two

moments and the range are known with certainty. Errors on

the estimates of both moments and on the range might be

considerably high. Therefore, in this section, the effect of

uncertainty in the parameter values is investigated.

By means of an experiment, we aim to investigate the

influence of the estimation error on one of the incomplete

demand distribution parameters (range, mean, variance)

on the information offered to the decision-maker, that is

an upper and lower bound on both service perfor-

mance measures. The results of the experiment teach the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

M
in

 a
nd

 m
ax

 o
f t

he
 s

to
ck

-o
ut

 p
ro

ba
bi

lit
y

E(U)

minimum stock-out probability
maximum stock-out probability

Fig. 11 Range of possible values for the stock-out probability when

using the probability approach to calculate the inventory level

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

d

E(U)

gamma distribution
lower bound
upper bound

Fig. 12 Comparison of the Gamma distribution with lower and upper

bounds

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

d

E(U)

uniform distribution
lower bound
upper bound

Fig. 13 Comparison of the uniform distribution with lower and upper

bounds

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

d

E(U)

triangular distribution
lower bound
upper bound

Fig. 14 Comparison of the symmetric triangular distribution with

lower and upper bounds

42 Logist. Res. (2012) 5:33–46

123



decision-makers which parameters are more robust and

which are more sensitive. In such a way, they are better

informed which demand distribution parameters have an

impact on the effect of changes in the mean and variance

on the upper and lower bound.

An experimental design is set up to analyse the robust-

ness of the results to changes in the parameter values

(Table 15). Three factors are considered in the experi-

mental design: the upper bound of the range b, the mean l1

and the coefficient of variation cv. A 23 full factorial design

is used. The values for each factor are chosen in such a way

that a wide range of combinations is examined. The upper

bound of the distribution range b takes the values 50 and

100. For both values of b, cv takes the values
ffiffiffi
2

p
=2 andffiffiffi

2
p

=4: Within these four combinations, l1 is set equal to a

low value (1/5 of the interval) and to a high value (3/5 of

the interval). For all combinations, the conditions of Sect. 4

are met.

Next, for each of the experimental points, six variants

are determined representing uncertainty in the parameters.

In the first two variants, the mean l1 is increased (variant

1) or decreased (variant 2) by 10 %, while the variance

changes so that the coefficient of variation remains

unchanged. In the third and fourth variant, the mean l1 is

also increased (variant 3) or decreased (variant 4) by 10 %,

but the variance remains unchanged, and the coefficient of

variation changes. In the last two variants, the mean l1 is a

constant, and the standard deviation is increased (variant 5)

or decreased (variant 6) by 10 %.

To check the robustness of the bounds, for each variant,

new bounds are calculated and compared with the bounds

of the basic scenario. Table 16 summarizes the results for

the case where the expected number of stock-out units is

used as a service performance measure. The results for the

expected stock-out probability are shown in Table 17. In

both tables, for three responses (the lower bound (DLB),

the upper bound (DUB) and the length of the interval

[lower bound; upper bound] (DLength)), the changes are shown. In the columns, a ‘?’-symbol indicates an increase

in the response value, a ‘-’-symbol indicates a decrease in

the response values and a ‘=’-symbol indicates that the

response value remains unchanged. By using the symbols

instead of numerical values, obtained through the experi-

ments, the influence of each experimental variant is easier

to interpret. Maybe it should be mentioned here that the

simulations based on the variants defined are of deter-

ministic nature. As the changes are of no stochastic origin,

no significance interpretation should be given to the sym-

bols indicating increase, decrease or no-change.

The results for the expected number of stock-out units

show that for variants 1–4, the upper and lower bound

increase when l1 is increased (variants 1 and 3), and the

upper and lower bound decrease when l1 is decreased

(variants 2 and 4). Only the changes in the length of the

Table 15 Experimental design

Experimental

point

b cv l1

1 50
ffiffi
ð

p
2Þ=2 10

2 50
ffiffi
ð

p
2Þ=2 30

3 50
ffiffi
ð

p
2Þ=4 10

4 50
ffiffi
ð

p
2Þ=4 30

5 100
ffiffi
ð

p
2Þ=2 20

6 100
ffiffi
ð

p
2Þ=2 60

7 100
ffiffi
ð

p
2Þ=4 20

8 100
ffiffi
ð

p
2Þ=4 60

Table 16 Robustness of the results for the expected number of stock-

out units

Variant Conditions DLB DUB DLength

1 l1 low ? ? ?

l1 high ? ? -

2 l1 high and cv high - - ?

Else - - -

3 l1 low ? ? =

l1 high ? ? -

4 l1 low - - =

l1 high - - ?

5 l1 low = ? ?

l1 high and cv high ? ? -

l1 high and cv low ? ? ?

6 l1 low = - -

l1 high and cv high - - ?

l1 high and cv low - - -

Table 17 Robustness of the results for the expected stock-out

probability

Variant Conditions DLB DUB DLength

1 ? ? ?

