
ORIGINAL PAPER

Modeling production networks with discrete processes by means
of communities of autonomous units

Hans-Jörg Kreowski • Sabine Kuske •

Caroline von Totth

Received: 10 September 2010 / Accepted: 18 March 2011 / Published online: 19 April 2011

� Springer-Verlag 2011

Abstract Communities of autonomous units are devices

for the visual modeling of interactive logistic processes.

The framework is founded on rule-based graph transfor-

mation and allows specifying autonomous units in such a

way that they can run in parallel and make their decision

about future actions independently of each other. The

usefulness of the framework is demonstrated in this paper

by modeling a new variant of production networks with

discrete production processes. One of the main results

shows that the visual model is correct with respect to a

more traditional quantitative mathematical model.

Keywords Production networks � Autonomous units �
Discrete production processes � Stability � Graph

transformation

1 Introduction

Logistic systems and networks become more and more

dynamic and structurally complex due to the fast changes

in customers’ demands, the wide spectrum of employed

technologies, the growing globalization, and other such

factors. Logistic processes with central control are not

realistic and flexible enough to deal with this situation—in

particular, if parties with different interests are involved.

The use of interactive processes with decentralized and

autonomous control is more adequate and may solve the

problem, but can also cause new difficulties. How can

one guarantee that the autonomous processes cooperate

properly? How can interactive processes be described in a

suitable way? How can one analyze their behavior and

prove desired properties like conflict freeness, termination

in time, and reachability of goals? To answer these ques-

tions, formal modeling methods for cooperating autono-

mous processes are indispensable. In logistics, there are

various modeling methods like business process models,

UML, Petri nets, multi-agent systems, particle swarms and

systems of equations and inequalities. However, most of

them do not provide both: a formal framework to prove

properties on one hand and features to express decentral-

ization, interaction, cooperation, and autonomy on the

other hand. Logistic modeling of today often relies on

testing and simulation which allow to track down unwanted

behavior and to guarantee that a finite collection of

inputs works properly, but cannot make sure that desired

properties hold for the whole system and all its runs

(cf., e.g., [12]).

As an alternative approach, we offer communities

of autonomous units as devices for formal and visual

modeling of interacting logistic processes (cf. [10, 11, 13]).

In this paper, we demonstrate their usefulness by intro-

ducing and studying a new variant of production networks

where the usual mathematical models are accompanied by

specifications as communities of autonomous units.

Production networks are investigated in many variants

in logistics and control theory mainly with continuous

production processes (cf., e.g., [1–3, 6, 14–16]). A major

H.-J. Kreowski (&) � S. Kuske � C. von Totth

Department of Mathematics and Computer Science, University

of Bremen, P.O. Box 330 440, 28334 Bremen, Germany

e-mail: kreo@informatik.uni-bremen.de

S. Kuske

e-mail: kuske@informatik.uni-bremen.de

C. von Totth

e-mail: caro@informatik.uni-bremen.de

123

Logist. Res. (2011) 3:159–175

DOI 10.1007/s12159-011-0054-9

topic is the stability meaning that the quantities in a pro-

duction network do not grow beyond any bound. While

there are many applications for which the assumption of

continuous inflow, outflow, production, and distribution is

adequate, there are others for which a stepwise processing

is more realistic (e.g. if production and distribution are

done from time to time only).

In this paper, we model production networks with dis-

crete production processes in two ways. We start with a

quantitative mathematical model as it is quite common in

logistics. Based on the mathematical model, two results can

be proven that stress the basic properties of this kind of

production networks. The first result states that production

processes are free of loss because all quantities at all pro-

duction sites that are delivered or put in during the process

are stored or distributed or put out eventually. The second

result concerns deterministic production networks for

which we can provide a stability criterion. But this suffi-

cient condition applies only to particular production net-

works. Therefore, one may wonder how the other networks

run and work. For this purpose, we propose a second model

of production networks by means of communities of

autonomous units.

The modeling framework of communities of autono-

mous units offers the following features of interest:

1. It is rule-based so that the operational semantics

provides the running processes. In other words,

production processes do not have to be defined on a

metalevel, but are given by the framework. Moreover,

the operational semantics is independent of any

particular implementation so that it is easier to

understand than programing code.

2. As it is based on graphs, it is visual so that one can

look at the running processes and see what happens—

at least in principle. In practice, one needs visual

simulation tools which are available for the framework

in prototypical form (see Sect. 5 for more details).

3. It supports autonomy in form of control conditions.

Each autonomous unit has a control condition to

decide which rule is applied next out of all possible

rule applications. But one can also employ control

conditions on the community level to coordinate the

interacting processes of the units and to avoid chaotic

behavior in this way.

4. It provides parallelism so that autonomous units can

run simultaneously. Parallel processing may be possi-

ble or mandatory. In the latter case, synchronization is

organized by a special type of control condition.

Moreover, the framework of graph transformation

provides means to find out which activities can be

performed in parallel without conflicts and whether

required parallelism is possible at all.

5. From the point of view of logistics, our framework

provides the basic elements of a language to model

interactive logistic processes with autonomous control

in a visual way. This allows to enhance the usual

simulation of processes by a visual simulation on

graph transformation tools. Furthermore, as the pro-

cess semantics is formally defined, one can prove

properties of the running processes like termination

and correctness. There is also the future perspective of

tool support because several research activities on

automatic verification of graph transformation are

going on.

The paper is organized in the following way. In the

following section, the basic notions of production networks

and their discrete processes are introduced by means of

quantitative modeling. In Sect. 3, a sufficient condition for

the stability of deterministic production networks is given.

Section 4 treats production networks as communities of

autonomous units where this rule-based and visual

modeling framework is introduced, too. In Sect. 5, it is

discussed shortly how the visual simulation of production

networks is implemented on the graph transformation

engine GrGen.NET (cf. [8]). Section 6 deals with a

generalization of production networks by rules that change

distribution rates, which are constant in the basic model.

Section 7 concludes the paper by pointing out some topics

of future research.

2 Production networks and discrete production

processes

In this section, our most elementary notions of production

networks and their processes are introduced. It follows the

concept of supply and production networks as studied, for

example, in [5, 9], but we replace continuous production

processes by stepwise processing.

A production network consists of a set of production

sites, which are numbered from 1 to n (without loss of

generality). Some of them are also input sites and some

output sites. Each site has got a maximum production rate.

Each input site has a maximum input rate in addition, and

each output site a maximum output rate accordingly. All of

them serve as upper bounds. But for greater flexibility,

each of them may be infinite so that no restriction is

imposed in this case. The dynamics of a production net-

work is given by production processes, which consist of

stepwise inputs, changes of production states, and outputs.

A production state provides a quantity per site. To change a

current state, an input rate, a production rate, and an output

rate are chosen for each site. The input rate is added to the

current quantity, the output rate is part of the production

160 Logist. Res. (2011) 3:159–175

123

rate which is subtracted from the quantity, and the differ-

ence of the production rate and the output rate is distributed.

