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Abstract Forwarding air freight cargo globally from the

shipper’s door to the door of the consignee is a complex

logistic process and involves freight handling by several

collaborating logistics companies. The door to door process

is currently standardized by the International Air Transport

Association with the industry initiative Cargo 2000. Many

individuals with their own perspectives along the logistic

chain decide how freight is transported and handled but

have only limited insights how their decisions influence

the follow-up decisions and the final on time delivery.

A central planning authority can not be realized due to the

heterogeneity of decision makers, the individual interests

of the logistics companies, and their global operations. We

argue that it is possible to overcome the deficient situation

of complex transportation chains like in the air cargo

industry by using optimization methods for decentralized

decision making. This paper proposes a dynamic pro-

gramming approach, which enables the decision makers in

the decentralized situation to align their decisions better

with the decisions of the involved partners. The approach

guarantees that sensitive information of the logistics com-

panies is kept local and only the most necessary informa-

tion is shared along the logistic chain for a better planning.

The transportation is planned with regard to multiple

criteria, like the expected transportation costs and the

probability to deliver the freight on time. We further show

that our decentralized and multicriteria approach leads to

better results compared to a local strategy that only exploits

each decision maker’s own perspective. Our approach is

decentralized by nature and needs lean information

exchange. Furthermore, it is as strong as a centralized

approach that gathers all distributed information but

that authorizes the logistic service providers to decide

individually.

Keywords Decentralized decision making � Multicriteria

optimization � Logistic chains � Dynamic programming �
Air cargo freight

1 Introduction

1.1 Forwarding air cargo freight

To put it simply, the business of the air cargo industry is to

forward air freight from the shipper to the consignee.

However, in the logistics sense, forwarding air cargo is a

highly dynamic process and complex due to many factors:

the global transnational destinations; time shifts; language

barriers; many collaborating logistics companies like

airlines, freight forwarders, ground handling agents, and

trucking companies.

The International Air Transport Association is currently

forcing an industry initiative called Cargo 2000, which

aims at quality and efficiency improving standards for the

forwarding process of air freight. In the following, we call

this process the door to door (D2D) process because it

starts at the door of the shipper and ends at the door of the

consignee. It is operated via a freight carrier network

[19, pp. 4–9] that is defined by the involved logistics
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companies. The main locations of a D2D process are

illustrated in Fig. 1.

The D2D process is executed by many decision makers

of different logistics companies, which have their own

perspective of the overall logistic chain from door to door.

Each individual controls one chain link and has to decide

how air freight is handled and transported in his authority.

Collaboration enables them to operate on a global market

and contracted service agreements guarantee that the

business is profitable for all of them.

However, besides the agreements, most of the decision

makers have only limited insights how their decisions

influence the decisions of follow-up logistic partners. How

their decisions influence the overall performance of the

freight forwarding, whether goods are delivered on time

and as initially requested, is hardly to predict. Nowadays

there is no information technology (IT) infrastructure that

entirely supports planning and execution of air freight

forwarding from door to door. Consequently, the decision

makers coordinate their local planning only loosely via

telephone, fax, or email.

1.2 Reasons for a decentral planning concept

Decision support for planning transportation and handling

options has great potential to improve air freight forward-

ing in the D2D process. However, we claim that a central

planning authority for the air cargo D2D process can not be

realized due to several reasons:

1. The planning has to be done across organizational

boundaries. Often the collaborating companies along

the D2D chain have only a loose relationship, some-

times established ad hoc for a single transport. Their IT

systems span a wide spectrum and are typically not

integrated. Only lean interfaces providing a small

amount of standardized information seem realistic.

2. It is hard to imagine how a central planning authority

for the D2D operations could be established. It would

have to be international by nature; it has to integrate

world-wide operating logistics companies and regional

forwarders, together with a multitude of local handling

agents in many countries. It would have to access data

relevant for planning from all these companies.

Furthermore, it must be authorized to impose an overall

plan with executable operations on all companies.

3. The planning process has to address the interest of the

collaborating companies to keep a large part of

planning relevant data internal, most notably, the cost

structures. Even if some information, e.g., for flights,

are available in public, most collaborating companies

want to maintain sensitive data, e.g., costs, transpor-

tation times, and the reliability of their fleet, only in

their private IT environment. A central planning

authority that must have access to such internal data

during plan computation would not be accepted.

From these considerations, it is clear that only a

decentralized planning concept can be realized for the

D2D process. Our approach advances from a completely

independent planning to a loosely coupled coordinated

planning and resembles other concepts of collaboration in

supply chains, like collaborative planning, forecasting, and

replenishment (CPFR).

1.3 Planning problems in D2D forwarding

When the customer requests forwarding of a single air

cargo freight, the decision maker responsible for the cus-

tomer contact promises that the freight is delivered at a

certain time. The milestone ‘‘proof of delivery’’ (POD) of

Cargo 2000 results from the pick-up time of the freight at

the shipper and the actual promised time that is needed to

deliver the freight to the consignee. The POD milestone

marks a delivery deadline to which we refer to as POD time

in the following.