2 - - -

3 l1 low ? ? =

l1 high and cv high ? ? ?

l1 high and cv low ? ? -

4 l1 low - - =

l1 high and cv high - - -

l1 high and cv low - - ?

5 l1 low - ? ?

l1 high ? ? ?

6 l1 low ? - -

l1 high - - -
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interval depend on the uncontrollable factors of the experi-

ment. For the first variant, only the level of l1 influences the

results. For variant 2, both the level of l1 and the coefficient of

variation have an impact on the results. For variants 3 and 4,

the changes in the length of the interval depend on l1. The

results for variants 5 and 6 show that an increase/decrease in

the variance leads to an increase/decrease in the upper and

lower bound. Only when l1 is low, the lower bound remains

the same while the variance increases/decreases. The changes

in the length of the interval depend on both l1 and the coef-

ficient of variation. The increase/decrease of the upper and

lower bounds is higher when l1 is increased/decreased (12 %

on average) compared to when the variance is increased/

decreased (3 % on average).

The results for the expected stock-out probability show

that there is no influence of the uncontrollable factors for

the first two variants. An increase/decrease of l1 leads to

an increase/decrease in the upper and lower bounds and the

length of the interval. For variants 3 and 4, the upper and

lower bounds increase/decrease when l1 is increased/

decreased. Both l1 and the coefficient of variation have an

impact on the changes in the length of the interval. For

variants 5 and 6, only l1 influences the changes in the

bounds and the length of the interval. The results indicate

that an increase/decrease of l1 has a higher impact (8 % on

average) on the upper and lower bounds than an increase/

decrease in the variance (4 % on average).

In this section, both the mean and the standard deviation of

demand during lead time are increased or decreased with

10 %. These changes lead to an increase or decrease of the

corresponding lower and upper bound of less than 10 % on

average and of 20 % at most. For a decision-maker, this means

that if there is an error in the estimates of the mean or the

variance of demand during lead time after the bounds are

calculated, the real bounds do not differ much from the cal-

culated bounds. The upper and lower bounds increase/

decrease if the mean or the variance increases/ decreases.

Furthermore, the impact of an error in the mean is higher than

the impact of an error in the variance, so for decision-makers,

it is more important to have a correct estimation of the mean.

In general, it can be concluded that the bounds are

robust to changes in the first and second moment of the

demand distribution during lead time.

7 Conclusions and further research

Inventory on slow-moving items or products, which have

been recently introduced to the market, face lack of

information on the distribution of demand during lead time.

The aspect of incomplete information has been addressed

several times in literature, for example in the single-period

(newsvendor) inventory problem. A number of papers deal

with the estimation of demand uncertainty when historical

demand data are not available. We address the case where

insufficient data are available to decide on the functional

form of the demand distribution function. Incomplete but

not full information on this distribution is available like the

range, the expected value, the standard deviation and/or the

mode. In this case, customer service performance mea-

sures, like the expected number of stock-out units or the

stock-out probability, do not lead to a unique value for the

level of safety stock, but rather to an interval of values.

This is due to the fact that many distributions may satisfy

the incomplete information that is available. In this

research, the intervals of safety stock levels are determined

to support the decision-maker who has formulated targets

for both performance measures. The method concentrates

on the calculation of the intervals of safety stock levels

with the range, the expected value and the standard devi-

ation available as incomplete information. This informa-

tion is of great use to the decision-maker to make decision

on variables like the inventory level. Depending on the

degree of optimism of the decision-maker, any value

between the upper and lower bound on the inventory level

can be used. As most textbooks advise to make use of the

Normal distribution for determining the safety stock level,

the results are compared to this traditional approach. But

also comparisons to other then the Normal distributions

have been tested. The use of these other distributions can

lead to an actual number of stock-out units or an actual

stock-out probability that is considerably higher than tar-

geted. As one may question the statistical validity of the

estimated parameter values, which make up the incomplete

information, the robustness of the bounds of the intervals to

uncertainty in the parameters is tested. Based on the results,

it can be concluded that both the lower and upper bounds of

the interval are robust to changes in the expected value and

the standard deviation of the demand during lead time. In

this research, the upper and lower bounds on the safety

stock level are calculated using the range, expected value

and standard deviation of demand during lead time.

Additional information on the distribution like a unique

mode cannot be used in the bounds developed in this paper.

In further research, it might be useful to extend the results,

making use of the same methodology, in case additional

information would be available.

Appendix

Number of stock-out units

Upper bounds

As already stated before, the problem is to find:
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sup
F2U

Zb

0

f ðxÞ dFðxÞ

where U is the class of all distribution functions with range

[0,b] and moments l1 and l2 and where f(x) = (x - d)?.

The two-point distribution that will be used depends on

the position of the parameter d in the interval [0,b]. Three

situations can be distinguished.