The fraction each site gets is established by the distribution

matrix of the network. This yields a follow-up state so that

such steps can be iterated. To start a process, an initial state

is chosen. Moreover, some conditions are required. The

input rates, the production rates, and the output rates should

never exceed their maxima. The production rates chosen for

some next step should not exceed the current quantities. And

the distribution rates should make sure that the amount of

site quantites that is distributed equals the sum of fractions

that arive at the sites. If one wants to emphasize the network

aspect, then one may consider the graph underlying a pro-

duction network with the sites as nodes and an edge from

site i to site j whenever the (i, j)-entry of the distribution

matrix is greater than 0.

In a more concrete setting, one may think of production

sites as various plants that are connected by roads or tracks

so that raw material is delivered, processed material is

transported from plants to other plants according to some

distribution plan, and finished material is taken away by

trucks or trains within a certain period of time. This

establishes a production cycle, and the iteration of such

steps defines a production process.

Before production networks and their processes are

defined formally, some notational conventions are needed.

The set of natural numbers is denoted by N, Nnf0g is

denoted by N[0 and [k] denotes the subset f1; . . .; kg of N.

The set of real numbers is denoted by R; we use Rþ to

describe the set of non-negative real numbers with 0.

Given a set X and n 2 N, the set of all n-vectors x ¼
ðx1; . . .; xnÞ with xi 2 X for i 2 ½n� is denoted by Xn. If X is

ordered by B, then the order is extended to Xn where x B y

for x; y 2 Xn means xi B yi for i 2 ½n�. Accordingly, the set

of all infinite sequences y ¼ ðyiÞi2N with yi 2 X for i 2 N is

denoted by XN. The set of all n,n-matrices a ¼ ðaijÞi;j2½n�
with aij 2 X for i; j 2 ½n� is denoted by Xn9n. The extra

symbol 1 denotes infinity and is greater than every real

number, i.e. r\1 for r 2 R.

Definition 1 (Production network) A production network

PN consists of

• a set [n] of production sites for some n 2 N,

• vectors maxin;max;maxout 2 ðRþ [f1gÞn
the entries

of which are called maximum input rates, maximum

production rates, and maximum output rates, respec-

tively, and

• a distribution matrix d 2 R
n�n
þ with

Xn

j¼1

dij ¼ 1

for i 2 ½n�.

Remarks

1. A production site j with maxinj [0 is called an input

site and, accordingly, an output site if maxoutj [0.

2. The graph underlying PN is given by G(PN)) =

([n], E) with E ¼ fði; jÞ 2 ½n�2 j dij [0g meaning that

the sites are the nodes and there is an edge from site

node i to site node j whenever the distribution rate dij is

greater than 0.

3. The introduced notion is oriented on the concepts of

production networks in [5, 9]. Many variations and

extensions are possible, like lower bounds for input,

production and output in addition to the upper bounds,

or variable distribution rates rather than invariant ones.

This is further discussed in Sects. 6 and 7.

Example 1 A sample production network SAMPLE is given

by the components of Fig. 1. It has seven production sites:

2 and 5 are the input sites with 100 and 200, respectively,

as maximum input rates and 1, 3, and 6 are the output sites

with unbounded output. The distribution matrix and the

vector of maximum production rates complete the quanti-

tative model. The underlying graph is depicted in Fig. 2. It

is extended in Sect. 4 where a visual representation of

entire production networks is presented.

Definition 2 (Production process) Let PN be a produc-

tion network.

1. A production state is a vector of site quantities q 2 R
n
þ.

2. Let q be a production state, in; p; out 2 R
n
þ vectors of

input rates, production rates, and output rates, respec-

tively, with in B maxin, p B max, out B maxout and

out B p B q. Then, the follow-up state q0 is defined by

q0
j ¼ qj þ inj � pj þ

Xn

i¼1

dijðpi � outiÞ for j 2 ½n�:

Fig. 1 An example of a production network

Logist. Res. (2011) 3:159–175 161

123

3. This construction is called a production step from q to

q0 and is denoted by

q���!
in;p;out

q0:

4. A production process is an infinite sequence of

production states q 2 ðRn
þÞ

N
such that, for every

k 2 N[0 there are vectors ink; pk; outk 2 R
n
þ with

qk�1 ���!
ink ;pk ;outk

qk.

Remarks

1. It should be noted that, given a production state, a

production step is always defined for any choice of

input rates, production rates, and output rates. There-

fore, it causes no problems to assume that production

processes run forever.

2. But if one is interested in finite processes, then one can

consider just the prefixes q0; . . .; qk of a production

process q 2 ðRn
þÞ

N
for some k 2 N:

3. In particular, one may consider production processes

q 2 ðRn
þÞ

N
as finite if there is an activity bound k 2 N

such that all input, production, and output rates for

l [k are 0 and the quantity vectors become invariant,

i.e. ql = qk. Then, only the sequence up to k matters at

all and qk can be considered as final state.

4. In a production step, the difference of the production

rate and the output rate is distributed to the neighbor

sites. Hence, it may be called distribution quantity.

Example 2 Given the production network SAMPLE of

Example 1, it may start with the initial state

(0, 0, 0, 0, 0, 0, 0), put in the maximum input in each step,

choose always each current quantity as production rate, put

this out at site 1 and 6 and half of it at site 3. Then, one gets

a production process with the following first three steps:

ð0; 0; 0; 0; 0; 0; 0Þ ! ð0; 100; 0; 0; 200; 0; 0Þ
! ð50; 100; 0; 100; 200; 0; 150Þ
! ð50; 125; 62:5; 100; 225; 137:5; 150Þ

As in each step of a production process each quantity is partly

kept, partly put out, and partly distributed, one may expect that

the overall quantity in a production network is fully established

by the initial quantities, all the inputs, and all the outputs and that

there is no loss. To state this precisely, some notations are

needed concerning the summation of inputs, outputs, and site

quantities.

Let q 2 ðRn
þÞ

N
be a production process with

qj�1 ���!
inj;pj;outj

qj for j 2 N[0. Then, Qk ¼
Pn

j¼1 qkj denotes

the overall quantity of state qk for k 2 N. And, for

k 2 N[0, Ink ¼
Pk

j¼1

Pn
i¼1 inji and Outk ¼

Pk
j¼1

Pn
i¼1

outji denote the cumulated inputs and the cumulated out-

puts, respectively, up to step k. Moreover, In0 = Out0 = 0.

Theorem 1 Let q 2 ðRn
þÞ

N be a production process with

qj�1 ���!
inj;pj;outj

qj for j 2 N[0. Then, the following holds:

Qk ¼ Q0 þ Ink � Outk for all k 2 N:

The proof is omitted. The theorem can be shown by

induction on the number of steps of a production process.