Whether the decision maker can promise the requested

POD time results from an initial planning problem. Now-

adays, this problem is independently solved for each cus-

tomer request by using rough transportation times for the

freight carrier network. The times are unrealistically

assumed to be deterministic. The POD time results from

accumulating transportation times along a D2D chain

selected by the decision maker. Decision makers of the

D2D process also face an adaptive replanning problem

whenever delays occur. For the currently authorized deci-

sion maker, it is hard to decide under time pressure whether

a delay really endangers the POD time and how the sche-

dule has to be replanned. Often decisions are made based

on experience only or by suboptimal coordination with the

follow-up decision makers. In this paper, we address both

the initial and the adaptive planning problem of the D2D

Fig. 1 Door to door process with the following main locations from left to right: shipper; export warehouse; export hub; export ground handling

agent; import ground handling agent; import hub; import warehouse; consignee
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process and propose a decentralized approach that can be

used to solve both planning problems.

1.4 Literature review

Transportation planning problems for freight forwarding are

intensively studied in the literature. We review freight

transportation in general and discuss optimization problems

and solution approaches that are related to our problem.

Finally, we evaluate research that regards the differences of

central and decentral organization of transportation problems.

A good overview of transportation problems is given in

[8]. The authors of [11] discuss planning models for long-

haul operations of post and express freight. However, the

proposed central decision support is designed for a single

logistics company that is responsible for the entire for-

warding process. In [14], a planning approach for landside

forwarding less-than-truckload shipments is proposed that

integrates hired subcontractors besides the trucking com-

pany’s fleet. Research for air cargo has mainly focused on

air cargo assignment to capacities of the airlines. In [3], a

mathematical programming approach to revenue manage-

ment in cargo airlines is studied. Optimization models for

air container and cargo loading problems in freight for-

warding are proposed in [22]. Both a deterministic and a

stochastic problem under uncertainty are solved by means

of mixed integer programming, stochastic and robust

optimization. However, the paper only discusses the rent-

ing and loading of the freight of the airlines and ignores the

forwarding from the door of the shipper to the carrier as

well as the forwarding after the flight to the door of the

consignee. In [5], a multiobjective dynamic programming

approach for intermodal transport planning is proposed but

the approach disregards uncertainty and is not proposed for

a decentralized setup.

Planning the transportation of air cargo freight is

strongly related to multicriteria shortest path problems

(MSPP). MSPPs are solved for example with labeling

algorithms and dynamic programming [9, 13, 18] or with

Markov decision processes [21]. A comparison for some of

the solution methods is given in [17, 20]. The authors of [7]

propose an interactive approach for bicriteria shortest path

problems that uses a k-shortest path procedure discussed in

[2]. Most methods for MSPP are designed for central

planning and it is often not straight forward to apply them

in a decentralized setup. In [1], a decentralized algorithm is

proposed that finds shortest paths in dynamic networks.

However, this approach does not address stochastic edge

lengths and time-dependent availability of edges to model

delays and missings of follow-up transports. Stochastic

shortest path problems are also widely studied [4, 15].

However, research on stochastic problems that also con-

siders multiple criteria is rare [16].

In [12], a paradigm change in logistics from central

control and planning toward decentralized and autonomous

perspectives and its implications for decision making are

studied. In [10], different decision making structures for

logistic systems are discussed: hierarchy, heterarchy,

responsible autonomy, and anarchy. In order to meet the

requirements of the D2D process, a decentralized approach

for decision support must be addressed that delegates

control in heterarchic and hierarchic structures, i.e., het-

erarchic local planning and hierarchic global planning.

To our best knowledge, no existing approach in the

literature simultaneously addresses multicriteria decen-

tralized transportation planning under uncertainty with

fixed timetables for the start times of the transports, a setup

we face in forwarding air cargo freight.

1.5 Contribution of this work

We argue that it is possible to overcome the deficient sit-

uation of complex transportation chains like in the air cargo

industry by using optimization methods for decentralized

decision making. We propose a dynamic programming

approach that enables the decision makers in the decen-

tralized situation to make decisions better aligned with

decisions from others. The approach guarantees that sen-

sitive information of the logistics companies are kept local

and only the most necessary information is shared along

the logistic chain for a better planning. The transportation

is planned with regard to uncertainty and multiple criteria,

like the expected transportation costs and the probability to

deliver the freight in the desired POD. Our approach solves

both the initial and adaptive planning problem of the D2D

forwarding process and provides the decision makers an

evaluation of their transport options with respect to the

optimization criteria.

We further show that our decentralized and multicriteria

approach leads to better results compared to a local strategy

that only exploits each decision maker’s own perspective.

We prove that our algorithm has a polynomial runtime,

show that it is decentralized by nature and needs lean

information exchange without sharing sensitive data.

Through its concept, it is as strong as a centralized

approach that gathers all distributed information but that

still authorizes the logistic service providers to decide

individually. Hence, it is not necessary to maintain dis-

tributed information at a central instance.

1.6 Outline of the paper

In Sect. 2, we introduce the planning model our algorithms

work on. In Sect. 3, we introduce the multicriteria dynamic

program that is solved in the decentralized D2D setup.

We compare this algorithm to a local strategy heuristic.
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We evaluate the algorithms in Sect. 4. In the Sect. 4.1, we

present a theoretical analysis. Section 4.2 shows several

empirical studies based on simulations of the D2D process

where transportation is initially planned and in case of

delays adaptively replanned. We conclude the paper in

Sect. 5.

