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Abstract This paper provides an overview of stochastic

research in warehouse operations. We identify uncertainty

sources of warehousing systems and systematically present

typical warehouse operations from a stochastic system

viewpoint. Stochastic modeling methods and analysis

techniques in existing literature are summarized, along

with current research limitations. Through a comparison

between potential and existing stochastic warehouse

applications, we identify potential new research applica-

tions. Furthermore, by comparing potential and existing

solution methods, methodological directions relevant to

practice and largely unexplored in warehouse literature are

identified.

Keywords Facilities planning and design � Stochastic

models � Stochastic optimization � Warehouse systems

1 Introduction

To stay competitive in a dynamic business environment

full of uncertainties, today’s warehouse operations face

challenges like the need for shorter lead times, for real-time

response, to handle a larger number of orders with greater

variety, and to deal with flexible processes with a far

greater complexity. Some online retailers, for example,

face customers who purchase by impulse, then change their

minds and legally cancel orders. Warehouses of these

online retailers face uncertainty from real-time order

information updates (see Gong and De Koster [1]).

Therefore, warehouse managers must consider uncertain-

ties from various sources, both from the outside supply

chain and from within the warehouse itself. These uncer-

tainties may come from unpredictable rare events, pre-

dictable trends, and internal variability of supply chain

processes. Each of the uncertainty sources may cause an

unanticipated impact on strategic, tactical, or operational

decisions, yet must be met on a daily basis in practice.

Typical warehouse operations include receiving, put-

away, internal replenishment, order picking, accumulating,

sorting, packing, cross docking, and shipping. Internal

variability of these warehouse processes can be observed in

the variability of, for example, the putaway quantity, the

replenishment quantity and the cross-docking quantities,

but also in a variety of other forms. In order picking, for

example, the pick route length is variable and batch sizes

vary as well. Also, product or shipment queuing in sorting

systems induces variability. Over the last decades, ware-

houses have had to learn to adapt to an increasing amount

of uncertainty. Many warehouses have attempted innova-

tive approaches to order receiving, storage, order picking,

and shipping to mitigate risks and to handle the challenge

from uncertainties. This has also led to a far greater com-

plexity in warehouse operations [2] and the use of new

warehouse systems like dynamic storage, real-time pro-

cessing, and dynamic picking (see De Koster et al. [3]),

where products do not have fixed slots, orders are released

dynamically, and the travel time of pickers is reduced.

Deterministic models and algorithms are successful in

the research of warehouse systems (e.g., Ratliff and Ro-

senthal [4], Van den Berg et al. [5], Karasawa et al. [6],
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Lowe et al. [7], White and Francis [8]). Even though real-

world business problems always have some stochastic

factors, deterministic models can provide a good approxi-

mation in a stable business setting. However, deterministic

models may not always suffice in highly variable envi-

ronments such as in systems with strongly fluctuating order

patterns and responsive operations (e.g., online order han-

dling). In fact, they even may lead to wrong conclusions if

underlying processes are variable.

To handle problems with internal variability, a number

of stochastic warehouse models have been developed (e.g.,

Bozer and White [9], De Koster [10], Chew and Tang [11],

Bartholdi et al. [12]). These pioneering researches provide

a valuable start for exploration in warehouse research by

stochastic methods. One of our motivations is to provide an

overview of existing stochastic research in warehousing

and to identify potential application directions. On the

other hand, stochastic models and theory have evidently

developed in the last 20 years. Warehouse practitioners and

researchers need suitable methods to research warehouse

problems in a stochastic environment. Stochastic models

may help understand the impact of stochastic factors on the

operational processes and system performance. While

stochastic models are potentially efficient tools for ware-

house research, their application to warehouse research is

limited. Therefore, another motivation is to bridge this gap

by identifying potential stochastic methods for warehouse

research.

Several literature reviews on warehousing research

exist. Gu et al. [13] carry out a comprehensive review on

warehouse research. Van den Berg and Zijm [14] present a

classification of warehouse management problems. Other

researchers focus on an aspect of warehouse research. De

Koster et al. [3] review the order-picking problem in

warehouses. Cormier and Gunn [15] have classified the

warehouse models into three categories, namely throughput

capacity models, storage capacity models, and warehouse

design models. Our research takes a totally different view

and provides insights into method issues in a stochastic

setting by identifying the uncertainty sources of warehouse

operations, presenting a systematic overview of the sto-

chastic models and analysis of warehouse operations, and

further presenting potential research directions.

In order to identify appropriate academic warehouse

literature, we searched via ‘‘ABI/INFORM Global’’,

‘‘ScienceDirect’’, ‘‘ISI Web of Knowledge’’, ‘‘Informa-

world’’ and ‘‘Google Scholar’’, using key words and their

derivatives like ‘‘warehouse’’, ‘‘distribution cen-

ter’’,‘‘order-picking’’, ‘‘storage’’, ‘‘order retrieval’’, ‘‘order

receiving’’ and ‘‘order shipping’’, ‘‘sorting’’, ‘‘AS/RS

(Automated Storage and Retrieval Systems)’’. We identi-

fied 645 articles and 42 books in English on warehousing

from 1948 to May 2010 (for a comprehensive list before

2008, see http://www.roodbergen.com). Literature on sub-

jects, such as automated guided vehicles (AGV), facility

layout (other than directly applied to warehousing), facility

location and inventory models, has not been included. As

this paper focuses on warehouse operations, warehouse

design is not included. By carefully reading abstract,

introduction and conclusion parts, and checking the

remaining parts for research methods used in these 645

articles and 42 books, we identify the research using sto-

chastic methods on warehouse operations. One of the

limitations is that a large number of non-English literature

is not included in this literature review, although some non-

English literature is highly valuable. Furthermore, we

group these papers by modeling types and methods, by

analysis types and methods, and by warehouse processes

studied. For each group, we discuss representative papers

to illustrate the application of a method. We choose such

papers mainly by the criterion whether the research fully

fits within the category (e.g. full adoption of a method

rather than partial adoption).

The remainder of the paper is organized as follows. In

the following section, we identify uncertainty sources for

warehouse operations. A methodological review of sto-

chastic models and analysis of warehouse systems is

presented in Sect. 3. In Sect. 4, we focus on different

stochastic approaches and their potential for application in

a warehouse context. Based on the analysis in Sects. 3 and

4, some limitations of current research are identified in

Sect. 5. By comparing potential research (partially in Sect.

