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Abstract This paper suggests a routing method for

automated guided vehicles in port terminals that uses the

Q-learning technique. One of the most important issues for

the efficient operation of an automated guided vehicle

system is to find shortest routes for the vehicles. In this

paper, we determine shortest-time routes inclusive of the

expected waiting times instead of simple shortest-distance

routes, which are usually used in practice. For the deter-

mination of the total travel time, the waiting time must be

estimated accurately. This study proposes a method for

estimating for each vehicle the waiting time that results

from the interferences among vehicles during travelling.

The estimation of the waiting times is achieved by using

the Q-learning technique and by constructing the shortest-

time routing matrix for each given set of positions of quay

cranes. An experiment was performed to evaluate the

performance of the learning algorithm and to compare

the performance of the learning-based routes with that of

the shortest-distance routes by a simulation study.

Keywords AGV � Reinforcement learning �
Shortest pats � Estimation of waiting times �
AGV � Container terminal

1 Introduction

Generally, ship operations at container terminals consist in

unloading and loading operations that are performed by

specific handling equipments. We assume that three types

of equipments are used for these ship operations such as

Quay Cranes (QCs), Automated Guided Vehicles (AGVs),

and Automated Yard Cranes (AYCs).

• Unloading operation: When a ship arrives at a container

terminal, the import containers are lifted by QCs and

handled over to an AGV. The AGV is used for the

transport of the container to the Transfer Point (TP) of

the storage yard. An AYC picks up the container from

the AGV and stacks it to the storage place. Figure 1

illustrates the process of the ship operation in an

Automated Container Terminal (ACT).

• Loading operation: With respect to AGV-routing, this

operation starts when an AGV has arrived at the TP of

the storage yard and an AYC has picked up an export

container from the storage yard and has put it on the

AGV. The export container is carried by an AGV to the

appropriate QC which will lift the container to the ship.

Figure 1 and the above operations point out that AGVs

realize the important link between QCs and AYCs. When a

transportation request across this link arises, the AGV

control system is started to execute its tasks such as

dispatching, routing or scheduling, and traffic control.

According to Kim and Tanchoco [4], the primary vehicle-

management functions for AGVs can be defined as follows:
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• Dispatching is the process of selecting and assigning

tasks to vehicles.

• Routing is the selection of the specific paths taken by

vehicles to reach their destinations.

• Scheduling is the determination of the arrival and

departure times of vehicles at each segment along their

prescribed paths to ensure collision-free journeys.

• Traffic control for AGVs is generally representing zone

control. Zone control uses a wireless transmitter to

transmit a signal in a fixed area. Each AGV contains a

sensing device to receive this signal, which is used for

collision avoidance with other AGVs.

The routing function is one of the most important

components of an AGV control system in automated con-

tainer terminals (ACTs). The routing function selects a

specific path for a vehicle to be followed in order to reach

its destination from the present position. In static routing

systems, a vehicle is given a predetermined route from its

starting position to its destination. Usually, shortest-dis-

tance routes are provided to vehicles because efficient

terminal operations are aspired. This results in an easy

control method, but it does not guarantee for the efficiency

of the vehicle operations because mutual influence between

the vehicles and waiting times are ignored. For this reason,

we present a method for finding shortest paths with respect

to travel times including the expected waiting times of the

vehicles.

The AGV routing problem has been addressed by sev-

eral researchers. The conceptual foundations of the AGV

routing problem were first laid down by Broadbent et al.

[1]. They proposed an AGV scheduler that uses Dijkstra’s

shortest-path algorithm and generates a timetable that

contains the node occupation times for each vehicle.

A study by Gaskins and Tanchoco [3] suggested an integer-

programming model to determine the directions of path

segments on a guide-path so that the total travel distance of

vehicles is minimized. Kim and Tanchoco [4] used the

concept of time-window graph, which is a directed graph of

the free time-windows, for finding the shortest-time route

on bidirectional guide-path networks. Rajotia et al. [10]

proposed a semi-dynamic time-window routing strategy,

the principle of which is quite similar to the path-planning

method of Kim and Tanchoco [4]. Time-windows that

model the traffic-flow direction are placed on bidirectional

arcs, which can be crossed only in one direction at a time.

On the basis of these time-windows, the Dijkstra algorithm

was applied to find the least congested and fastest routes

for vehicles. Oboth et al. [8] addressed operational control

problems such as demand assignment and route planning.