Our notion of production networks covers various special

cases one encounters in the literature like networks with a

single input site or a single output site (or both) and like acyclic

networks where distributed quantities never come back to the

distributing site. One may also get rid of the bounds and of the

restrictions they impose on the free choice of input rates,

production rates, and output rates by setting them to1. Or one

may require additional properties of production processes like

constant input rates or output rates proportional to the pro-

duction rates, or exhaustive production rates that use up the site

quantities up to the maximum production rates. These three

properties together define a kind of deterministic production

network that is further considered in the next section.

Instead of restrictions, one may also relax the notion of pro-

duction networks. For example, the condition that the distribu-

tion rates of one site to all sites sum up to 1 may be replaced by

Xn

j¼1

dij � 1:

This would mean that a certain part of the distribution

quantity gets lost in each step. Or the condition may be

dropped completely allowing an increase in quantities

while distributed. There may be even cases where negative

quantities are meaningful.

There are at least two further aspects that could be subject

to generalization. Instead of having only one quantity per site

Fig. 2 The underlying graph of the production network SAMPLE

162 Logist. Res. (2011) 3:159–175

123

and step meaning that only one kind of material or goods is

measured, one may consider a vector of quantities reflecting

a variety of products. Moreover, it may be meaningful to

replace the static distribution matrix by a dynamic one. The

latter case is further discussed in Sect. 6.

3 Deterministic production networks and stability

In most applications of production networks, a site has a

bounded storage capacity so that the question of stability

becomes important. A production network is stable if the

site quantities of each production process do not exceed a

fixed bound. It will be shown in this section that deter-

ministic production processes are stable if a certain system

of linear equations has non-negative solutions.

In this context, a production network is called deter-

ministic if its inputs are constant, its production rates are

chosen exhaustively meaning that the site quantities are

used up to the limit of the maximum production rates, and

if its outputs are certain fractions of the production rates.

Definition 3 Let PN be a production network.

1. A production process q 2 ðRn
þÞ

N
in PN is stable if

there is an upper bound vector m 2 R
n
þ such that

qk B m for each k 2 N.

2. PN is stable with respect to an upper bound vector

m 2 R
n
þ if each production process q 2 ðRn

þÞ
N

in PN

with q0 B m is stable.

3. PN is deterministic with respect to some vector of

output factors a 2 R
n
þ with aj B 1 for j 2 ½n� if every

production process q 2 ðRn
þÞ

N
with qk����������!

inkþ1;pkþ1;outkþ1

qkþ1

for k 2 N is subject to the following further conditions:

• ink?1 = maxin,

• p(k?1)j = min (qkj, maxj) for j 2 ½n�, and

• outðkþ1Þj ¼ aj � pðkþ1Þj for j 2 ½n�.

Remarks

1. This means that the input is constant, the production

rates are uniquely determined, and the output rates are

fixed if the output factors are fixed such that there is

only a single production process for each initial state.

2. As the production rates use up the site quantities up to

the maxima, they are called exhaustive.

Theorem 2 Let PN be a deterministic production net-

work with the constant input vector in = maxin, the dis-

tribution matrix d and the vector of output factors a. Let

m 2 R
n
þ be a solution of the system of linear equations

ðE � ðdðaÞÞTÞ � x ¼ in

where E is the unit matrix, d(a) is given by d(a)ij = dij

(1 - ai) for i; j 2 ½n� and (d(a))T is the transposed matrix.

Let q 2 ðRn
þÞ

N be a production process of PN with

q0 B m B max. Then PN is stable.

Again, the proof is omitted. It can be carried out by

induction on the number of production steps.

Remarks

1. It is worth noting that the unique production process of

the deterministic production network becomes con-

stant if the initial state is chosen as the solution of the

system of linear equations. In other words, one can

show qk = m for all k 2 N.

2. Moreover, Theorem 2 still holds if one relaxes the

assumption of constant inputs. Let PN be an arbitrary

production network and q 2 ðRn
þÞ

N
be a production

process with the input vectors ink for k 2 N[0,

exhaustive production rates and output rates that are

determined by a vector a of output factors. Further-

more, let m be chosen as in the theorem. In other

words, the assumptions of the theorem are fulfilled up

to the constant input condition. Production networks

with variable input turn out to be stable if all other

assumptions are fulfilled.

Example 3 Consider the production network SAMPLE of

Example 1 as a deterministic one with the constant input

vector maxin and the vector a = (1, 0, 0.5, 0, 0, 1, 0) of

output factors. Then, Theorem 2 applies to SAMPLE. Its

matrix E - (d(a))T and constant input vector in are

E � ðdðaÞÞT ¼

1 �0:5 0 0 0 0 0

0 1 0 �0:25 0 0 0

0 0 0:625 �0:25 0 0 �0:25

0 �0:5 0 1 �0:25 0 0

0 0 0 �0:25 1 0 0

0 0 �0:125 �0:25 0 1 �0:75

0 0 0 0 �0:75 0 1

0

BBBBBBBB@

1

CCCCCCCCA

in ¼

0

100

0

0

200

0

0

0

BBBBBBBB@

1

CCCCCCCCA

Logist. Res. (2011) 3:159–175 163

123

and the solution of the corresponding system of linear

equations is given by:

m1 ¼ 850

13
� 65:38;m2 ¼ 1700

13
� 130:77;

m3 ¼ 1540

13
� 118:46;m4 ¼ 1600

13
� 123:08;

m5 ¼ 3000

13
� 230:77;m6 ¼ 2280

13
� 175:38;

m7 ¼ 2250

13
� 173:08:

Stability is a very important property of a production

network because it makes sure that there will never be a

shortage of storage capacity provided that the capacity is

chosen according to the stability bound. If a network is

unstable, it means that the input quantities are not distributed

in such a way that all inputs are put out eventually, so that it

piles up at some of the sites. To avoid this effect, the

distribution rates should be adaptable to the waiting quantities

at the receiving site following the principle that a site should

get less input whenever its current quantity is high. The idea

to readjust distribution rates and to get a more balanced

distribution of quantities in this way is further considered in

Sect. 6 where the production sites can decide about the

quantities they deliver to neighbor sites in dependence of the

quantities that are present there. For this purpose, we remodel

production networks as communities of autonomous units in

Sect. 4 , which allow to dynamize the distribution rates of

each site by adding new rules to the site unit.

4 Production networks as communities of autonomous

units

In this section, we show how production networks can be

modeled as communities of autonomous units introduced in

[10]. Communities of autonomous units are rule-based and

graph-transformational devices to model interactive pro-

cesses that run independently of each other in a common

environment. An autonomous unit has a goal that it tries to

reach, a set of rules the applications of which provide its

actions, and a control condition which regulates the choice of

actions to be performed. Each autonomous unit decides

about its activities on its own depending on the state of the

environment and the possibility of rule applications, but

without direct influence of other ongoing processes.