1) and existing research (mainly in Sects. 3 and 4) and the

analysis of Sect. 5, we can point out future research

directions in Sect. 6. Section 7 concludes this paper.

2 Warehouse operations: a stochastic view

This section identifies uncertainty sources of a warehouse

system at strategic, tactical and operational levels, and

presents uncertainties of a warehouse system in the ware-

house arrival, service, and departure processes, three main

processes of a stochastic system. The analysis in this sec-

tion explains the necessity to research warehouse systems

by stochastic methods in uncertain business settings,

identifies potential opportunities of warehouse research by

stochastic models and analysis, and provides a foundation

for the further analysis in subsequent sections.

2.1 Uncertainty sources of warehouse systems

Uncertainty sources faced by warehouse systems are quite

diverse, both within and external to the warehouse systems

(see Chopra and Sodhi [16]). We first present the classifi-

cation of uncertainty sources and then study the influence
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of uncertainty sources on warehouse operations and

decisions.

According to the location of uncertainty sources, we

classify them as (1) sources outside the supply chain, (2)

sources in the supply chain but outside the warehouse, (3)

sources inside the warehouse, and (4) sources within

warehouse control systems. We present this scope dimen-

sion on the horizontal axis of Fig. 1. According to the

variance structure of uncertainties, we classify uncertainty

sources as (1) unpredictable events like war, strikes, floods,

and hurricanes, which usually are rare events, (2) predict-

able events like demand seasonality, and (3) internal

variabilities like variance of order waiting time for batch-

ing, which could be caused by internal randomness. We

present this classification dimension on the vertical axis of

Fig. 1. The figure also shows typical examples of uncer-

tainty sources for different types. Examples in Fig. 1 pri-

marily distribute along the diagonal of the matrix. Outside

uncertainty sources usually are more unpredictable and will

often bring high variance to warehouse operations. On the

other hand, inside uncertainty sources usually are more

predictable and only bring low variance to warehouse

operations.

Uncertainty sources can affect decisions at three levels,

strategic, tactical, and operational, classified by the plan-

ning horizon. Strategic decisions have a long-run effect,

tactical decisions have an effect over the medium term

(monthly or quarterly), and operational decisions are made

on a daily basis [17]. Decisions on warehouse automation

level, layout, and systems have a strategic effect. Tactical

decisions mainly include the storage, order picking, and

shipping tactical plans. Warehouse operational decisions

include daily order-picking planning, daily resource plan-

ning, and daily warehouse information system manage-

ment. We further illustrate the impact of uncertainty

sources at these decision levels.

2.1.1 Strategic uncertainty sources

Some system-wide uncertainty sources like natural disas-

ters, war, and terrorism can impose a long-term impact on

warehouse operations; for example, Hurricane Katrina has

a long-run influence on distribution networks and ware-

house operations in the USA. After Hurricane Katrina, the

USA required that each state set up an emergency ware-

house to rapidly and safely provide healthcare products like

antibiotics, antivirals, and vaccines during disasters. The

Mississippi State Department of Health discovered its

existing emergency warehouse needed improvements to

meet federal requirements, and they took many measures

like implementing a new inventory management system

(see fishbowlinventory.com). After emergency warehouses

were set up, they have been successfully used at least once:

they were activated in response to the H1N1 influenza

outbreak in 2009. Other uncertainties, like those in facility

and labor costs, in relation to facility productivity and labor

productivity will influence the trade-off between opera-

tional capabilities and economic efficiency, and further

influence strategic decisions on warehouse automation.

Uncertainties in total ownership costs of costly resources

U
npredictable rare 

event

Natural disaster

Warehouse control system Inside the warehouse Inside supply chain but 
outside of the warehouse

Outside the supply 
chain

Predictable event
Internal variability

Organizational scope

V
ariance structure

War
Terrorism

Daily equipment 
maintenance

WMS breakdown 

Nonpremptive 
equipment failure

Supply chain 
structure change

Strategic impact

Tactical impact

Operational  impact

Internal 
transportation cost 
change trend

Demand seasonality

Communication error 

Labor dispute

Order information 
distortion

Capital-labor 
substitution

Delivery reliability
Product quality 
variance

Preemptive
equipment failure

Planned facility 
overhaul

Economic crisis

Variance in batching, 
e.g. waiting time

Variance in routing
Variance in zoning,
e.g. capacity conflict

Staff absence

Facility cost change 
trend
Labor cost  change 
trend

Fig. 1 Uncertainty sources of

warehouse operations
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(including staff, and key equipment like storage and sorting

systems) may affect the financial performance of a ware-

house over years.

2.1.2 Tactical uncertainty sources

Tactical uncertainty sources originate from both outside

and inside the warehouse’s supply chain. Outside sources

include economic fluctuation, labor availability, and cost

changes of important resources. Preemptive overhaul of

key equipments and labor disputes are examples of

uncertainty sources originating from inside the warehouse;

for example, the Bullwhip effect could be a serious prob-

lem in warehouses. The bullwhip effect entails that small

fluctuations in customer demand can result in amplified

demand and inventory level fluctuations upstream in the

supply chain. Mangan et al. [18, p. 129] state ‘‘ If bullwhip

can be controlled, warehousing operations can be run more

effectively and efficiently’’. Wal-Mart takes countermea-

sure against the bullwhip effect: Individual Wal-Mart

stores transmit point-of-sale data from the cash register to

corporate information center several times a day and also

share information with manufacturers like Procter and

Gamble [19]. These improve the visibility of customer

demand and inventory movement throughout the supply

chain, and are used to schedule shipments among the Wal-

Mart distribution centers, stores and suppliers’ warehouses.

This countermeasure thereby improves operations of Wal-

Mart distribution centers.

2.1.3 Operational uncertainty sources

Uncertainties from human factors have a short-term impact

on order-picking daily planning, consisting of order batch-

ing, routing, and picker task assignment. Among these are

manual handling risks, labor absence, or specific injuries

like musculoskeletal disorders, as reported by Wright and

Haslam [20]. Order information distortion caused by order

cancelation can affect daily picking planning. Facility daily

planning faces uncertainties from equipment failure and

facility maintenance. Modern warehouses depend heavily

on the proper function of information systems. In this

respect, they are sensitive to information infrastructure

breakdown, data errors, and errors in the communication

with external systems.