They proposed a route-generation procedure called the

sequential path generation (SPG) heuristic. Lim et al. [5]

applied a Q-learning method [6, 7] to estimate the expected

travel time of a vehicle on path segments for designing

guide-paths in automated guided vehicle systems. An early

survey on scheduling and routing algorithms for AGV’s

can be found in Qiu et al. [9].

This study applies the Q-learning method for route

planning for AGVs in ACTs. This paper attempts to find

the shortest-time route instead of the shortest-distance

route by considering the congestion at intersections and

bidirectional path segments for a given set of transportation

requests. To find the shortest route in terms of the travel

time, the expected delay time of vehicles at each inter-

section is estimated by utilizing the travel experiences

gained during a simulation-based learning process.

The rest of this paper is structured as follows. Section 2

introduces a guide-path network for AGVs, which is

assumed in this study, and explains the routing problem.

Section 3 describes how to apply the Q-leaning method to

find the shortest-time routes, Sect. 4 describes simple

traffic control for AGVs. On the basis of a simulation

study, and Sect. 5 demonstrates the performance of the

presented approach by comparing the routes generated by

the proposed learning method with the shortest-distance
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Fig. 1 An illustration of ship

operation
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routes. Finally, the conclusions and a summary are pro-

vided in Sect. 6.

2 AGV path network and the routing problem

In ACTs, there are two types of guide-path networks used

in practice which are the closed-loop type and the cross-

lane type. The networks of the closed-loop type have

several large circular guide-paths for vehicles to follow

during travel. This allows a simplified control of vehicles

but requires long travel distances for vehicles.

To speed up the deliveries of containers by AGVs, the

more complicated guide-path networks of cross-lane type

have been developed and applied in ACTs. On the cross-

lane networks, which are used in practice, a vehicle moves

through shortcuts to travel on the most attractive route from

its origin to its destination. That is why cross-lane guide-

path networks can significantly reduce the travel distances

of AGVs, but the traffic control of vehicles becomes much

more complicated.

This study assumes a guide-path network of the cross-

lane type, as illustrated in Fig. 2. This network is also used

for the simulation experiments presented in this paper.

Figure 2 shows a layout of the guide-path network with

yard blocks that are laid out in a perpendicular direction to

the berth. In this network, a node corresponds either to a

point of intersection of path segments or to a pickup and

delivery (P/D) point for QCs or to transfer points (TPs) for

AYCs in front of the blocks. An arc in the network rep-

resents the direction of travel that is allowed for AGVs.

The definition of the travel direction on each arc is an

important decision to be made with regard to the design of

the guide-path network. The layout in Fig. 2 provides five

lanes under QCs, including three lanes that are allocated

for transferring containers with QCs, while the other two

lanes are only for the running of vehicles. There are 23

intersections for each lane under the QCs, i.e. one inter-

section for each bitt. All the lanes under QCs point in the

same direction. Some lanes in the parking area are directed

toward the berth, while some lanes are directed toward the

yard. There are seven lanes for the running of vehicles in

the area between the parking zone and the TPs. The TPs are

in front of the blocks, and each block has three TPs.

Figure 3 illustrates a simplified guide-path network with

nine nodes and given travel times on the arcs of the graph.

Table 1 shows a route matrix R for this network indicating

a path between any two nodes. For a path from a starting

node i to the destination node j, the immediate successor of

i is given by R(i,j), the successor of the successor is given

by R(R(i,j),j), and so on until the final destination j is

reached. This paper suggests a method for AGV routing by
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generating the route matrix as illustrated in Table 1, which

minimizes the total travel time for a given set of trans-

portation requests.

3 Application of the Q-learning technique

for routing AGVS

This section discusses how to construct the routes for

vehicles by the Q-learning technique. Q-learning is a form

of reinforcement learning technique. Reinforcement

learning is a process of learning how to match situations

with actions in order to maximize a numerical reward

signal. The learners are not told what actions to take, as in

the case of most machine-learning approaches. Instead,

learners must discover by trial and error which actions

yield the highest reward. The four sub-elements of rein-

forcement learning are policy, reward function, value

function, and model of the environment. The following

describes how the Q-learning technique can be applied to

the routing of vehicles [5].