2 Planning model

Our decentralized decision support is designed for a deci-

sion maker who has to plan the forwarding of a single air

freight consignment. It supports him in two situations:

when he has to assign an initial forwarding plan for the air

freight; and when he has to reschedule the forwarding due

to severe disruptions during execution of the D2D process.

Our methods work for both the initial planning and the

replanning. Without loss of generality, we mainly focus on

the initial planning situation because the replanning can be

viewed as initial planning for the decision maker who is

currently in control of the forwarding. Interdependencies

between cargo are disregarded in the global planning but

we assume that they are locally regarded in the transport

planning of each decision maker. We keep the global

planning problem simple in this way but locally regard the

effects of interdependencies.

We consider a planning situation in which the air freight

must be picked up at the shipper at time a0 and whose

POD is at time tPOD. Our approach relies on a stochastic

model of the planning situation that regards delays in

transportation. For simplicity’s sake, we consider the

transport steps of the forwarding as being binomial dis-

tributed: a transport is on time with a probability p 2 0; 1½ �
and delayed with probability 1 - p. Our approach can

straightforwardly be extended to more detailed probability

distributions without increasing the worst-case runtime

complexity.

We assume an acyclic transport network G(L, E) to send

air freight from a shipper to a consignee. The nodes L of

the network are possible locations of the D2D chain. The

edges E represent transport relations that connect the

locations and that have several transport options attached to

forward the air freight. Without loss of generality, we

assume that there is at least one path from the shipper to

every location in the transport network and that there is at

least one path from every location to the consignee. Hence,

we assume that G(L, E) is a weakly connected graph.

These assumptions are no restrictions since locations that

are not on a path from the shipper and that are not on a path

to the consignee cannot be used within the D2D process

chain. An example for a transport network topology is

given in Fig. 2 to which Table 1 associates possible D2D

locations.

In such a given transport network with n locations, the

sink location Ln represents the consignee and the source

location L1 represents the shipper. We formalize the con-

nections between the locations as follows:1 a function eþ :

L! 2L returns all direct predecessor locations that forward

to a location and a function e� : L! 2L gives all direct

successor locations of a location. When the context is clear,

we simply use the location indices in these functions, i.e.,

we use functions eþ; e� : f1; . . .; ng ! 2f1;...;ng.
Furthermore, we have transport options for all transport

relations in E: The kth transport option Tij
k from location Li

to location Lj is described by a starting time sij
k , a regular

arrival time aij
k and a delayed arrival time lij

k at the next

location Lj. The binomial distributed lateness probability is

expressed as follows: The on time arrival time aij
k is real-

ized with a probability pij
k whereas a delayed arrival time

lij
k is realized with probability 1 - pij

k . The costs cij
k for the

transport Tij
k are known for each option and are assumed to

be independent of delays.

Our decentralized decision support provides the current

decision maker in the D2D process an evaluation of his

transport options that reflects the influence of his decisions

on the follow-up forwarding operations. The decision

maker at location Li of the D2D chain who receives an air

freight item at time t, gets an evaluation of his transport

options with respect to the following two criteria:

1. The criterion C(i, t) describes the expected costs for

the remaining transport chain from location Li to final

destination Ln,

2. The criterion P(i, t) describes the probability to

achieve the POD at time tPOD by taking possible

delays into account.

Fig. 2 Example for a transport network topology

Table 1 Possible D2D loca-

tions for the nodes of the trans-

port network of Fig. 2

Node D2D location

1 Shipper

2 Export warehouse

3 Export hub 1

4 Export hub 2

5 Import hub

6 Import warehouse

7 Consignee

1 The notation 2L means the power set of the set L.

124 Logist. Res. (2011) 3:121–132

123



The decision maker of each location Li follows a busi-

ness policy ai that represents a weight between the criteria

for the expected costs and the POD probability. A value of

one yields a business policy in which the decision maker

only wants to maximize the probability of a POD whereas a

value of zero represents his intention to minimize expected

costs. The model could be easily extended to more than

these two criteria.

The air freight forwarding is successively planned with

respect to the expected costs C(i, t) and the overall POD

probability P(i, t) by solving a bicriteria stochastic opti-

mization problem for the current location Li at time t with

respect to the remaining logistic chain. The notation

described above is summarized in Table 2.

3 Methods

In this section, we introduce two methods to solve our

initial and adaptive planning problems for the D2D pro-

cess. First, we propose a dynamic programming approach

and then we describe a local strategy heuristic.

3.1 Decentralized dynamic programming

Dynamic programming is a method for efficiently solving a

broad range of search and optimization problems that

exhibit the following two characteristics:

1. The problem can be broken down into easy subprob-

lems, which are reused multiple times.

2. The global optimal solution can be constructed from

locally optimal solutions to the subproblems.

These characteristics enable us to approach the forwarding

problem in a decentralized way. The local planning sub-

problem is solved at each location and the global solution is

constructed by combining the local solutions sharing only the

expected costs and the POD probability between the locations.