We further shed light on the relation between uncertainty

source types and impact levels. Based on the examples dis-

tributed along the horizontal axis in Fig. 1, we find unpre-

dictable uncertainty sources usually have more strategic or

tactical impacts than predictable sources. On the other hand,

from examples distributed along the vertical axis in Fig. 1, we

find outside sources usually have more strategic or tactical

impacts, and inside sources usually have more operational

impacts. We therefore conclude that outside, more unpre-

dictable and high variance uncertainty sources usually have

more strategic or tactical impacts, and inside, more predict-

able and low variance uncertainty sources usually have more

tactical or operational impacts in warehouse operations.

2.2 Uncertainties of warehouse operations

A typical stochastic system can be divided into arrival,

service and departure processes. Classifying warehouse

processes by these same three groups helps us to identify

appropriate stochastic models as clear distinction among

arrival, service, and departure processes exists. We present

typical warehouse operations in Fig. 2, which framework is

helpful to capture the heterogenous stochastic essence and

heterogenous uncertainty sources in different processes.

In the framework of Fig. 2, we view warehouse opera-

tions associated with inbound flows as arrival processes,

which include product arrivals typically followed by an

‘‘inspection and receiving’’ operation, and order arrivals

typically followed by an ‘‘acceptance and reject’’ opera-

tion. We view warehouse operations, which create or add

value and are main processes to support core warehousing

functions and mainly deal with internal flows, as core

service processes, including putaway, storage in a reserve

area, replenishing the forward area, order-picking, packing,

sorting, and accumulating. We group warehouse operations

associated with outbound flows as departure processes,

which mainly includes inspection and shipping. We further

describe uncertainty factors in these three processes and

summarize them in Table 1.

Inspection and 
receiving

Warehouse system

Storage in the 
reserve area

Sortation and 
accumulation

Order picking 

Delivery
Notification

Shipment
Shipment

Notification
Order

Notification

Replenishing
the forward area

Arrival process (inbound flow) Core service process (internal flow) Departure process (outbound flow)

Putaway

Packaging
Acceptance/

Reject

Fig. 2 Typical warehouse

operations from a stochastic

process view
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2.2.1 Uncertainties in arrival processes

There are two main arrival processes in a warehouse sys-

tem. One arrival process is the physical product arrival.

The inventory level at suppliers and transportation will

influence the arrival rate and uncertainties of quantities and

time in the arrival processes. Wilson [21], for example,

investigates the effect of a transportation disruption. Return

product arrivals will also increase the arrival variance.

After the products have arrived at a warehouse, inspection

and receiving operations can lead to congestion or addi-

tional delay, and increase the variance of the internal

transportation time to the next warehouse operation.

Receiving scheduling, prereceiving, and receipt prepara-

tion have been applied to decrease the uncertainty of the

arrival process. Another arrival process is the order arrival

process, determined by customer demand, usually a sto-

chastic variable (e.g., seasonality and sales will affect the

customer demand; order cancelation will disturb the arrival

rate).

2.2.2 Uncertainties in service processes

Main warehouse operation processes include putaway,

storage, order picking, packaging, accumulation and

sorting.

Table 1 Warehouse operations with uncertainty factors

Stochastic

process

Operation process Practice Issues associated with uncertainties

Arrival

process

Product arrival Transportation Transportation disruption directly affects the arrival process and increases the

uncertainty

Cross docking Reduce the variability of throughput time by simplifying operation processes

Receiving

scheduling

Reduce uncertainty and improve arrival rate by scheduling the receiving resource like

personnel, equipment, dock doors, staging space

Prereceiving Reduce uncertainties by capturing information like location assignment and product

identification ahead of time

Receipt

preparation

Decrease arrival uncertainties and improve arrival rates by adequate planning

Order arrival Customer demand Seasonality may affect the customer demand, order cancelation will disturb the arrival

rate

Communication Information system errors between customer and warehouse will increase the

uncertainty

Core

service

process

Putaway Direct putaway Direct putaway eliminates staging and inspecting activities

Directed putaway Streamline putaway process by maximizing location and cube utilization, and reduce

variability of productivity

Batch and

sequenced

putaway

An efficient way to stabilize service rate of putaway and reduce the variability of

productivity

Storage Reserve area

storage

Achieve better space utilization and reduce the uncertainty of replenishment shortage

Forward area

Storage

Improve the service rate and reduce the fluctuation of order- picking productivity

Order picking Picker-to-parts Suitable batch and routing polices will improve the service rate. Pick inaccuracy and

pick errors increase uncertainty

Parts-to-picker An automated conveying system will reduce the uncertainty and improve service

rates. Balancing work stations is helpful to streamline processes and reduce

uncertainties

Packaging,

accumulation,

sortation

Packaging Packaging order inaccuracy increases the uncertainty and reduces the departure rate

Accumulation

and sortation

Sorter mechanical errors can lead to order inaccuracy in accumulation and sortation

and increase uncertainties

Departure

process

Shipping Container loading Optimization can maximize the cube and utilization of each container and also reduce

the uncertainty of utilization

Staging activity An automated operation and direct loading can eliminate staging and its uncertainty,

and improve the departure rate

Shipping

inaccuracy

Tracking and tracing techniques can decrease the uncertainty of delivery
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1. Putaway. Putaway is a critical operation since it

determines the efficiency and cost of retrieval, and

accounts for about 15% of warehouse operational cost

(see Bartholdi and Hackman [22]). Direct putaway

eliminates staging and inspection activities. However,

without the inspection process, the uncertainties will

possibly increase since potential errors cannot be

identified in time. Using a Warehouse Management

System (WMS), directed putaway can improve effi-

ciency by maximizing location and cube utilization

and retrieval productivity. Batched and sequenced

putaway can also improve the efficiency.

2. Storage. Typical storage consists of forward and

reserve storage (not all warehouses have their storage

system split in forward and reserve). A forward-

reserve area storage strategy will improve the effi-

ciencies of order retrieval and picking. In the reserve

area, products are stored in pallet racks or block-stacks

to achieve a high space utilization and reduce the

uncertainty of replenishment to the forward area. In the

forward area with compact size, bin shelving and

gravity flow racks are applied to facilitate order

picking, and reduce the fluctuation of order-picking

productivity. The forward-reserve system is a two-

echelon inventory system, and imbalance of the

inventory level between reserve and forward areas

can lead to a greater variance of throughput (e.g.,

inventory shortage in the forward area will reduce the

order-picking throughput).

3. Order picking. Order picking can be divided into two

types of systems: picker-to-parts and parts-to-picker.