A policy defines the learning agent’s way of behaving at

a given time. The policy is the core of a reinforcement

learning agent in the sense that it alone is sufficient to

determine the agent’s behavior. In general, policies may be

stochastic. The reward function defines what the good or

bad events are for the agent which is related to the goal of

the problem. However, because the objective of the prob-

lem is to minimize the travel time, a penalty function will

be used instead of a reward function. A value function

specifies what is good or bad in the long run. The value of a

state is the total amount of reward or punishment an agent

can expect to accumulate over the future, starting from that

state. A model of the environment is something that

mimics the behavior of the environment (Richard and

Andrew 1998). In the shortest path problem of this study, a

state is defined by the current location of a vehicle and its

destination and an action is defined as the next immediate

node to be selected.

The following notation is introduced to describe the

learning process.

t The destination node of a current vehicle

k The node where a current vehicle is located

(k,t) The state of the vehicle, which consists of its

current node (k) and its destination node (t)

A(k,t) The set of candidates for the next node

(action), from which a vehicle in state (k,t)

can choose

a An action taken by a vehicle, which is an

element in A(k,t)

The action corresponds to the next node that is

selected

c The discount factor for future penalties

(0 B c B 1)

r[(k,t),a] The penalty, which is the travel time of a

vehicle, at state (k,t), from the current node to

the next node (a). The travel time may also

include the waiting time that is caused by

traffic congestion

Q[(k,t),a] The expected discounted cumulative travel

time of a vehicle, which is at state (k,t) and

selects action a, from the current node to the

destination node

The travel time from a node to the next immediate node

will be a penalty for the corresponding state-action pair.

The value function specifies how to evaluate decisions in

the long run, whereas a reward function indicates how good

a decision is in the immediate future. For this study, the

total travel time from a start node to a destination node will

be the value function. For obtaining the value for element

(k,t) in the route matrix, it is obvious that the state-action

pair with the lowest value of Q[(k,t),a] must be adopted as

the value for element (k,t) of the route matrix. Thus, in

order to obtain the route matrix, it is necessary only to

estimate the value of Q[(k,t),a]. The value of Q[(k,t),a] is

estimated by a simulation-based learning procedure as

follows. Figure 4 describes the simulation-based learning

procedure by tracing a single vehicle.
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Fig. 3 An example of a simplified guide-path network

Table 1 Route matrix R for the example in Fig. 3

Current node Destination node

1 2 3 7 8 9

1 1 2 2 4 2 2

2 1 2 3 1 5 5

3 2 2 3 2 6 6

4 1 5 5 7 7 7

5 4 2 2 8 8 6

6 3 3 3 5 5 9

7 4 4 8 7 8 8

8 7 5 9 7 8 9

9 8 8 6 8 8 9
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3.1 Initialize the vehicle position and the Q-table

All the vehicles are positioned at parking lanes in the

beginning and the initial value for element (k,t) in the

Q-table is set to be a very large value for each action a.

3.2 Select the next delivery order

When a vehicle becomes idle, a delivery order is generated

through the origin–destination probability matrix and the

order is assigned to the vehicle. The (origin, destination)

pair of the order is either (a TP at a block, a lane under a

QC) or (a lane under a QC, a TP at a block).

3.3 Select the next node

Note that the Q-table is updated during the simulation.

When a vehicle, whose final destination is t, selects the

next node at a node k, a conditional probability of selecting

node (action) a, given state (k, t), is used, which is calcu-

lated as follows [7]:

pða ðk; tÞj Þ ¼ qQ̂½ðk;tÞ;a��1

P
a2Aðk;tÞ q

Q̂½ðk;tÞ;a��1 ; ð1Þ

where a [ A(k, t) and q is a positive constant and

Q̂n½ðk; tÞ; a� is an estimated value of Q[(k,t),a].

Q[(k,t),a] has different values for varying candidates for

the next node, a, for the same state that is represented by

the tuple (k,t) for the current and destination nodes. For

efficiently using the computational time, more effort must

be devoted to estimating lower values of Q[(k,t),a] among

various actions, which expression (1) attempts to do.

According to (1), when the value of Q[(k,t),a] for a can-

didate node a is smaller than that for another candidate

node a0 at a given state, the probability of selecting node

a becomes higher than that of selecting node a0 as the next

node. As a result, more samples will be collected from the

experience of vehicles that travel from the current node to

the destination through node a than from that through node

a0. This implies that the value of Q[(k,t),a] can be estimated

in a greater accuracy than that of Q[(k,t),a0].

3.4 Update the Q-table when the current vehicle arrives

at the next node

The following equation is used for updating the value of

Q̂n[(k,t),a], which is an estimator of Q[(k,t),a], during the

simulation.