A dynamic program can be solved by recursion. In the

following, we describe the main steps of the recursive

algorithm and use an additional notation for the set of

possible arrival times at a location Lj:

Aj :¼ ak
ijj 8Li 2 eþðLjÞ; k¼ 1; . . .;mij

n o

[ lkijj 8Li 2 eþðLjÞ; k¼ 1; . . .;mij

n o
; j¼ 2; . . .;n;

A1 :¼ fa0g:

3.1.1 Initialization

Our algorithm initially calculates the expected costs C(n, t)

and the POD probability P(n, t) of the consignee location

Ln for all t 2 An as follows:

Cðn; tÞ :¼ 0;

Pðn; tÞ :¼
1; if t� tPOD;

0; else:

�

3.1.2 Recursion

We assume that the expected costs C(j, t) and the POD

probability P(j, t) were calculated in the previous recursion

Table 2 Summary of the

notation used in this paper
a0 2 R

þ
0

Time of pick-up at L1

tPOD 2 R
þ
0

POD time at the consignee

n 2 N n f0g Number of locations of the transport network

Li ith location of the transport network, i 2 f1; . . .; ng
L1 Location of the shipper

Ln Location of the consignee

mij 2 N n f0g Number of transport options for forwarding from location Li to location Lj

e?: L! 2L Function e?(Li) returns all direct predecessor locations of location Li

e-: L! 2L Function e-(Li) returns all direct successor locations of location Li

Tij
k kth transport from Li to Lj, k 2 f1; . . .;mijg; i 2 f1; . . .; n� 1g; j 2 f2; . . .; ng

sij
k 2 R

þ
0

Start time of Tij
k at Li

aij
k 2 R

þ
0

On time arrival time of Tij
k at Lj

lij
k 2 R

þ
0

Delayed arrival time of Tij
k at Lj

pij
k 2 0; 1½ � Probability of on time arrival of Tij

k

cij
k 2 R

þ
0

Cost of Tij
k

C(i, t) Expected costs for transportation from Li to Ln starting at time t

P(i, t) Probability for delivery at Ln before time tPOD by starting from Li at time t

ai 2 0; 1½ � Business policy

ai = 1: maximize POD probability

ai = 0: minimize expected costs
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steps for all times t 2 Aj and for all successor locations

Lj 2 e�ðLiÞ of location Li. Then we can calculate C(i, t)

and P(i, t) for all times t 2 Ai as follows:

• For all k 2 f1; . . .;mijg where the start times sij
k are

earlier then the current time t, i.e., sij
k \ t, we set the

expected costs and the POD probability as follows:

Cði; tÞ ¼ 0; Pði; tÞ ¼ 0:

• Let Kði; j; tÞ :¼ fkjk 2 f1; . . .;mijg ^ sk
ij� tg be indices

of the feasible transport options from Li to Lj at time t.

Furthermore, let sij :¼ mink2f1;...;mijg sk
ij be the earliest

start time of a transport option from Li to Lj. For the

indices k 2 Kði; j; tÞ we calculate the expected costs and

the POD probability as follows:

eCði; j; t; kÞ :¼ ck
ij þ pk

ijC j; ak
ij

� �
þ 1� pk

ij

� �
C j; lkij

� �
;

ePði; j; t; kÞ :¼ pk
ijP j; ak

ij

� �
þ 1� pk

ij

� �
P j; lkij

� �
;

C :¼
X

j2e�ðiÞ

X
k2Kði;j;sijÞ

eCði; j; t; kÞ;

P :¼
X

j2e�ðiÞ

X
k2Kði;j;sijÞ

ePði; j; t; kÞ:

We define the indices j� 2 e�ðiÞ and k� 2 Kði; j�; tÞ as

follows:

j�; k�ð Þ : ¼ arg min
j2e�ðiÞ; k2Kði;j;tÞ

ð1� aiÞ
eCði; j; t; kÞ

C

� ai

ePði; j; t; kÞ
P

:

The index j* yields the locally optimal transport

connection and the index k* the locally optimal

transport option Tk�
ij� from Li to Lj� according to the

business policy ai. Finally, the expected costs and the

POD probability for Li at the time t are as follows:

Cði; tÞ :¼ eCði; j�; t; k�Þ; Pði; tÞ :¼ ePði; j�; t; k�Þ:

3.1.3 Termination

The recursion terminates when the expected costs C(1,a0)

and the POD probability P(1,a0) for the first location L1 are

calculated.

3.1.4 Algorithm

The dynamic program is summarized in Algorithm 1 from

a centralistic point of view.

The algorithm works in an analogous way in the

decentralized setup, where the business policies and the

data of the transport options are not shared between the

involved locations. The locations are triggered in the same

order as in Algorithm 1 but the triggering is obtained

implicitly and not controlled with a central queue. The

decentralized algorithm at each location buffers the plan-

ning results of the follow-up locations. When all successors

have sent their results, which can be deduced with help of

lines 3–5 and lines 17–21 of Algorithm 1, it calculates

C(i, t) and P(i, t) (line 16 of Algorithm 1) with the locally

known business policy ai. The calculated C(i, t) and P(i, t)

for all relevant times t are sent to the decentralized algo-

rithms of the predecessor locations e?(Li). The last plan-

ning step is done at the first location L1, which is currently

in execution and can evaluate different expected costs

C(1,a0) and corresponding POD probabilities P(1,a0) by

varying its own business policy a1.

3.2 Local strategy heuristic

In this subsection, we propose a local strategy heuristic that

only regards the point of view of the current decision

maker with his own business policy.