Parts-to-picker systems include automated storage and

retrieval systems, using mostly aisle-bound cranes that

retrieve one or more unit loads and bring them to a

pick position. Such an automated system may stream-

line the service process, reduce response time, and

thereby improve service. In end-of aisle order-picking

systems, tailored balancing of humans and machines

helps to reduce the throughput variance. In picker-to-

parts systems, an order picker walks or drives along

the aisles to pick items. Two types can be distin-

guished: low-level picking and high-level picking. In

low-level order-picking systems, the order picker picks

requested items from storage racks or bins, while

traveling along the storage aisles. Pick inaccuracies,

i.e., picking a wrong item or wrong quantity, can

increase the uncertainty of the pick service process.

High-level (also called man-aboard) order picking is

used in warehouses with high storage racks. Order

pickers travel to pick locations on board of a lifting

order-pick truck or crane, which stops in front of the

appropriate pick location and waits for the order picker

to perform the pick. If multiple order pickers are used,

congestion may occur.

4. Accumulation, sortation, and packaging. Accumula-

tion and sortation of picked orders into individual

customer orders is a necessary activity if the orders

have been picked in batches. Accumulation and

sortation processes usually apply mechanical equip-

ments like conveyors and sorters, and man-machine

balance will affect the throughput. Mechanical errors

like faulty sortations can also cause inaccuracies in

accumulation and sortation. Such inaccuracies will

increase the uncertainty of the departure process and

may reduce the departure rate. During packing,

laborers can check whether customer orders are

complete and accurate, which can again decrease

these uncertainties (see Bartholdi and Hackman [22]).

2.2.3 Uncertainties in departure processes

One of the main uncertainties during shipping stems from

shipping inaccuracy, i.e., shipping wrong products to

wrong customers, at a wrong time. Errors in electronic

messages can further cause or magnify these uncertainties.

Other uncertainties in the departure process arise from

departure operations like container loading (e.g., wrong

order batch, wrong space calculation for containers) and

shipment staging (e.g., human factors cause fluctuations in

departure rate). Failure of shipping equipment, like trucks,

pallet jacks, and counterbalance lift trucks, can also cause

uncertainties in this process.

3 Stochastic methods in warehouse operations research

Classical deterministic models assume perfect information

is available about the objective function and this informa-

tion can be used to determine the search direction. How-

ever, due to existing uncertainties in warehouse processes

(see Table 1; Fig. 1), such perfect information is usually

unavailable. Stochastic models provide a means of coping

with inherent system noise and coping with models or

systems that are dynamic, stochastic, even unstable, or

otherwise inappropriate for classical deterministic methods.

Various stochastic models have been applied by ware-

housing researchers (see Table 2). First, much order-pick-

ing work adopts classical probability models, defined by a

sample space, events within the sample space, and proba-

bilities of each event, including basic probability models

like the binominal, the Bernoulli, the geometric, the

hypergeometric models and their derivatives like the urn

model. For example, Chew and Tang [11] analyze order-
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picking operations in a 1-block warehouse, and Le-Duc and

De Koster [23] analyze warehousing operations in a

2-block class-based storage strategy warehouse by basic

probability models (specifically, the binominal model and

urn models) to determine the locations from which articles

must be picked in a pick tour and thereby the tour length.

Second, classical stochastic models (like renewal pro-

cess models, Markov models, martingale models) are also

helpful to describe warehousing operation processes; for

example, Bozer and White [9] model order-picking oper-

ations in an end-of-aisle order-picking system as a renewal

process, where an event occurs when both pickers and the

storage/retrieval(S/R) machine begin service. Gue et al.

[24] model a circular picking area with two workers as a

Markov process when they research the effects of pick

density in order-picking areas with narrow aisles. Parikh

and Meller [25] estimate picker blocking in wide-aisle

order-picking systems. Parikh and Meller [26] study

worker blocking in narrow-aisle order-picking systems

when pick time is non-deterministic.

Third, various queueing models (including single-server

queueing models like M/M/1 and M/G/1, queueing network

models, and their derivatives like the polling model) are

frequently used in warehousing research. Lee [27] has

examined a unit-load AS/RS by a single-server (a S/R

machine) queueing model with two queues and two

different service modes (storage requests and retrieval

requests). According to Bozer and Cho [32], this is the first

study using stochastic analysis of a unit-load AS/RS by an

analytical method. Queueing networks are also helpful for

warehouse modeling. De Koster [10] has researched per-

formance approximation of zoned order-picking systems

by a Jackson queueing network. Heragu and Srinivasan

[28] have studied manufacturing systems via semi-open

queuing networks, which includes the time a customer

waits outside the system. Polling models, a special

queueing network type, have also drawn the attention of

warehousing researchers. Bozer and Park [29] have studied

single-device, polling-based material handling systems.

Gong and De Koster [1] apply stochastic polling models to

a warehouse dynamic order-picking system for an online

retailer.

Besides the aforementioned three main types of meth-

ods, several other techniques have been introduced to

warehouse research; for example, Bartholdi et al. [12] have

researched bucket brigades where the work is stochastic by

fluid models. Hsieh et al. [30] and Lin and Wang [31]

model an automated storage and retrieval system using

stochastic Petri nets, and their models can be used to

evaluate the performance and optimize control policies.

These pioneering researches provide new exploration in

warehouse research by stochastic methods.

Table 2 Stochastic models in warehouse operations

Type Method Research examples Problem statement

Classical

probability

models

Urn models Chew and Tang

[11]

Analyzing the picking systems by urn models

Le-Duc and De

Koster [23]

Travel distance estimation in a 2-block class-based storage strategy warehouse

Classical stochastic

models

Renewal process

models

Bozer and White

[9]

The basic configuration is modeled as a renewal process in end-of-aisle order-

picking system

Markov chain

model

Gue et al. [24] Model the circular picking area with two workers as a Markov process

Parikh and Meller

[25]

Estimating picker blocking in wide-aisle order-picking systems

Parikh and Meller

[26]

Study worker blocking in narrow-aisle order-picking systems when pick time is

non-deterministic

Queueing models Single queueing

models

Lee [27] Analyzing a unit-load AS/RS by a single-server queueing model with two

queues and two different service modes

Queueing

networks models

De Koster [10] Performance approximation of pick-and-pass order-picking systems

Heragu and

Srinivasan [28]

Analysis of manufacturing systems via semi-open queuing networks

Polling models Gong and De

Koster [1]

A polling-based warehouse dynamic picking system for online retailers

Bozer and Park

[29]

Single-device polling-based material handling systems

Others Fluid models Bartholdi et al.