Q̂n k; tð Þ; a½ � ¼ ð1 � anÞQ̂n�1 k; tð Þ; a½ � þ anfr k; tð Þ; a½ �
þ c min

a0
Q̂n�1 a; tð Þ; a0½ �g ð2Þ

In (2), an ¼ 1

1þvisitsn½ðk;tÞ;a�
and visitsn[(k,t),a] represents

the total number of visits to the state-action pair [(k,t),a]

during the entire learning process. As the number of visits

to the same pair of [(k,t),a] increases, the value of an

approaches zero, and thus, a larger value of the weight

is given to the previous estimate of Q[(k,t),a], which is

Q̂n�1[(k,t),a]. As a result, the value of Q̂n�1[(k,t),a] is

stabilized. The discount factor c has a value between 0 and

1, which makes that the value of Q[(k,t),a] converges to a

finite value.

3.5 Stopping conditions

The value of Q̂[(k,t),a] is updated by using expression (2),

whenever a vehicle arrives at a node on the way to the

destination. If the change of a Q̂ is smaller than a pre-

specified tolerance, e, then the count of the stability is

increased by one. If the change of a Q̂ is greater than or equal

to e, then the count of the stability is reset to zero. When the
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Fig. 4 The procedure of the simulation-based learning for one

vehicle
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count exceeds a pre-specified limit, called ‘‘maximum

counter of stability’’, the learning process is stopped.

Through the simulation study, it was found that as the

simulation run for the learning is continued, the value of

Q̂[(k,t),a] is stabilized, as shown in Fig. 5. By using the

final values of Q̂[(k,t),a], the route matrix was constructed

by inserting a* = arg mina Q̂½ðk; tÞ; a� into element (k,t) of

the route matrix. This route matrix will be used for deter-

mining the travel route of a vehicle for each delivery

request.

For implementing the learning process, a simulation

model for the layout in Fig. 2 was developed by using

eM-plant 7.6 version. Deadlock situations were found

during the experiments and therefore, some rules for

resolving the deadlock situations are provided. The dead-

locks were observed when requests of vehicles for the next

nodes formed a cycle. For guaranteeing deadlock-free

travel of AGVs during the simulation runs, traffic control

rules discussed in Sect. 4 are needed.

4 Traffic control rules used to support the learning

process

During the learning process, it is necessary that traffic

control rules must be provided for guaranteeing conflict

and deadlock-free travel of AGVs. In the following, several

deadlock situations are described, which were found during

the experiments and thus some rules for resolving the

deadlock situations must be provided. Figure 6 illustrates a

possible deadlock situation, in which a cyclic deadlock

may occur; i.e. requests of vehicles for the next nodes form

a cycle of nodes. Figure 6 shows four vehicles from AGV1

to AGV4, and the shaded nodes are the current locations of

the vehicles. Each arrow represents the claim of a reser-

vation for the next node for the travel by a vehicle on a

node. For example, the vehicle on node 1 is claiming node

2 for the travel. However, if AGV1 is allowed to enter node

2, there will be a cyclic claim for the next node, which

means a deadlock.

There are two areas with high possibilities of deadlock

situations. The first one is the area of block lanes that

consist of driving lanes of opposite directions or bidirec-

tional lanes. The other area is between the lanes of the

berth and those in front of blocks, as shown in Fig. 2.

We use the ‘Semaphore’ concept [2] to prevent auto-

mated guided vehicle systems from cyclic deadlock situa-

tions. A semaphore is a classical solution to prevent

resource deadlock. Whenever a vehicle arrives at a sema-

phore area, the counting semaphore is triggered to check

the availability of resources. The control logic of the

counting semaphore can be defined by the following pro-

cedure of ‘wait and proceed.’

4.1 Wait and proceed

When a vehicle predicts a deadlock on its route, the vehicle

stops at its entry location and waits until at least one

vehicle gets cleared from the predicted deadlock region.

Wait if the capacity of semaphore is the same as the

number of resources occupied, then wait until the occupied

number of resources becomes smaller than the capacity.

Proceed if the capacity of semaphore is greater than the

number of occupied resources, then proceed to this sema-

phore area and update the number of occupied resources.

After proceeding, the number of occupied resources

increases by one.