Algorithm 1 Pseudocode of the multicriteria dynamic program

Require: business policies ai of locations Li 2 L

1: initialize Ai for all locations Li 2 L

2: initialize C(n, t) and P(n, t) as described in Sect. 3.1.1

3: for all Li 2 L do

4: nrSucc½Li�  je�ðLiÞj
5: end for

6: // initialize queue Q of processable locations (all successors

processed)

7: for all Li 2 eþ Lnð Þ do

8: if |e-(Li)| = 1 then

9: Q.enque(Li)

10: else

11: nrSucc½Li�  nrSucc[Li]-1

12: end if

13: end for

14: while Q is not empty do

15: Li  Q:deque()

16: calculate C(i, t) and P(i, t) for all t 2 Ai (recursion step

described in Sect. 3.1.2)

17: for all Lj 2 eþðLiÞ do

18: nrSucc[Lj]  nrSucc[Lj]-1

19: if nrSucc Lj

� �
¼ 0 then

20: Q.enque(Lj)

21: end if

22: end for

23: end while

24: return C(1, a0), P(1, a0), j* and k* for all Li and all t 2 Ai
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When the air freight item is at location Li at time t, the

local strategy heuristic evaluates all transport options Tij
k of

Li whose start time is no earlier than the current time, i.e.,

sij
k C t. Let Kði; j; tÞ :¼ kjk 2 f1; . . .;mijg ^ sk

ij� t
n o

be

again the indices of the feasible transport options from Li to

Lj at time t and sij :¼ mink2f1;...;mijg sk
ij be the earliest start

time of a transport option from Li to Lj.

The evaluation includes the expected arrival time of the

feasible transport options as well as the costs. The expected

arrival time Ek(j) of a transport option Tij
k at the next

location Lj is calculated as follows:

EkðjÞ :¼ pk
ija

k
ij þ 1� pk

ij

� �
lk
ij

The costs cij
k are constant independent of the on time

probability.

We normalize the expected arrival time and the costs of

a transport option Tk̂
ij where k̂ 2 Kði; j; tÞ as follows:

f ðEk̂ðjÞÞ :¼
Ek̂ðjÞ �minj2e�ðiÞ; k2Kði;j;sijÞ EkðjÞ

maxj2e�ðiÞ; k2Kði;j;sijÞ EkðjÞ �minj2e�ðiÞ; k2Kði;j;sijÞ EkðjÞ
ð1Þ

f ck̂
ij

� �
:¼

ck̂
ij �minj2e�ðiÞ; k2Kði;j;sijÞ ck

ij

maxj2e�ðiÞ; k2Kði;j;sijÞ c
k
ij �minj2e�ðiÞ; k2Kði;j;sijÞ ck

ij

ð2Þ

We define the indices j� 2 e�ðiÞ and k� 2 K i; j�; tð Þ as

follows:

j�; k�ð Þ :¼ arg min
j2e�ðiÞ; k2Kði;j;tÞ

ð1� aiÞ f ck
ij

� �
þ aif ðEkðjÞÞ:

The index j* gives us the transport connection for the index

k* of the best transport option Tij� from Li to Lj according to

the business policy ai of the decision maker and his local

view on the transport network.

4 Evaluation

Now, we evaluate the methods proposed in the previous

section with respect to theoretical and empirical aspects.

First we analyze the algorithms theoretically and then we

present studies evaluating the algorithms empirically.

4.1 Theoretical analysis

First, we show that the dynamic program is suitable for

decentralized planning and decision making. Next, we

prove that our multicriteria dynamic program has a poly-

nomial worst-case runtime complexity. Finally, we observe

differences between the local strategy and our dynamic

program.

4.1.1 Lean information exchange for decentralized

planning

Our dynamic programming approach exploits information

of the entire transport network but one important property

of it is that it must not exchange all local information like

• the business policies aj,

• the transport data Tjx
k , ajx

k , ljx
k , pjx

k ,

• and their cost structure cjx
k .

The only information that needs to be propagated

backwards in the network are possible times to process

the freight, i.e.,

t 2 sk
jx j k ¼ 1; . . .;mjx; 8Lx 2 eþðLjÞ

n o
;

the corresponding expected costs C(j, t) and the POD

probability P(j, t) for further forwarding it to the consignee.

Each location inserts its local information in the planning

and implicitly propagates it backwards in the network.

Figure 3 illustrates what data have to be exchanged between

locations and what data are sealed locally.

The risk that sensitive information can be reengineered

by means of executing the algorithm multiple times with

slightly changed input parameters is low because the

exchanged information is aggregated with information of

several follow-up logistic service providers. It is hard to

deduce individual data of decision makers just with the

help of the aggregated criteria. Only the direct predecessor

of the last decision maker can potentially gain insights if he

knows that he directly precedes the last decision maker.

However, such an attack is unlikely, rather artificial and

can be easily prevented by assuring decision makers do not

know whether they are direct predecessors of the last

decision maker.

Our dynamic program could also be executed by a

central authority who knows all information. However, we

state that this algorithm also works perfectly in the

described decentralized setup without the need to maintain

all relevant information from a central instance.