Parabola through (0,0) and (00,f(00)) There exists a two-

point distribution with moments l1 and l2 in (0,00). The

formula for the parabola can be used with u = 0, v = 00

and f(0) = 0.

gðxÞ ¼ 1

002 ½f ð0
0Þ00x þ ðf 0ð00Þ00 � f ð00ÞÞxðx � 00Þ�:

To assure that g C 0 on [0, d], we impose g0(0) C 0,

which means that

f 0ð00Þ � 2f ð00Þ
00

or

d � 00

2
:

The best upper bound is q0’f(0
0) or

l1

l2

ðl2 � l1dÞ:

Parabola through (r,0) and (r0,f(r0)) The formula for the

parabola is used with v = r, u = r0, f(v) = 0 and f0(v) = 0.

This gives us:

gðxÞ ¼ f ðr0Þðx � rÞ2

ðr0 � rÞ2
:

The condition g0(u) = f0(r0) leads to

2f ðr0Þ ¼ ðr0 � rÞf 0ðr0Þ

or

d ¼ r þ r0

2
:

A unique solution (r,r0) can be assured by imposing the

condition

00

2
� d � b þ b0

2
:

Under this condition, the best upper bound is qr’f(r
0) or

l1 � d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � l2

1Þ þ ðd � l1Þ2
q

2
:

Parabola through (b0,0) and (b,f(b)) In this case, we take

u = b, v = b0, f(v) = 0 and f0(v) = 0 and obtain

gðxÞ ¼ f ðbÞðx � b0Þ2

ðb � b0Þ2
:

To assure g C f, we impose g0(b) B f0(b) or

2f ðbÞ� ðb � b0Þf 0ðbÞ

or

d � b þ b0

2
:

In that case, the upper bound is qbf(b) or

ðl2 � l2
1Þðb � dÞ

ðl2 � l2
1Þ þ ðb � l1Þ2

:

Lower bounds

The problem is to find:

inf
F2U

Zb

0

f ðxÞ dFðxÞ

where U is the class of all distribution functions with range

[0,b] and moments l1 and l2 and where f(x) = (x - d)?.

Here, also three situations can be distinguished,

depending on the position of d in the interval [0,b].

0 B d B b0 A solution is found when P is the straight line

through (d, 0), (l1, f(l1)) and (b, f(b)). The three-point

distribution will have masses:

qd ¼ l2 � l2
1

ðd � l1Þðd � bÞ ; ql1

¼ l2 � l2
1 þ ðl1 � dÞðl1 � bÞ

ðl1 � dÞðl1 � bÞ ; qb ¼ l2 � l2
1

ðb � dÞðb � l1Þ

The lower bound equals ql_1f(l1) ? qbf(b) or

l1 � d:

b0 \ d \ 00 In this case, P is the parabola through

(0, 0), (d,0) and (b, f(b)). The best lower bound is qbf(b) or

l2 � l1d

b
:

00 B d B b Here, a solution is found when P is the

straight line through (0, 0), (l, 0) and (d,0). The best lower

bound is equal to 0.

Stock-out probability

When calculating bounds on tail probabilities [2], the

problem is to find:
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sup
F2U

Zb

0

f ðxÞ dFðxÞ

and

inf
F2U

Zb

0

f ðxÞ dFðxÞ

where U is the class of all distribution functions with range

[0,b] and with moments l1 and l2 known and where

f ðxÞ ¼ 0 if x� d;
1 if x [ d:

�

Upper bounds

0 B d B b0 A solution is found when P is the straight line

through (b0,1) and (b,1). The upper bound is equal to

qb’f(b
0) ? qbf(b) = 1.

b0 \ d B 00 In this case, P is the parabola through

(0, 0), (d, 1) and (b,1). According to Lemma 2, the three-

point distribution in (0, d, b) will have masses:

qd ¼ bl1 � l2

dðb � dÞ ; qb ¼ l2 � l1d

bðb � dÞ ; q0 ¼ 1 � qd � qb:

The upper bound is qdf(d) ? qbf(b) or

ðb þ dÞl1 � l2

bd
:

00 \ d B b Here, the solution is the parabola through

(d0,0) and (d,1) and tangent to f(x) in d0. The best upper

bound is qdf0(d) ? qd’f(d
0) or

l2 � l2
1

l2 � l2
1 þ ðl1 � dÞ2

:

Lower bounds

0 B d B b0 In this case, P is the parabola through (d,0)

and d0,1) and tangent to f(x) at d0. The lower bound equals

qdf(d) ? qd’f(d
0) or

ðl1 � dÞ2

l2 � l2
1 þ ðl1 � dÞ2

:

b0 \ d B 00 A solution is found when P is the parabola

through (0, 0), (d,0) and (b,1). The masses of the three-

point distribution give a lower bound of

l2 � l1d

bðb � dÞ :

00 \ d B b Here, P is the line through (0,0) and (00,0).

The lower bound is 0.
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