The autonomous units of a community can act sequen-

tially, in parallel, or concurrently (cf. [11, 13]). For modeling

production networks by communities of autonomous units, a

parallel semantics is suitable because each production site of

a network can be naturally modeled by an autonomous unit

that acts in parallel with all other units. More precisely, in

every production step of a production process, each unit

performs the following actions:

1. Choose Choose an input, an output, and a production

rate subject to the conditions of Definition 2.

2. Output Subtract the output rate from the production

rate.

3. Distribute Distribute the remaining distribution quan-

tity to the neighbor sites according to the distribution

matrix.

4. Calculate the new quantity as follows:

(a) Subtract Subtract the production rate from the

actual quantity q.

(b) Add Add to the obtained quantity the input rate as

well as all amounts obtained from the neighbors

in their distribution steps.

Production networks together with their actual states can

be modeled as graphs in a natural way where the production

sites are represented as nodes labeled with their actual

quantities and the non-zero values dij of the distribution

matrix d are represented as edges from i to j labeled with dij.

Consequently, the steps of production processes can be

modeled as graph transformations. Since the common

environments of communities are graphs and the actions of

units are graph transformation rules, communities of

autonomous units are well suited to specify production net-

works so that the described behavior of the sites can be

directly modeled by the autonomous units of the community.

More precisely, the ingredients of autonomous units are

taken from an underlying graph transformation approach

providing a class G of graphs, a class R of graph transfor-

mation rules together with an operator¼) that specifies how

to apply the rules to graphs, a class C of control conditions,

and a class X of graph class expressions for specifying goals

or environment properties, i.e., every expression x of X

specifies a set SEM(x) of graphs in G. The environments that

are transformed by communities belong to G; the actions

performed by the units correspond to applications of rules in

R; the decisions of the units are made according to control

conditions in C, and the goals are specified with an expres-

sion from X. This leads to the following definition.

Definition 4 (Autonomous units) An autonomous unit is a

system aut = (g, R, c) where g 2 X is the goal, R � R is a

set of graph transformation rules, and c 2 C is a control

condition.

Autonomous units are meant to work within a commu-

nity of autonomous units that modify the common envi-

ronment together. Every community is composed of an

overall goal that should be achieved, an environment

specification that specifies the set of initial environments

the community may start working with, a set of autono-

mous units, and a global control condition to restrict the

possibilities of interaction among the units. The overall

goal may be closely related to the goals of the autonomous

164 Logist. Res. (2011) 3:159–175

123

units in the community. Typical examples are the goals

admitting only successful semantic sequences w.r.t. one or

all autonomous units in the community.

Definition 5 (Community) A community is a system

Com ¼ ðGoal; Init;Aut;CondÞ, where Goal 2 X is a graph

class expression called the overall goal, Init 2 X is a graph

class expression called the initial environment specifica-

tion, Aut is a set of autonomous units, and Cond 2 C is a

control condition called the global control condition.

Communities for production networks consist of one

unit per production site. The initial environment specifi-

cation specifies production networks whose number of sites

corresponds to the number of units in the community. The

control condition requires to run all units infinitely long in

parallel. In this paper, the goal specifies stability.

In the following, we present a concrete graph transfor-

mation approach that is suitable for modeling production

networks.

4.1 A class of graphs for production networks

Production networks can be suitably represented as edge-

labeled directed graphs consisting of nodes connected via

directed labeled edges. More precisely, let R be a set of labels.

An edge-labeled directed graph over R is a system

G = (V, E, s, t, l), where V is a set of nodes, E is a set of

edges, s, t: E ! V are the source and target mappings

which assign to each edge its source and target node, respec-

tively, and l : E ! R is a mapping assigning a label to each

edge in E.

For representing production networks, we must require

that R contains the elements of Rþ as well as the symbols

1, maxin, max, maxout, and q. A production site j together

with its maximum input rate maxinj, its maximum produc-

tion rate maxj, its maximum output rate maxoutj, and its

current quantity qj is represented by the edge-labeled graph

shown on the left of Fig. 3 where maxinj, maxj, maxoutj, and

qj are chosen as 12, 36, 15.5, and 5, respectively. The graph

consists of a node equipped with a j-labeled loop, and for

every x 2 fmaxin;max;maxout; qg there is an x-edge

pointing to a node equipped with a loop labeled with a real

number (or with 1) representing the quantity of x. Since the

drawing of large production networks would lead to rather

complex graphs we choose the more compact graphical

representation of production sites on the right of Fig. 3.

There, the site attributes are listed in the site node itself.

Accordingly, the representation of a production network

PN with respect to a production state q 2 R
n
þ is the edge-

labeled graph env(PN)(q) that is constructed in the fol-

lowing way.

1. Take the underlying graph G(PN) defined in the

remarks after Definition 1 where an edge (i, j) has i as

source, j as target and dij as label.

2. Extend each site node as described above.

Using the compacted representation, the example pro-

duction network SAMPLE of Sect. 2 is represented by the

graph in Fig. 4.

4.2 A rule class for modeling the actions of production

sites

The class R of graph transformation rules chosen in this

paper is based on the double pushout approach, which is

(a) (b)

Fig. 3 A production site as a directed edge-labeled graph (left) and

its compacted depiction (right)
Fig. 4 The compacted graph for the example production network of

Sect. 2

Logist. Res. (2011) 3:159–175 165

123

well studied in the literature (cf., e.g., [4, 7]). Every graph

transformation rule of this class consists of three edge-

labeled directed graphs L, K, and R such that K is a sub-

graph of L and R. Formally, a graph G = (V, E, s, t, l) is a

subgraph of a graph G0 = (V0, E0, s0, t0, l0), denoted by

G � G0, if V is a subset of V0, E is a subset of E0,
s(e) = s0(e), t(e) = t0(e), and l(e) = l0(e) for all edges e in

E. The graphs L, K and R are called left-hand side, gluing

graph and right-hand side, respectively. Rules are depicted

in the form L ? R where the nodes and edges of the gluing

graph K are indicated by identical positions and node

colors.

An example of a graph transformation rule is the rule

choose(j) in Fig. 5. Its left-hand side and its gluing graph

consist of the production site j. The right-hand side consists

of the same site plus additional values for an input rate in,

an output rate out, and a production rate prod. On the right

of the rule, the constraints that must be satisfied by the

values of in, out, and prod are listed.

A second example of a rule is outputðjÞ given in Fig. 6.

All three graphs of the rule consist of the production site j

plus a chosen production rate p and a chosen output rate o.

Additionally, the right-hand side contains a node, the value

of which corresponds to the distribution quantity of site j

because it is the difference of the production rate and the

output rate.