Fig. 3 Illustration that shows which data need to be exchange and

what data are sealed locally by our planning approach
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4.1.2 Worst-case runtime complexity of our dynamic

program

Theorem 1 The worst-case runtime complexity of Algo-

rithm 1 is polynomial in the number of transport connec-

tions and number of transport options, i.e., it runs in

O
X

Li2LnfLng

X
j2e�ðiÞ

mij

0
@

1
A:

Proof We first show that each location Li 2 L n fLng is

processed exactly once. Our algorithm executes a breadth-

first search for which each reachable node is enqueued and

dequed only once [6, p. 531]. We assumed a directed

acyclic transportation network where at least one path

exists from the shipper node to all other nodes and where at

least one path exists from all nodes to the consignee node.

Therefore, each location node is processed exactly once.

For each dequed location Li; i ¼ 2; . . .; n we have to

calculate the best transport option Tk�
ij� : This is achieved by

investigating all relations to the follow-up locations Lj 2
e�ðLiÞ and the associated transport options Tij

k . For the

relation between Li and Lj we have mij transport

options. Thus, we finally yield the runtime complexity

O
P

Li2LnfLng
P

j2e�ðiÞmij

� �
: h

4.1.3 Comparison of algorithms

Now, we compare the two algorithms of the previous Sect.

3. The advantage of the local strategy heuristic is that no

information exchange between the locations is necessary.

However, the lack of information can lead to decisions that

are locally optimal but which are suboptimal in the overall

process chain. The following observation gives an example

for a simple chain as transport network.

Observation 2 In the following we observe a simple

example where the local strategy heuristic that minimizes

the expected arrival time of air fright performs worse

compared to the dynamic programming approach. The

simple example consists of three locations of a chain as

transport network. The decision makers of the chain all try

to maximize the POD probability, i.e.

ai ¼ 1; i ¼ 1; 2; 3:

The freight can be picked up at a0 = 7 am and its POD is

at tPOD = 1 pm. The transport options of the transport

chain are shown in Table 3. We consider the planning

problem of the decision maker for the first transportation

step.

The local strategy algorithm uses the expected arrival

times

E1ð2Þ ¼ 0:9 � 8þ 0:1 � 20 ¼ 9:2

E2ð2Þ ¼ 0:5 � 8þ 0:5 � 12 ¼ 10

and proposes to use the transport option T1
12.

The dynamic programming approach propagates the

POD probabilities for all arrival times from the last

location to the first location:

ePð2; 3; 8; 1Þ ¼ p1
23P 3; a1

23

� �
þ 1� p1

23

� �
P 3; l123

� �

¼ 0:9 � 1þ 0:1 � 0 ¼ 0:9

ePð2; 3; 8; 2Þ ¼ p2
23P 3; a2

23

� �
þ 1� p2

23

� �
P 3; l223

� �

¼ 0:8 � 1þ 0:2 � 0 ¼ 0:8

ePð2; 3; 8; 3Þ ¼ p3
23P 3; a3

23

� �
þ 1� p3

23

� �
P 3; l323

� �

¼ 0:7 � 0þ 0:3 � 0 ¼ 0:0

Pð2; 8Þ ¼ max ePð2; 3; 8; 1Þ; ePð2; 3; 8; 2Þ;
� ePð2; 3; 8; 3Þ

�

¼ 0:9

Pð2; 12Þ ¼ max ePð2; 3; 12; 1Þ;
� ePð2; 3; 12; 2Þ; ePð2; 3; 12; 3Þ

�

¼ 0:8

ePð1; 2; 7; 1Þ ¼ 0:9 � 0:9þ 0:1 � 0:0 ¼ 0:81

ePð1; 2; 7; 2Þ ¼ 0:5 � 0:9þ 0:5 � 0:8 ¼ 0:85

The transport option T2
12 finally has the higher POD

probability of the two options of the decision maker in the

first location. Therefore, the dynamic programming

approach proposes to use T2
12.

4.2 Empirical studies

In this subsection, we evaluate the local strategy heuristic

and the dynamic programming algorithm by empirical

studies. First, we compare the two algorithms and then we

present an example of how the dynamic program can be

applied in planning situations.

4.2.1 Comparison of algorithms

We first simulate an example of a D2D process on a

transport network as it is illustrated in Fig. 2 and transport

options given in Table 4. The transport network is dis-

cussed with experts of the air cargo industry and represents

Table 3 Transport options of the simple transport chain

Tij
k sij

k aij
k lij

k pij
k

T12
1 7 8 20 0.9

T12
2 7 8 12 0.5

T23
1 8 13 14 0.9

T23
2 12 13 14 0.8

T23
3 20 21 22 0.7
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a small but realistic and typical network structure: for

example the nodes 3 and 4 represent alternative export

hubs; the transport connections from the shipper node 1

directly to the export hubs 3 and 4 and the connection from

the import hub node 5 to the consignee node 7 represent

transport options that skip the warehouses 2 and 6. The data

of the transport options are fictive but where designed to

model a realistic situation. In the given example, an air

freight item should be picked up at the shipper location L1

at a0 = 6 am and should be delivered at the consignee

location L7 at tPOD = 5 pm.