[12]

Bucket bridges problem when work is stochastic

Petri-net models Hsieh et al. [30] Present a Petri-net-based structure to describe and model AS/RS operations

Lin and Wang [31] Modeling an automated storage and retrieval system using Petri nets
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To analyze these stochastic models, researchers have

adopted various methods including optimization, heuris-

tics, and simulation. Some typical examples of each of

these methods are listed in Table 3. Stochastic optimiza-

tion refers to the minimization (or maximization) of a

function in the presence of randomness in the optimization

process, which applies to one or both of the following

conditions. (1) There is random noise in the measurement

of the objective function and (2) a random (Monte Carlo)

choice is made in the search direction as the algorithm

iterates toward a solution. By a stochastic constrained

optimization algorithm (a simulation optimization algo-

rithm), Azadivar [33] has determined the maximum num-

ber of storage and retrieval requests that can be handled by

automated warehousing systems under physical and oper-

ational constraints. Jucker et al. [35] develop an efficient

algorithm based on Kuhn-Tucker conditions for simulta-

neously determining the plant and leased warehouse

capacities for a firm facing uncertain demand in several

geographical regions. Archetti et al. [36] have adopted

Petri-net models and a stochastic optimization method to

study optimal control policies of an AS/RS.

Heuristic methods have also achieved successful appli-

cation, for example, Bozer and White [37] present two

efficient heuristic algorithms for design and performance

analysis of end-of-aisle order-picking operations based on a

miniload AS/RS. The algorithm is based on an approximate

analytical model developed to estimate the expected picker

utilization for a general system configuration.

Simulation has been widely adopted by warehousing

researchers. Macro and Salmi [38] analyze the storage

capacity and rack efficiency of a medium volume, low

stock-keeping unit (SKU) warehouse and a medium vol-

ume, large SKU warehouse by Promodel. The model can

be applied to simulate various warehouse configurations

like bulk floor storage, push-back, flow-through, drive-in,

and drive-through racks (for a review of such rack types,

see Tompkins et al. [44]). Rosenblatt and Roll [39] have

analyzed warehouse capacity in a stochastic environment

by Monte Carlo simulation. Ekren and Heragu [40] present

a simulation-based regression analysis for the rack con-

figuration of an autonomous vehicle storage and retrieval

system (AVS/RS) and give mathematical functions for the

rack configuration of an AVS/RS that reflects the rela-

tionship between the outputs (responses) and the input

variables (factors) of the system. Stadtler [41] optimizes

dimensions for automated warehouse systems by a proce-

dure consisting of enumeration simulation. Hsieh et al.

[30] propose a Petri-net-based four-layer simulation

structure as a general tool to model the operations and

Table 3 Stochastic analysis in warehouse systems

Type Method Research

examples

Problem statement

Optimization Stochastic constrained

optimization

Azadivar [33] To determine the maximum number of storage and retrieval requests in automated

warehousing systems

Perturbation analysis Gong and de

Koster [34]

Approximate optimal order batch sizes in a parallel-aisle warehouse

Kuhn-Tucker condition Jucker et al.

[35]

The simultaneous determination of plant and leased warehouse capacities for a firm

facing uncertain demand in several regions

Petri-net-based

technique

Archetti et al.

[36]

Adopted Petri-net models and a stochastic optimization method to study optimal

control policies of an AS/RS

Heuristic Analytical

approximation

Bozer and

White [37]

Present two efficient heuristic algorithms for design and performance analysis for

end-of-aisle order-picking system

Simulation A tool based on

Promodel

Macro and

Salmi [38]

Invented a simulation tool to determine warehouse efficiencies and storage

allocations based on Promodel

MC simulation Rosenblatt and

Roll [39]

Analyzing warehouse capacity in a stochastic environment by MC simulation

Simulation-based

regression analysis

Ekren and

Heragu [40]

Study the rack configuration of Autonomous Vehicle Storage/Retrieval systems

Petri-net-based

simulation

Hsieh et al. [30] Propose a Petri-net-based four-layer simulation structure for the AS/RS

Enumeration Stadtler [41] Optimize dimensions for automated warehouse systems by a procedure consisting

of enumeration simulation

Others Determine limiting

behavior

Litvak [42] Determine a limiting behavior of the shorted rotation time needed to collect large

orders in a carousel system

Matrix geometric

analysis

Bastani [43] Analyze closed-loop conveyor systems by M/M/s system and an matrix geometric

solution
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evaluate the performance and develop control policies of

an AS/RS.

Besides these approaches, some other stochastic analytic

methods exist, for example, Litvak [42] determines the

limiting behavior of the shortest rotation time needed to

collect large orders in a carousel system. Bastani [43]

analyzes closed-loop conveyor systems with breakdown

and repair of unloading stations by an M/M/s queueing

system and provides an approximation of the steady-state

probabilities of the system in different operating states by

the matrix geometric technique.

Over the last 20 years, we have witnessed a rapid

development in stochastic optimization techniques,

including stochastic programming and stochastic approxi-

mation. From our review, however, we find while simula-

tion and heuristics are widely applied in warehouse

research, and stochastic optimization is hardly used.

4 Stochastic applications in warehouse operations

This section examines the application of stochastic meth-

ods in main warehouse operations, including storage, order

picking, packing, sorting, accumulation, and distribution.

For order picking, where many stochastic researches exist,

we examine applications in three systems: picker-to-parts

systems, parts-to-picker systems, and automated picking

systems (see Van den Berg [45]).

4.1 Storage

Storage is a main function of a warehouse, and a large

number of papers research it by deterministic methods.

Stochastic research in this area, however, is not abundant

(compared with order picking). Noteworthy examples

include Van den Berg et al. [5], who have studied for-

ward-reserve allocation in a warehouse with unit-load

replenishments. Roll et al. [46] present analytical and

simulation methods to determine the size of storage

containers in a warehouse with an objective to minimize

the storage cost. Chang and Wen [47] research the

impact on the rack configuration on the speed profile of

storage and retrieval machines and present an analytical

procedure to obtain the optimal rack configuration in an

AS/RS.

4.2 Order picking: picker-to-parts systems

Stochastic research in this area is abundant, for example,

Gue et al. [24] build a stochastic throughput model to

explore the effect of pick density on order-picking areas

with narrow aisles. Roodbergen and Vis [48] apply prob-

ability models to the layout design in a picker-to-parts

warehouse, with an objective of minimizing picking travel

time.