A third example of a graph transformation rule is the rule

distribute(j, i) given in Fig. 7. The left-hand side and the

gluing graph contain the two production sites j and i that are

connected with a dji-edge where dji is the corresponding

entry in the distribution matrix. The distribution quantity dq

of site j is given in the left-hand side, the gluing graph, and

the right-hand side. The right-hand side consists of the same

production sites, but site i is additionally equipped with a

value g which corresponds to the fraction dji � dq.

Graphs are transformed via applications of graph

transformation rules. Roughly spoken, a rule r ¼ ðL 	
K � RÞ is applied to a graph G by replacing an image of

the left-hand side L with the right-hand side R such that the

image of the common part K is not changed. Formally, the

image of a graph L in G is the image of a graph morphism g

from L to G. More precisely, for two graphs

H = (VH, EH, sH, tH, lH) and G = (VG, EG, sG, tG, lG), a

graph morphism g: H ? G is a pair of structure-preserving

mappings gV: VG ? VH and gE: EG ? EH, i.e.,

gV(sG(e)) = sH(gE(e)), gV(tG(e)) = tH(gE(e)), and

lH(gE(e)) = lG(e) for all e 2 EG. The image gðGÞ � H is

also called a match of G in H.

Fig. 5 Rule choose(j)

Fig. 6 Rule output(j)

166 Logist. Res. (2011) 3:159–175

123

In more detail, an application of a rule r ¼ ðL 	 K � RÞ
to a graph G consists of the following steps:

1. A graph morphism g: L ? G is selected subject to the

following two application conditions:

(a) the dangling condition: the removal of g(L) -

g(K) from G yields no dangling edges, and

(b) the identification condition: if two nodes or two

edges of L are identified (i.e., mapped to the same

graph element) in the match of L, they must be

in K.

2. g(L) - g(K) is removed from G, yielding the graph Z.

3. R is added to Z yielding H by merging K with g(K).

This means that every item of R that is also in the

gluing graph K is merged with its image in Z and the

rest of R is added disjointly so that sources, targets, and

labels are kept.

For example, for j = 2, the rule choose(j) in Fig. 5 can

be applied to site 2 of the production network in Fig. 4 by

selecting a value p for the production rate, a value o for the

output rate, and a value g for the input rate such that the

conditions of the rule are satisfied. If one chooses

p = 10.7, o = 0, and g = 100, the resulting graph is

depicted in Fig. 8. This rule application models the step

choose mentioned before, i.e., it models the choice of an

input, an output, and a production rate by site 2.

To the graph in Fig. 8, rule outputð2Þ can be applied and

afterward rules distribute(2,1) and distribute(2,4) (because

only sites 1 and 4 are neighbors of site 2). An application of

rule distribute(j, i) models the distribution of the amount

dji � dq from site j to site i where dq is the distribution

quantity calculated in the application of the rule outputðjÞ.
For modeling production processes adequately, the rule

choose should be applied in each production step in parallel

with each site. This is possible by combining rules to

parallel rules by building the disjoint unions of their

respective components. Formally, for rules r1; . . .; rn with

ri ¼ ðLi 	 Ki � RiÞ, their parallel composition r1 þ � � � þ
rn yields the rule ðL1 þ � � � þ Ln 	 K1 þ � � � þ Kn � R1 þ

� � � þ RnÞ where ? denotes the disjoint union of graphs and

the inclusions are the natural extensions of the inclusions in

the rules r1; . . .; rn.

For example, the parallel rule r1 þ � � � þ r7 where

rj = choose(j) for j ¼ 1; . . .; 7 can be applied to the pro-

duction network in Fig. 4. This application models the

parallel choice of the rates for each production site.

The presented rules model the above-explained steps

choose, output, and distribute of a production step. The

step subtract that subtracts the production rate from the

current quantity is modeled with the rule subtract(j) given

in Fig. 9. The step add which adds the quantities from the

neighbors and the input rate to the current quantity is

modeled by the rule add(j) given in Fig. 10.

It is worth noting that since the left-hand sides of

choose(j), outputðjÞ, and distribute(j, i) are equal to the

corresponding gluing graphs, nothing is deleted in their

applications. Rules with deletion are subtract(j) and

add(j).

4.3 Graph class expressions for initial production

networks and goals

Graph class expressions serve to specify the set of initial

environments of a community and the goals.

Typical examples of graph class expressions are con-

crete single graphs, sets of graphs, or sets of labels. Every

graph as well as every set of graphs specifies itself, and

every set D of labels specifies all graphs that are only

labeled with symbols in D.

The initial environment of a community modeling the

processes of a production network PN consists of the edge-

labeled graph representing PN where each site has an

arbitrary initial quantity. Concretely, for a production

network PN with the components [n], maxin, max, maxout,

and d, we use the graph class expression envðPNÞ ¼
fenvðPNÞðqÞ j q 2 R

n
þg where env(PN)(q) are the edge-

labeled graphs introduced in subsection 4.1. For each node

i 2 ½n�, its set of neighbors is defined by NðiÞ ¼
fj 2 ½n� j dij [0g.

Fig. 7 Rule distribute(ij)

Logist. Res. (2011) 3:159–175 167

123

The goal of each autonomous unit modeling a produc-

tion site j can be specified with the graph class expression

boundj where bound 2 R
n
þ is some fixed vector. It specifies

all graphs env(PN)(q) where the quantity of site j does not

exceed boundj, i.e., SEMðboundjÞ ¼ fenvðPNÞðqÞ
j qj � boundjg. A transformation of the unit is said to be

successful if the resulting graph meets the goal.

In the presented modeling of production networks, the

global goal of the community expresses stability. It requires

that the goal of every unit will be fulfilled after every run of the

unit, i.e., after every step of a production process. This is

expressed by the term stable with SEMðstableÞ ¼
T

j2½n� SEMðboundjÞ where n is the number of units in the

community. It is worth noting that one can guarantee suc-

cessful production processes if one models deterministic net-

works, takes a non-negative solution of the equation system in

Theorem 2 as bound, and chooses the initial state q and the

maximum production rate max such that q B bound B max.

Fig. 8 A graph resulting from

an application of the rule

choose(j)

Fig. 9 Rule subtract(j)

Fig. 10 Rule add(j)

168 Logist. Res. (2011) 3:159–175

123

4.4 Control conditions for a correct behavior

of production networks

In many cases, rule application is highly non-determin-

istic—a property that is generally not desirable. On one

hand, there can be several rules that are applicable to the

current graph. On the other hand, there may be several

matches for one and the same rule. Hence, a graph

transformation approach provides a class of control con-

ditions so that the degree of non-determinism of rule

application can be reduced. Typical examples of control

conditions are regular expressions over rules. It is well

known that each regular expression over rules specifies a

possibly infinite set of rule sequences. Hence, every reg-

ular expression reg over rules can be used as a control

condition of an autonomous unit that allows all transfor-

mation processes in which the rules are applied in the

same order as they occur in at least one of the rule

sequences specified by reg.