A semaphore area SPi is a set of nodes for which

vehicles can request a reservation. In some cases, there

may be nodes in an overlapped area affected by more than

one semaphore area. Semaphore areas with the capacity of

4 are illustrated in Fig. 7. When, for example, a vehicle

arrives at node 3 and the next visiting node is node 4, this

will trigger the counting of the semaphore areas SP1 and

SP2. The set of nodes in SP1 is {1,2,3,4}, and the set of

nodes in SP2 is {3,4,5,6}. Only when the numbers of

reserved resources in both sets are smaller than the

capacities of the two semaphore areas, which are 3, then

the vehicle can enter the node; otherwise, the vehicle must

wait until the conditions are satisfied.Fig. 5 The stabilization of the Q̂-value

1 32 4

5 76 8

AGV1

AGV3

Cyclic deadlock

1 3

76

AGV2

AGV4

Fig. 6 A cyclic deadlock situation on block lanes
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Figure 8 illustrates a head-to-head conflict on a bidi-

rectional path segment. In the simulation of this study,

when a conflict of this type was detected, a detour, instead

of the original route, was selected for avoiding this conflict.

5 Simulation study

5.1 Simulation scenario

A simulation program was developed by using the

Em-plant� simulation package for the learning process.

The simulation program was run on a Pentium IV pro-

cessor of 3 GHz clock-speed and 1 GB memory. A con-

tainer terminal with one berth of the length of 360 m, three

QCs, and seven storage blocks, each of which had three

transfer points, was modeled. The guide-path network

corresponded to that in Fig. 2. The size of a node was

assumed to be large enough to cover a vehicle. The length

of each node was assumed to be 16 m. The total number of

nodes in the terminal was 320. Five vehicles were assigned

to each QC. During the simulation, every vehicle was

dedicated to a single QC.

Nine scenarios of the delivery requirements, as shown in

Table 2, were used for evaluating the approach of this

paper. Each scenario has different positions of QCs or a

different assignment of blocks to QCs. In scenarios 1 to 4,

the positions of QCs are equal, but the blocks for containers

that are to be discharged differ across these scenarios.

However, in scenarios 5 to 9, containers are distributed

uniformly over all the seven blocks, but the positions of

QCs differ across the scenarios. Each QC discharges 150

containers and is assigned five AGVs. The operation cycle

time of QCs and YCs are assumed to be 120 and 60 s,

respectively. In the experiments, the value of e was set to

be 0.01. The maximum counter of stability was set to 3000.

The value for the discount factor c was set to 0.9 in all

experiments.

5.2 Simulation results

The average travel time of vehicles using the routes

obtained from the learning method was compared with that

from the shortest-distance routes that are the most popular

in practice. Table 3 shows the ratio of the travel time from

the learning method to that from the shortest-distance

routes. The travel time consists of the moving time and the

waiting time. It was found that the learning-based routing

method outperformed the shortest travel distance route

with regard to the average travel time by 17.3%.

Table 4 shows the computational time for the learning

and the average travel time of vehicles per trip for different

sets of the stopping parameters, which are values of the

maximum counter of the stability and e. Scenario 1 was

used for the results in Table 4. Note that the computational

time becomes longer and the average travel time becomes

shorter as the maximum counter becomes larger and e
becomes smaller. Thus, we assumed that the case with the

smallest average travel time in Table 4 defines the refer-

ence value of 100%.

6 Conclusions

This study applied the Q-learning algorithm to AGV

routing in port container terminals. The method in this

paper attempts to find routes with the shortest travel time

for each delivery order. It was shown how the Q-learning

method can be used to estimate the expected travel time of

vehicles between two nodes in a guide-path network. For

the implementation of the simulation model, deadlock-

avoidance strategies were developed and embedded in the

simulation program.

Through a simulation study, the performance of the

learning algorithm was compared with that of the approach

of shortest-travel-distance routes. It was shown that the
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Fig. 8 Head-to-head conflict at bidirectional path
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Fig. 7 An example of semaphore areas in block lanes

Logist. Res. (2011) 3:19–27 25

123



travel time can be reduced by 17.3% by using the learning-

based routes instead of the shortest-distance routes. It was

also found that the parameters for the stopping rule affect

the quality of the routes and the computational time for the

learning. Thus, it is necessary to find appropriate levels of

the parameters of the stopping rules.

For future research, the time for learning must be

reduced further so that the approach in this paper becomes

more applicable in practice. As the structure of the guide-

path network becomes more complicated, the possibility of

deadlocks becomes higher. Thus, more studies on methods

for preventing deadlocks must be conducted in future.
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