4.3 Order picking: parts-to-picker systems

Parts-to-picker systems in general have a high automation

level, and it is convenient to model such systems by sto-

chastic models. For instance, Bozer and Cho [32] derive

closed-form analytical expressions for throughput perfor-

mance of an AS/RS under stochastic demand and also

derive an analytical estimate for the expected S/R machine

utilization. Park et al. [49] model an end-of-aisle order-

picking system as a two-stage cyclic queueing system

consisting of one general and one exponential server queue

with limited capacity and present closed-form expressions

for system performance measures like throughput.

4.4 Order picking: automated picking systems

The number of implementations of automated picking

systems is growing. However, only few papers in this area

exist. An example is Yu [50], who studies dynamic picking

systems. These are systems where not all items have a

storage slot in the forward area. Items are moved to the

forward area automatically and dynamically when needed

from the reserve storage. Since automated picking is a

rapidly growing area of interest and since order profiles and

storage location selection are stochastic, stochastic mod-

eling of these systems could be explored further.

4.5 Packing, sorting, and accumulation

Although several papers research packing, sorting, and

accumulation combined with order picking, few papers

focus on these processes using stochastic methods. An

exception is Johnson [51], who studies the impact of

sorting strategies on automated sortation system perfor-

mance by a stochastic analytical model. Van Nie-

uwenhuyse and de Koster [52] consider two sorting

policies (pick-and-sort versus sort-while-pick) when they

try to evaluate order throughput time in 2-block ware-

houses with time window batching. Gallien and Weber [53]

compare wave-based and waveless picking policies for

warehouses with an automated sorter, and provide opera-

tional guidelines for order release with an objective to

maximize throughput.

4.6 Distribution

Distribution, including internal transport, inbound and

outbound shipping, is critical to improve the overall per-

formance of a warehouse system. Research in internal

transport is quite abundant. Many papers research vehicle-
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based internal transport systems like forklifts and AGVs.

However, receiving and shipping processes are not espe-

cially studied in current literature.

This section is summarized in Table 4. By comparing

existing warehouse operations with uncertainties (see

Table 1; Fig. 2) and warehouse operations with stochastic

studies (Table 4), we can identify interesting academic

blanks. These potential research directions will be further

presented in Sect. 6.1

5 Current research limitations: model, parameter,

process details

In this section, we present limitations of past studies on

warehousing, from a stochastic modeling angle. We focus

on model inaccuracies referring to limitations from

adopting inaccurate mathematical (specially probabilistic

or stochastic) models, parameter estimation inaccuracies,

and process inaccuracies due to oversimplifying warehouse

processes or overlooking important processes.

5.1 Arrival process

The order arrival process is often modeled as a Poisson

process (e.g., Lee [27], Axsäter [57, 27]), possibly with a

time-varying arrival rate. When the number of orders is

relatively large and orders are independent, a Poisson

process could be a good approximation. For instance, for

warehouses of online retailers, the order size is relatively

small and the total number of orders is relatively large, and

the Poisson process can be used to approximate the order

arrival process (see, e.g. Gong and De Koster [1]). How-

ever, the typical Poisson model cannot always accurately

describe arrival processes in some application settings.

1. Model inaccuracies. The arrival process might not be

well modeled by a Poisson process. One reason is,

customer orders can be dependent; for example,

students in one business school can all order the same

book at Amazon. Order arrivals from these students are

then correlated. In addition, one order can include

several line items, and these line items are dependent.

Hence, it is inaccurate to model the order line arrival

stream as a Poisson process. Some researchers explic-

itly model correlated products. Frazelle and Sharp [58]

conduct a simulation of a miniload AS/RS where

correlated products are stored in the same bins, and

report a reduction of 30–40% in the number of

retrieval trips compared with that in a setting of

random product assignment. A non-homogeneous

Poisson process, with a time-dependent rate parameter,

may be more suitable for some warehouses. An

example of a non-homogeneous Poisson process would

be the order arrival rate to the warehouse of an online

food retailer, where the arrival rate increases before

dinner time and decreases during the remaining parts

of the day.

2. Parameter inaccuracies. Usually we do not know

arrival rates or product correlation coefficients and

must estimate them. For a time-varying arrival rate, we

Table 4 Stochastic application in warehouse operations

Warehouse operations Research examples Problem statement

Storage Van den Berg et al. [5] Study forward-reserve allocation in a warehouse with unit-load replenishments

Roll et al. [46] Present an approach to determine the size of a warehouse container

Chang and Wen [47] Present an analytical procedure to obtain the optimal rack configuration in an AS/RS

Order picking:

Picker-to-parts

Gue et al. [24] Build a stochastic throughput model to explore the effects of pick density on order-

picking areas with narrow aisles

Roodbergen and Vis [48] Apply probability models to the layout design in a picker-to-parts warehouse

Order picking:

Parts-to-picker

Bozer and Cho [32] Present an analytical result of throughput performance of AS/RS under stochastic

demand

Park et al. [49] Present queue models for end-of-aisle order-picking systems with buffer positions

Order picking:

Automated picking

Azadivar [33] Maximize the throughput in a computerized automated warehousing system

De Koster et al. [54] Consider a newly designed compact three-dimensional AS/RS with automated picking

Packing, sorting,

accumulation

Johnson [51] Study the impact of sorting strategies on automated sortation system performance

De Jong and Anderson [55] Study the setting of shelf heights and the distribution of box sizes in two-dimensional

shelf packing

Van Nieuwenhuyse and de

Koster [52]

Evaluating order throughput time in 2-block warehouses with time window batching

and considering two sorting policies

Gallien and Weber [53] Evaluating different order release policies for warehouses with an automated sorter

Distribution Le-Anh [56] Study intelligent control of vehicle-based internal transport systems
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even need to estimate the arrival rate function. In a

warehouse, there are a variety of information sources

to use for the estimation. However, existing research

usually has not provided a convincing justification for

the parameter estimation. A more accurate estimation

of the order arrival rate from demand data and the

product arrival rate from supplier information is

needed. One can assume a parametric form for the

arrival-rate function, such as linear or quadratic.

Massey et al. [59] have explored a method to estimate

the coefficients of linear arrival rate functions from

nonhomogeneous Poisson process data.

3. Process inaccuracies. Both order and product arrival

processes may be inaccurately described; for example,

in the case of online retailers, customers can legally

cancel orders, forming a negative arrival process. For

product arrivals, existing research hardly considers

arrival uncertainty due to product quality variance,

transportation disturbance, and associated rework and

product reject flows.