For modeling the behavior of production sites, regular

expressions are augmented by the condition

as_long_as_possible and the parallel composition operator

?. More concretely, the regular expression r (where r is

some rule of an autonomous unit) means to apply r exactly

once. The operator as_long_as_possible denoted by an

exclamation mark can be applied to single rules with the

effect that the rule must by applied as long as possible. The

parallel composition operator ? is applied to a set R of

rules and requires to apply all rules in this set in parallel,

which corresponds to the application of the parallel rule

Rr2Rr. Sequential composition of control conditions is

denoted by a semicolon, i.e., the expression c1; . . .; ck

prescribes to execute the control conditions c1; . . .; ck

exactly in this order. Finally, non-deterministic choice is

expressed by the symbol |, i.e., the expression c1j � � � jck

means to apply one of the conditions c1; . . .; ck.

Concretely, the behavior of production site j can be

modeled by applying the rules of the previous subsection

according to the control condition

chooseðjÞ; outputðjÞ;
X

i2NðjÞ
distributeðj; iÞ; subtractðjÞ; addðjÞ!

where NðjÞ � ½n� is the set of neighbors of site j as defined

in the previous subsection. In words, this control condition

prescribes to apply at first the rule choose(j) and then the

rule outputðjÞ. Afterward the rule distribute(j, i) is applied

in parallel with all neighbors i of site j. In the next step,

subtract(j) is applied and then add(j) as long as possible. It

can be shown that the transformation processes that obey

this control condition model the above-described steps

choose, output, distribute, subtract, and add in the

required order.

Apart from the autonomous units of a community, the

community itself may be provided with a global control

condition. As global control conditions we use the parallel

operator || and infinite sequential composition. More con-

cretely, the global control condition aut1jj � � � jjautk

requires that the autonomous units aut1; . . .; autk run in

parallel each one exactly once. Moreover, the control

condition c1 prescribes to apply the control condition

infinitely often. The combination of both control conditions

is used in the community presented in the following

subsection.

4.5 The community for production networks

Based on the ingredients presented in the previous subsec-

tion, we can now define the community C(PN) for a pro-

duction network PN in a straightforward way as in Fig. 11,

i.e., CðPNÞ ¼ ðstable; envðPNÞ; fsiteðjÞ j j 2 ½n�gÞ where

for j 2 ½n� the autonomous unit siteðjÞ ¼ ðboundj;

fchooseðjÞ; outputðjÞ; subtractðjÞ; addðjÞg [fdistributeðj; iÞ j
i 2 NðjÞg; cjÞ with cj ¼ chooseðjÞ; outputðjÞ;Ri2NðjÞ
distributeðj; iÞ; subtractðjÞ; addðjÞ! is given in Fig. 12.

Summarizing, the following observation relates a run-

ning step in the community with a process step in the

mathematical model.

Observation A running step of the community C(PN)

has the form

envðPNÞðqÞ¼) envðPNÞðq0Þ

where q0 is obtained from q by q0
j ¼ qjþ

inj � pj þ
Pn

i¼1 dijðpi � outiÞ for j 2 ½n�:

As a consequence of this observation, we get the fol-

lowing result.

Theorem 3 Each production process q in PN corre-

sponds to an infinite run of the community C(PN), i.e., for

every k 2 N[0 there are vectors ink; pk; outk 2 R
n
þ with

qk�1 ���!
ink ;pk ;outk

qk if and only if envðPNÞðqk�1Þ¼)

envðPNÞðqkÞ.

Fig. 11 Community C(PN)

Logist. Res. (2011) 3:159–175 169

123

This shows that C(PN) models PN correctly.

Remark The production process q is stable if for every

k 2 N[0 the graph env(PN)(qk) is in SEM(stable).

4.6 Modeling deterministic production networks

Deterministic production networks can be modeled by

replacing the constraints on the right side of rule choose in

Fig. 5 with the properties of deterministic networks pre-

sented in Definition 3. Obviously, in this case, all modeled

processes are stable if a solution of the equation system in

Theorem 2 is chosen for bound and if this solution is

between the state q0 of the initial environment env(PN)(q0)

and the maximum production rate max of PN, i.e.,

q0 B bound B max.

5 Visual simulation

In order to simulate deterministic process runs on the

sample production network in Fig. 1, we have imple-

mented the general production community C(PN) (cf.

Fig. 11) using the graph transformation engine GrGen.NET

(cf. [8]).

The GrGen.NET graph model is based on typed,

attributed, directed multigraphs with inheritance. The base

types at the core of this model are Node and Edge, and the

primitive attribute data types int, float, double, string,

boolean, and object, the latter denoting a .NET object.

We made use of the subpattern matching capability of

GrGen.NET, using the iterated subpattern in order to

simulate parallel rule application. GrGen.NET also does not

provide autonomous units; however, it allows to structure

rule application by embedding imperative calls to other rules

into the declarative right-hand side of a rule. Furthermore,

such calls may be controlled using, for example, regular

expressions. We made use of this feature to emulate auton-

omous units very closely to our original specification.

The simulation runs very fast, with our example network

SAMPLE completing 41 steps and reaching the maximal

production rate at all seven sites in 156 milliseconds on an

Intel Core i5 M520 CPU with 2.40 GHz and 6 GB of

RAM, having found 1920 matches (many of these being

parallel matches across the network) and performed 1920

graph rule applications in that time (see Fig. 13).

In order to simulate production runs on larger networks,

we have written an additional graph grammar, which cre-

ates random production networks for test purposes (cf.

Fig. 14). A graph with 402 nodes is generated in 655 ms;

3000 production steps are completed after another

21840 ms (i.e., some 21 seconds), with over 4 million

matches found and rewrite steps executed in that time.

This type of simulation is valuable as a visual way to

model and debug production networks or detect flaws in

existing ones, altering them until they become stable. In

particular, the simulation includes a visual debugger which

allows to view in detail every step performed by the sys-

tem, from the matching of rule patterns to nodes to the

assignment of new values to variables. Additionally, the

declarative nature of graph transformation rules makes

the modeling less error prone, and the production process

model easily scalable, e.g., by introducing different mate-

rial types. Other possible extensions to the current model

are sketched in the conclusion.

6 Production networks with variable distribution rates

In this section, the notion of production networks is

extended by allowing to change the distribution rates such

that the distribution matrix becomes variable. This serves

two purposes. On one hand, the modeling of production

networks becomes more flexible and more realistic. On the

other hand, it is demonstrated how the modeling frame-

work of communities of autonomous units can be used to

specify aspects of autonomy.

An autonomous unit decides about its next action by

choosing a rule application out of all possible ones. The

decision depends on the control condition which may be the

conjunction of several conditions of different kinds. A

typical case is a condition that establishes some order or

priority among the rules. For example, the control condition

of the unit site(j) requires that first choose(j) must be applied

then output(j) followed by distribute(j,i) and finally,

subtract(j) followed by some add(j)’s. Consequently, the

Fig. 12 The autonomous unit

site(j)

170 Logist. Res. (2011) 3:159–175

123

order of rule applications is fixed by this condition. But the

rules are generic since they contain variables that must be

instantiated before the actual application can take place.