We simulate the D2D process via the transport network

in two scenarios:

1. We choose 21 equal business policies for the locations

of the transport network, i.e.,

aðqÞ ¼ q

20
; ai ¼ aðqÞ; 8Li 2 L; q ¼ 0; 1; . . .; 20:

Equal business policies can be assumed for D2D pro-

cesses where all decision makers have equal prefer-

ences regarding their decision criteria.

2. We uniformly choose 20 independent business policies

for all locations, i.e.,

aiðqÞ ¼ randð0; 1Þ; 8Li 2 L; q ¼ 0; 1; . . .; 19:

Independent business policies can be assumed when each

decision maker has different preferences, e.g., when they

belong to autonomous logistics companies.

For all business policy setups with both algorithms, the

forwarding of the air freight is simulated 1,000 times by

uniformly choosing on time arrivals for the transport

options.

The mean l and standard deviation r for the realized

overall costs and the POD are evaluated for all simulated

forwardings. The rounded results for the equal business

policies are given in Table 5. Table 6 shows the results for

uniformly chosen independent business policies.

For evaluating the numerical results, we utilize a dom-

inance relation between the outcomes. Whenever Algo-

rithm A dominates the mean results of Algorithm B

(l-dominates), i.e.,

lAðcostÞ� lBðcostÞ ^ lAðPODÞ[ lBðPODÞð Þ
_ lAðcostÞ\lBðcostÞ ^ lAðPODÞ� lBðPODÞð Þ;

then the results are given in bold numbers in both tables.

Also, whenever Algorithm A dominates the standard

deviation results of Algorithm B (r-dominates), i.e.,

rAðcostÞ� rBðcostÞ ^ rAðPODÞ\rBðPODÞð Þ
_ rAðcostÞ\rBðcostÞ ^ rAðPODÞ� rBðPODÞð Þ;

then the results are given in bold numbers in both tables.

The cost and POD means of the experiments for the

equal business policies are also plotted in Fig. 4 and the

means of the experiments for the randomly independent

business policies are plotted in Fig. 5.

The empirical study shows that the dynamic pro-

gram l-dominates the local strategy for 12 of the 41

business policy experiments whereas the local strategy

never l-dominates the dynamic program. Furthermore, for

those equal business policies where the dynamic program

does not l-dominate the local strategy, the local strategy

never achieves a POD mean above 50 percent whereas the

dynamic program achieves a POD mean of almost 100

percent for most of these business policies with comparable

cost means. The same can be observed for the independent

business policy experiments. It is also remarkable that even

for most of the randomly chosen business policy setups,

where the preferences of the decision makers are most

diverse, the outcoming POD means of the dynamic pro-

gram are almost 100 percent. This is a good result, because

it means that the algorithms plans robust and coordinates

the decision makers.

Now, we observe the expected cost means exclusively.

For equal business policies, the mean of the dynamic

program is better for 8 setups whereas the mean of the local

strategy is better for 10 setups. For randomly chosen

Table 4 Transport options for the transport network of Fig. 2

Tij
k sij

k aij
k lij

k pij
k cij

k

T12
1 6 7 8 0.95 100

T12
2 6 7.5 8.5 0.98 90

T12
3 7 8.5 9 0.90 80

T13
1 7 10 11.5 0.92 250

T14
1 7 10.5 11.25 0.99 270

T23
1 7 10 11 0.95 100

T23
2 7.5 11 12 0.98 80

T23
3 9 12 12.5 0.90 70

T24
1 7 10 11 0.95 100

T24
2 7.5 11 12 0.96 65

T35
1 10 14 15 0.95 210

T35
2 11 14 15 0.90 200

T35
3 13 15 16 0.50 100

T45
1 10 14 15 0.95 210

T45
2 11 14 15 0.90 200

T45
3 12 15 16 0.92 200

T56
1 14 15 16 0.90 200

T56
2 15 16 17 0.70 100

T56
3 19 20 21 0.45 90

T57
1 15 16.5 17.5 0.99 250

T67
1 15 16 17 0.90 200

T67
2 16 17 17.5 0.70 100

T67
3 21 21.5 22 0.45 90
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business policies, the mean of the dynamic program is

better for 5 setups whereas the mean of the local strategy is

better for 25 setups. We conclude that the local strategy

tends to support the expected costs criterion for randomly

chosen business policies.

We exclusively examine the POD means next. For equal

business policies, the mean of the dynamic program is

better for 17 setups whereas the mean of the local strategy

is better for only one setup. For randomly chosen business

policies, the mean of the dynamic program is better for 18

setups whereas the mean of the local strategy is never

better. Therefore, we conclude that the dynamic program

strongly supports the POD probability criterion.

We also conclude from the standard deviation results

that the dynamic program is more robust for the planning

problem than the local strategy heuristic. The dynamic

program r-dominates the local strategy heuristic 27 times

whereas it is only 7 times the other way round. The

absolute values of the standard deviation are often signif-

icantly smaller for the dynamic program and even 13 times

equal to zero.