5.2 Service process

Warehouse service processes include picking at a storage

position, travel between positions, packing, and other

processes. However, unsuitable model selection, impracti-

cal parameter estimation, process oversimplification can

induce inaccuracies.

1. Model inaccuracies. Many order-picking papers

assume picking time is constant, but it is not always

acceptable to overlook the variance of picking time.

Others model service time as a sequence of indepen-

dent and identically distributed random variables, each

with an exponential distribution. Bozer and Cho [32]

point out that the coefficient of variation for single

command and dual command cycles are known to be

considerably less than one in an AS/RS, and ‘‘expo-

nentially distributed S/R service times produce results

inconsistent with simulation ’’. We can also find other

cases where the actual service-time distribution is not

exponential; for example, pick time can depend on

item types (e.g., the pick time for large items can be

longer than for small items) and ergonomic factors

(e.g. the pick time of laborers can become longer due

to fatigue, see Larco et al. [60]).

2. Parameter inaccuracies. Parameters (e.g., pick rate)

may be inaccurately estimated. Examples causing

parameter inaccuracies include ergonomic factors,

which may cause productivity to decrease over time,

dependent on, for example, the frequency and length of

short breaks, and item heterogeneity which causes the

variance of service time. Better parameter estimation

can be obtained by analyzing historical data or

ergonomic experiments.

3. Process inaccuracies. Existing literature often pays no

attention to several important factors in service

processes. First, in several queueing models studying

order picking, capacity limitations, including order

picker capacity and cart capacity, are overlooked. But

this capacity limitation changes the pick process. The

second noticeable problem is order correlation, which

will affect the order pickers’ behavior and picking

process, and make an exponential or constant serve

time assumption unrealistic. Finally, most literature

overlooks the congestion problem, which has a signif-

icant effect on service processes; for example, in the

forward-reserve problem (see Van den Berg et al. [5]),

concurrent replenishments may cause congestion in the

order-picking process, and replenishments that have

not been carried out timely lead to delays in the pick

completion time. Gue et al. [24] are among the first to

consider the factor of congestion in order-picking

systems, and describe this process and its impacts more

accurately.

5.3 Departure process

The departure process is often modeled as a Poisson pro-

cess or even overlooked. However, the departure process is

directly associated with customer satisfaction. It is impor-

tant to enhance warehouse performance by improving the

departure process.

1. Model inaccuracies. Departure streams are possibly

dependent; for example, departures to the same

destination are highly correlated since one customer

may request multiple orders, or even multiple ship-

ments. Furthermore, irregularity uncertainties exist

during the whole process of departure; for example,

irregular traffic disruption and congestion will disturb

shipments and influence the supply chain, including

warehouse operations (see, e.g., Sankaran et al. [61]

and Wilson [21]). Shipping inaccuracies (e.g., wrong

product, wrong destination), which frequently occur in

practice, will disturb the departure process (e.g., by

changing the destination during the shipping process).

In that case, a Poisson process may be unsuitable to

model the departure process.

2. Parameter inaccuracies. Parameter inaccuracies exist

also in warehouse shipping. Departure parameter

estimation will benefit by explicitly considering trans-

portation distortion and shipping inaccuracy. It can be

done by analyzing historical data.

3. Process inaccuracies. Existing research often assumes

the departure process to be a Poisson process, which

Logist. Res. (2011) 3:191–205 201

123



may not accurately capture its essence. Batch delivery,

a typical departure process in practice, cannot be

described by a classical Poisson process. Furthermore,

customers may be not satisfied with a shipped product

and return it, a process typical for online retailers.

Therefore, a return flow may exist in the departure

process.

6 Future direction

In this section, by comparing and summarizing the review

of Sects. 2, 3, and 4, we present promising research

directions with a potential to be applied to warehouse

operations. We focus on recent warehousing phenomena

that have received little academic attention, like ware-

houses with an online front desk, self-storage warehouses,

and third-party warehouses, and stochastic research direc-

tions which can grasp the inherent decision essence and

variability structure in warehouse operations.

6.1 Application issues

By comparing Table 1, which presents existing warehouse

operations with uncertainties, and Table 4, which presents

warehouse operations with stochastic studies, we can

identify warehouse operations with uncertainties but not

yet modeled by stochastic methods.

6.1.1 Warehouse receiving management

We could not find papers explicitly employing stochastic

models for receiving processes (see Table 4). However,

receiving is an important issue for warehouse operations

(see Table 1) and several interesting research opportunities

exist here. The first opportunity is to study storage deci-

sions for returned products. Many online retailers face this

problem. To speed up return processes, it may be helpful to

not consolidate them with existing stock, but to store them

at separate locations. This will be at the expense of more

space needed, which in turn may also increase average

storage, retrieval, and travel time. The objective is to make

the proper decision to take this trade-off into account.

Furthermore, warehouse receiving operations (e.g., decen-

tralized receiving, prereceiving) in uncertain environments

call for further research by stochastic methods; for exam-

ple, Yano et al. [62] conduct a successful research on

decentralized receiving operations (receiving occurs not at

one or two clusters of receiving docks but at multiple

locations) by a mixed integer nonlinear optimization for-

mulation with the objective of minimizing total cost of

facilities and labor. Splitting receiving operations over

multiple areas can reduce congestion, but usually requires

more resources and reduces resource flexibility. It could be

interesting to consider this trade-off when product arrival

times and order patterns are random.

6.1.2 Warehouse revenue management

Comparing Fig. 2 and Table 4, we find that order accep-

tance and rejection have been overlooked by past literature.

A warehouse manager can reject an order to maximize the

revenue. For instance, Shurgard (see shurgard.eu in the EU,

and publicstorage.com in the USA), an international cor-

poration providing third-party warehouse services, uses

stochastic revenue management in allocating storage space

to clients. Customers that cannot be accommodated with a

space size of their choice can either be rejected or upgraded

to a larger space. It is interesting to explore a new ware-

house design method to fit market segments and accom-

modate volatile demand in order to maximize revenue.

Another promising topic is to study how to improve the

revenue of self-storage warehouses by optimizing storage

scheduling decision, for a self-storage warehouse, facing a

set of reservations for homogeneous or heterogeneous

storage units over a certain time horizon with revenue

rewards. The warehouse operation manager has to decide

which storage requests to accept and schedule them in

different storage units to maximize the revenue. These

warehouse operations can be modeled as scheduling inde-

pendent multiprocessor tasks with given start and end

times, with an objective to maximize total revenue.