While the actual values of the left-hand side variables are

uniquely determined by the match of the rule in the envi-

ronment, the unit can choose and decide about the values of

the right-hand side variables. A second kind of control

condition is given by constraints for these values. So far, we

have used only two extreme cases: Either the choice is

totally free within certain limits like the choice of

p, q, g, and o in the rule choose(j), or it is computed

uniquely like p - o in output(j) and q - p in subtract(j).

How further decisions in between the two extreme cases can

be designed and used is demonstrated in the following.

To make the distribution matrix variable, we enrich

each production site by a new rule, the application of

which changes the current distribution rates of the edges

outgoing of the considered site. The new distribution rates

are chosen due to proper constraints. To allow a variety

of possibilities, the new rule is designed in a generic way.

And some examples of constraints are provided. The first

one is free choice. The second one reflects the quantities

that wait for processing at the neighbor sites. The third

one takes the maximum production rates into account

additionally. In the latter two cases, the intention is to

deliver the distribution quantities in such a way that the

waiting time is reduced, meaning that the further pro-

cessing is not delayed for too long and that the chance for

stability is improved.

6.1 The rule to change the distribution rates

Let j 2 ½n� be some production site and i1; . . .; ik for some

k 2 N be its neighbors that can be reached from j by a

transport edge each. Then, the rule adjust(j) has the form

given in Fig. 15. The left-hand side contains the sites

j; i1; . . .; ik and the connecting edges. Moreover, for each

neighbor il, there is a set of variables Varl in the left-

hand side so that the actual values are available whenever

the rule is applied. Consequently, there is a unique

matching for each environment graph. But to apply the

rule, the new distribution rates bdjil for l 2 ½k� must be

chosen or computed. Some possibilities are discussed in

the next subsection where different sets of variables are

used.

6.2 Constraints for changing the distribution rates

The simplest possibility is to allow a free choice. Then, the

only constraint to be considered is that distribution rates for

the site j must sum up to 1. The sets of variables may be

empty in this case.

Fig. 13 Community C(SAMPLE)

in GrGen.NET: all sites have

reached their saturation point

after 41 steps

Logist. Res. (2011) 3:159–175 171

123

ðconstraint 1Þ
Xk

l¼1

djil ¼ 1

But this is not really a good idea because free choice

may lead to quite chaotic processes.

As indicated at the end of Sect. 3 and the intro-

duction of this section, a much better idea is to choose

the new distribution rates in such a way that the

chances for stability grow. A production process is

unstable if there is at least one production site at which

the quantities grow beyond any bound. The cause of

this effect is that the site gets more delivered than it

redistributes over time. To avoid the unbounded growth,

one may shorten the delivered quantities by making the

distribution rates smaller in inverse proportion to the

amount of material piled up at the sites. The three

following constraints are examples how a production

site unit can autonomously control its distribution fol-

lowing this general principle.

The site j may consider the current quantities at the

neighbor sites and assume that the smaller the quantity is,

the faster the processing runs. The sets of variables must

contain the quantities accordingly. This idea is reflected in

the following constraint:

ðconstraint 2Þ bdjim
¼ b � qimPk

l¼1 ðb � qilÞ
for m 2 ½k� and some b 2 Rþ with qim\b

The differences b � qim are in converse order to the

order of the quantities so that the larger the quantity is, the

smaller the difference grows. The division by the sum

makes sure that the new distribution rates sum up to 1:

Xk

m¼1

bdjim
¼

Xk

m¼1

b � qimPk
l¼1ðb � qilÞ

¼
Pk

m¼1ðb � qimÞPk
l¼1ðb � qilÞ

¼ 1

Note that the new distribution rates reflect the

differences between the current site quantities in lessened

form if the upper bound b is chosen larger. We require that

b is larger than maxfqil j l 2 ½k�g to avoid that any

distribution rate becomes 0.

In the exceptional case that all quantities at neighbor

sites are equal, the bound b must be greater—at least a

bit—because otherwise the sum of all differences would be

0 and the quotient would not be defined.

Fig. 14 A network with 400

nodes in GrGen.NET after 3000

production steps

172 Logist. Res. (2011) 3:159–175

123

The reflection of the waiting time becomes more

sophisticated if one replaces the quantities in constraint 2

by the quotients of quantities and maximum production

rates.

ðconstraint 3Þ bdjim ¼ b � wimPk
l¼1 b � wilð Þ

with

wim ¼ qim

maxim

for m 2 ½k� and some b 2 Rþ

with wim\b

The latter quotient may be called waiting number

because the smallest integer greater or equal is the

minimum number of steps to process the current

quantity. Clearly the sets of variables must contain the

quantities and the maximum production rates.

The last explicit example takes into account that it may

not always be reasonable to forget the old distribution

totally so that one may like to mix the old rates with new

ones. A weighted average will do this job:

ðconstraint 4Þ bdjim ¼
rdjim

þ sd0
jim

r þ s
for m 2 ½k�

and r; s 2 Rþ with r þ s [0 and

some distribution rates d0
ji1
. . .d0

jik

which may be chosen as one of

the three cases above

Each of the four constraints (and other similar ones)

can be used as control condition in the autonomous

unit site(j) after it is enriched by the rule adjust(j). As

the control condition concerns only this rule, it may be

placed beside the right-hand side of the rule (cf.

Fig. 5).

6.3 Example

The production site 4 of SAMPLE has the neighbors 2, 3, 6,

and 5 and distributes a quarter of the production rate to

each of them due to the distribution matrix (cf. Figs. 1 and

4). Let us assume in addition the following current quan-

tities: q2 = 450, q3 = 300, q5 = 250, and q6 = 500. Then,

one can apply the rule adjust(4) using constraint 2 with

b = 600. Figure 16 shows the rule application restricted to

the significant part of the network. In Fig. 17, the same is

depicted for constraint 3 with b ¼ 7
2
. While the new dis-

tribution rates in the first case are smaller the larger the

quantities are, the second case reflects the waiting numbers

w2 = 3, w3 = 2, w5 = 1, and w6 ¼ 5
2
. While, for example,

site 2 gets a larger fraction from site 4 than site 6 in the first

case, it is the other way round in the second case.

The considerations in this section exemplify how

communities of autonomous units may be modified and

extended to cover new aspects and features. Concerning the

Fig. 16 Application of rule adjust(4) with constraint 2, with

b = 600

Fig. 15 Rule adjust(j)

Logist. Res. (2011) 3:159–175 173

123

variable distribution rates, we have taken into account

some measures that reflect something like the waiting time

with a look-ahead of 1 (meaning that we access only the

information provided by direct neighbors). In a similar

way, one could involve larger look-aheads or criteria other

than waiting time like pheromone traces (cf. [2]). We are

also convinced that further principles of planning in pro-

duction networks (cf. [1]) can be realized in this way.