4.2.2 Application to planning situation

Finally, we present results of how the planning algorithm

supports decision making in forwarding air freight. We take

the previous evaluation setup, its transport network of

Fig. 2, the transport options of Table 4 and the air freight

item that should be picked up at the shipper location L1 at

a0 = 6 am and should be delivered at the consignee loca-

tion L7 at tPOD = 5 pm. The decision maker for the trans-

port from the location L1 wants to coordinate himself with

the possible follow-up decision makers by using the dis-

tributed planning algorithm. We assume that all follow-up

decision makers follow a business policy of ai ¼ 0:5; i ¼
2; . . .; n: The first decision maker however does not fix his

policy in advance. Instead he wants to compare different

nondominated transport options. Therefore, we start the

dynamic program for different business policies a1 ¼
0:1q; q ¼ 0; 1; . . .; 10 of the first decision maker. For each

of the eleven resulting business policy setups of the decision

maker, we start the dynamic program and gain an evaluation

of the transport options of the first decision maker. Table 7

and Fig. 6 illustrate the resulting three nondominated

transport options for the first decision maker.

The decision maker who has to decide the first trans-

portation step from the shipper is now able to compare his

nondominated transport options that correspond to different

business policies he can choose. Each evaluated transport

option is aligned with the entire D2D transport network. In

this way, the decision maker has a feedback of possible

follow-up decisions. For getting these results with the

Table 5 Mean and standard deviation for the realized costs and the POD for the two algorithms simulated with 21 equal business policies

q a(q) Dynamic program Local strategy Dynamic program Local strategy

l(cost) l(POD) l(cost) l(POD) r(cost) r(POD) r(cost) r(POD)

0 0 430 0 430 0 0 0 0 0

1 0.05 430 0 430 0 0 0 0 0

2 0.1 439 26 435 0 9 44 5 0

3 0.15 439 26 439 26 9 44 9 44

4 0.2 439 26 551 49 9 44 12 50

5 0.25 467 52 551 49 35 50 12 50

6 0.3 604 100 558 48 14 7 20 50

7 0.35 604 100 558 48 14 7 20 50

8 0.4 604 100 558 48 14 7 20 50

9 0.45 604 100 558 48 14 7 20 50

10 0.5 604 100 558 48 14 7 20 50

11 0.55 604 100 558 48 14 7 20 50

12 0.6 604 100 558 48 14 7 20 50

13 0.65 604 100 558 48 14 7 20 50

14 0.7 604 100 592 48 14 7 27 50

15 0.75 604 100 697 67 14 7 51 47

16 0.8 604 100 697 67 14 7 51 47

17 0.85 604 100 780 93 14 7 78 26

18 0.9 604 100 780 93 14 7 78 26

19 0.95 720 100 780 93 0 0 78 26

20 1 720 100 780 93 0 0 78 26
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dynamic program he does not have to share all detailed

information with a central planning instance and maintains

his authority.

5 Conclusions

In this paper, we presented initial results of providing

decentralized decision support for forwarding air cargo

freight along the door to door process chain. We proposed a

dynamic programming approach that enables the decision

makers to coordinate transportation with the follow-up

decision makers in the process chain. Our algorithm needs

Table 6 Mean and standard deviation for the realized costs and the

POD for the two algorithms simulated with 20 randomly independent

business policies

q Dynamic

program

Local strategy Dynamic

program

Local strategy

l(cost) l(POD) l(cost) l(POD) r(cost) r(POD) r(cost) r(POD)

0 611 93 601 48 31 25 29 50

1 604 100 488 26 14 7 11 44

2 720 100 558 48 0 0 20 50

3 604 100 488 26 14 7 11 44

4 720 100 558 48 0 0 20 50

5 720 100 646 66 0 0 49 47

6 467 52 439 26 35 50 9 44

7 467 52 551 49 35 50 12 50

8 604 100 601 48 14 7 29 50

9 720 100 558 48 0 0 20 50

10 720 100 637 0 0 0 47 0

11 720 100 558 48 0 0 20 50

12 604 100 646 66 14 7 49 47

13 467 52 551 49 35 50 12 50

14 467 52 439 26 35 50 9 44

15 430 0 542 0 0 0 18 0

16 617 99 488 26 20 9 11 44

17 430 0 542 0 0 0 18 0

18 720 100 488 26 0 0 11 44

19 467 52 435 0 35 50 5 0

Fig. 4 Cost and POD means of the experiments for the 21 equal

business policies

Fig. 5 Cost and POD means of the experiments for the 20

independent business policies

Table 7 Expected costs and POD probability of the three nondomi-

nated transport options

Tij
k C(1,a0) P(1,a0)

T12
2 602 98

T12
3 465 50

T14
1 720 99

Fig. 6 Nondominated transport options for the first transportation

step from the shipper
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only lean information exchange that does not reveal sen-

sitive data of the collaborating logistics companies. Each

participant can plan his decision locally and the algorithm

coordinates the local planning options of the participants.

Therefore, it can operate decentralized planning situations.

We also compared our approach to a local strategy algo-

rithm and conclude that the dynamic program is more

robust for planning in order to deliver on time.

In future, research we refine our decentralized decision

support approach: we will extend the approach for other

criteria that are important for the D2D process like a

Carbon dioxide footprint predictor of the transportation and

a utilization measure of the warehouses and hubs; we will

replace the binomial distribution of the lateness of the

transport options by more detailed probability distributions.

We will compare it to other planning algorithms, e.g., an

adapted multiobjective stochastic shortest path problem

solver or to a stochastic programming approach. We will

also test our approach on real world transport networks and

transport data in order to substantiate the practical rele-

vance of our work.
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