6.1.3 Order-picking management

Although order picking has been researched quite exten-

sively, stochastic models provide an opportunity to par-

ticularly model the impact of variability on performance;

for example, in pick-and-pass order- picking systems,

performance is influenced by the buffer size (expressed in

number of customer totes) at the picking stations. In order

to estimate this effect use can be made of (approximate)

analysis of queuing networks with blocking. These meth-

ods may also provide insight not only in mean performance

(throughput, station utilization, lead time) but also in var-

iability of lead time, which is important if the orders have

to meet fixed due times for truck departure.

6.1.4 Warehouse shipping management

Only few papers deal with outbound material flows (e.g.

Yu and Egbelu [63]), mainly in a deterministic environ-

ment. Shipping operations are often overlooked. Frazelle

[2] argues that while it is helpful for increasing logistic

efficiencies, design and selection of shipping containers
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(including cartons, totes, pallets, trailers, ocean containers,

rail cars, and air containers) throughout the entire supply

chain is ‘‘one of most neglected opportunities’’. Never-

theless, many important shipping problems exist; for

example, how to allocate products to be shipped to dif-

ferent shipping docks. With the increase of innovative

warehouse shipping operations like automated pallet

loading, automated outbound weight checking, advanced

shipping notice preparation, dock assignment optimization

(see Frazelle [2]), and the increase of uncertainties from

these operations, it could be an interesting topic to explore

shipping operations by stochastic methods.

6.1.5 Real-time response systems

Real-time response constitutes one of most vibrant ware-

house research fields. To shorten response time (from order

notification to the shipping to customers, see Fig. 2), new

techniques have been introduced, such as online picking

(using, for example, pick-by-voice), RFID systems, and

fluid shipments (for more information on these techniques,

see De Koster [3]). In a dynamic environment, decision-

makers have insufficient time to collect information, and

therefore, the negative effect of uncertainties is larger.

Deterministic models cannot capture the inherent uncer-

tainty in these systems. Stochastic models might be used to

model these systems, to measure the performance of real-

time order processing in a stochastic environment, and to

optimize these systems.

6.2 Methodology issues

By comparing stochastic methods (e.g., see Yao [64]) with

currently used stochastic methods in warehouse operations

(see Tables 2, 3), and considering current developments in

warehousing practice, we can identify promising method-

ological research directions.

6.2.1 Stochastic networks applications

Queueing networks have been applied in warehouse

research to some extent (e.g., Gong and De Koster [1],

Meng and Heragu [1, 65]). However, more general sto-

chastic networks, one of the main recent exploration

directions in stochastic research [64], have appeared to be

promising in the operations and manufacturing areas, and

can be explored further in warehousing. For instance, sto-

chastic fluid models can be used to represent customers in a

service facility, or jobs on the work floor [66]. Stochastic

networks are potential tools to handle tough warehouse

problems like large order flows in multiple work stations,

multi-stage warehouse processes, and dynamic scheduling

problems.

6.2.2 Stochastic programming applications

From our literature review, one of the most obvious blanks

of stochastic methodology in warehousing research is sto-

chastic programming (for an introduction, see Birge and

Louveaux [67]). We could not find an application of this

important stochastic analytical method in warehouse

research (for an introduction to this research stream, see

stoprog.net). However, it benefits warehouse optimization

problems; for example, many papers (e.g., Van den Berg

et al. [5], Karasawa et al. [6]) employ integer programming

applications in warehousing since warehouse managers

face many integer decision variables like batch sizes and

the number of zones to use. But due to risks and uncer-

tainties in these warehousing decisions (see Table 1), sto-

chastic integer models are closer to practice. While

deterministic models only consider the first moment of

measurements (e.g., the objective) and can cause signifi-

cant errors, stochastic models can research higher moments

of measurements and capture more abundant information.

Recently, polynomial time algorithms for stochastic integer

programming problems have seen increasing research

attention [68]. They might be used for various problems,

including product assignment, storage space allocation, the

optimal batch size, due time realization, and optimal zone

problems.

6.2.3 Stochastic combinatorial problems

Stochastic combinatorial optimization is a highly prom-

ising method in warehouse research, especially the sto-

chastic traveling salesman and stochastic knapsack

problems. The application of stochastic traveling salesman

models has constituted a main foundation in the logistics

field [69–71] and can be applied to the internal picking

routing problem in warehouses. Another promising

method is the stochastic knapsack model (see [72, 73]),

which can be applied to the warehouse storage space

allocation problem. Furthermore, Kleywegt and Papa-

stavrou [74] and Kleywegt and Papastavrou [75] explore

dynamic and stochastic knapsack problems. These meth-

ods may be applied to allocate warehouse storage space in

static and dynamic environments.

6.2.4 Robust optimization

An alternative, albeit more pessimistic, approach to model

uncertainties in objectives and constraints and model

parameters in general, is robust optimization. This

approach aims at minimizing the worst-case effects and is

particularly appropriate if stochastic distributions are just

unknown (see Ben-Tal and Arkadi Nemirovski [76]).

Robust optimization can be applied to many warehousing
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problems, like storage slotting for unknown demand,

allocation of trucks to dock doors for unknown arrival

times, and order-picking system design for unknown

demand.

Stochastic researches could also shed light on other

questions like the optimization of dynamic storage and

putaway systems in a stochastic environment, the optimal

zone problem by using stochastic integer programming,

and the optimal batch size problems by infinitesimal per-

turbation analysis techniques.

7 Concluding remarks

In this paper, we present a literature review on stochastic

modeling and analysis of warehouse operations. We iden-

tify strategic, tactical, and operational uncertainty sources,

and systematically explore uncertainties of arrival, service,

and departure processes in a warehouse. These uncertain-

ties explain why researchers might resort to stochastic

rather than deterministic models in some uncertain

environments.

In the past, deterministic models have achieved suc-

cessful applications in warehouse research. Researchers

may be inclined to think stochastic methods are limited to

classical probability models. However, we find not only a

substantial number of stochastic applications, but also a

great variation in methods. These improve our under-

standing on warehouse research.

Nevertheless, we find while stochastic models are

potentially efficient tools for warehouse research, the

application of stochastic methods in warehouse research

could be explored further. We identify several directions

highly relevant to practice and largely unexplored in

warehouse literature, including real-time response models,

warehouse revenue management, receiving management,

and shipping management which can be explored by

methods like stochastic programming, stochastic combi-

natorial modeling, and stochastic network modeling.

Although many problems have been solved in practice in a

heuristic fashion, there are still academic blanks, particu-

larly into optimal and robust approaches.
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