7 Conclusion

In this paper, we have modeled and investigated a variant

of production networks with discrete production processes.

The usual quantitative modeling based on matrices and

vectors has been supplemented by a visual modeling

employing the rule-based and graph-transformational

framework of communities of autonomous units. It has

turned out that the community version models production

networks correctly with respect to their mathematical

description so that all results for one of the models apply to

the other and conversely. Therefore, one gets both: On one

hand, one can prove results like the stability of determin-

istic production networks provided that certain systems of

linear equations are solvable; on the other hand, the visual

simulation is supported. The attempt to bring two styles of

modeling together may therefore be considered as prom-

ising. To shed more light on the significance of the

approach, one may investigate the following topics:

1. The stability results may be improved by enlarging the

class of production networks for which sufficient

conditions yield stability. And one may also look for

necessary conditions or even proper characterizations.

2. A good motivation to make the distribution rates

variable is the chance for more stability. It would be

nice to know whether this works and for which

production network and which variability.

3. To make the model more flexible, one may enhance

the notion of production networks by relaxing,

modifying, or specializing various assumptions like

the following:

• There may be lower bounds of input, production,

and output rates in addition to upper bounds.

• There may be different kinds of materials and

information flows through the network rather than

a single homogeneous kind of quantities.

• There may be particular time conditions for

production and transportation at each site rather

than the common-step assumption.

• There may be more information about the produc-

tion like costs, prices, etc. to refine the basis for the

autonomous decision making and planning at the

production sites, or one may also involve produc-

tion goals into the consideration.

4. Another possible modification would be to assume that

the produced and distributed material consists of a

number of atomic items such that only integer division

is possible. In this case, the graph-transformational

model may be particularly suitable as the atomic items

could be represented by atomic graph components

explicitly.

We think that communities of autonomous units provide

a suitable framework to model production networks with

respect to the points 3 and 4 at least. As the framework is

equipped with a well-defined syntax and semantics, it

offers the perspective of further tool support beyond the

visual simulation. For example, it should be possible to

employ a verifier like a model checker, SAT solver, or

theorem prover eventually to prove properties of produc-

tion processes like stability automatically.

Acknowledgments We are grateful to the anonymous reviewers for

their valuable comments. The authors would like to acknowledge that

their research is partially supported by the Collaborative Research

Centre 637 (Autonomous Cooperating Logistic Processes: A Para-

digm Shift and Its Limitations) funded by the German Research

Foundation (DFG).

References

1. Argoneto P, Perrone G, Renna P, Lo Nigro G, Bruccoleri M, Noto

La Diega S (2008) Production planning in production networks:

models for medium and short-term planning. Springer, Berlin

2. Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer C

(2006) Autonomous control of production networks using a

pheromone approach. Physica A 363(1):104–114

3. Armbruster D, Kaneko K, Mikhailov AS (eds) (2006) Networks

of interacting machines: production organization in complex

Fig. 17 Application of rule adjust(4) with constraint 3, with b ¼ 7
2

174 Logist. Res. (2011) 3:159–175

123

industrial systems and biological cells. World Scientific,

Singapore

4. Corradini A, Ehrig H, Heckel R, Löwe M, Montanari U, Rossi F

(1997) Algebraic approaches to graph transformation part I: basic

concepts and double pushout approach. In: Rozenberg G (eds)

Handbook of graph grammars and computing by graph trans-

formation, vol 1: foundations. World Scientific, Singapore,

pp 163–245

5. Dashkovskiy S, Görges M, Naujok L (2009) Local input to state

stability of production networks. In: Proceedings of 2nd inter-

national conference on dynamics in logistics (LDIC 2009).

Springer, Bremen, pp 79–89

6. Dashkovskiy S, Rüffer BS (2010) Local ISS of large-scale

interconnections and estimates for stability regions. Syst Control

Lett 59(3–4):241–247

7. Ehrig H, Ehrig K, Prange U, Taentzer G (eds) (2006) Funda-

mentals of algebraic graph transformation. Springer, Berlin

8. Geiß R, Kroll M (2008) GrGen:NET A fast, expressive, and

general purpose graph rewrite tool. In: Schürr A, Nagl M, Zün-

dorf A (eds) Proceedings of 3rd international workshop on

applications of graph transformation with industrial relevance

(AGTIVE ’07). Lecture Notes in Computer Science, vol 5088.

Springer, pp 568–569

9. Helbing D, Lämmer S Supply and production networks: from the

bullwhip effect to business cycles. In: Armbruster et al. [3],

pp 33–66

10. Hölscher K, Klempien-Hinrichs R, Knirsch P, Kreowski HJ,

Kuske S (2007) Autonomous units: basic concepts and semantic

foundation. In: Hülsmann M, Windt K (eds) Understanding

autonomous cooperation and control in logistics—the impact on

management, information and communication and material flow.

Springer, Berlin, pp 103–120

11. Hölscher K, Kreowski HJ, Kuske S (2009) Autonomous units to

model interacting sequential and parallel processes. Fundamenta

Informaticae 92(3):233–257

12. Hülsmann M, Windt K (eds) (2007) Understanding autonomous

cooperation and control in logistics. Springer, Berlin

13. Kreowski HJ, Kuske S (2010) Autonomous units and their

semantics—the concurrent case. In: Engels G, Lewerentz C,

Schäfer W, Westfechtel B (eds) Graph transformations and

model-driven engineering. Lecture notes in computer science, vol

5765, pp 102–120

14. Scholz-Reiter B, Mehrsai A, Görges M (2009) Handling the

dynamics in logistics—adoption of dynamic behavior and

reduction of dynamic effects. Asian Int J Sci Technol Prod

Manufact Eng (AIJSTPME) 2(3):99–110

15. Sontag E (2007) Input to state stability: basic concepts and

results. In: Nistri P, Stefani G (eds) Nonlinear and optimal control

theory. Springer, Berlin, pp 163–220

16. Wiendahl HP, Lutz S (2002) Production in networks. Ann CIRP

Manufact Technol 51(2):1–14

Logist. Res. (2011) 3:159–175 175

123

	Modeling production networks with discrete processes by means of communities of autonomous units
	Abstract
	Introduction
	Production networks and discrete production processes
	Deterministic production networks and stability
	Production networks as communities of autonomous units
	A class of graphs for production networks
	A rule class for modeling the actions of production sites
	Graph class expressions for initial production networks and goals
	Control conditions for a correct behavior of production networks
	The community for production networks
	Modeling deterministic production networks

	Visual simulation
	Production networks with variable distribution rates
	The rule to change the distribution rates
	Constraints for changing the distribution rates
	Example

	Conclusion
	Acknowledgments
	References

