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Abstract This paper introduces a bi-objective winner

determination problem which arises in the procurement of

transportation contracts via combinatorial auctions where

bundle bidding is possible. The problem is modelled as a

bi-objective extension to the set covering problem. We

consider both the minimisation of the total procurement

costs and the maximisation of the service-quality level at

which the transportation contracts are executed. Taking

into account the size of real-world transport auctions, a

solution method has to cope with problems of up to some

hundred contracts and a few thousand bundle bids. To

solve the problem, we propose a bi-objective branch-and-

bound algorithm and eight variants of a multiobjective

genetic algorithm. Artificial benchmark instances that

comply with important economic features of the transport

domain are introduced to evaluate the methods. The

branch-and-bound approach is able to find the optimal

trade-off solutions in reasonable time for very small

instances only. The eight variants of the genetic algorithm

are compared among each other by means of large

instances. The best variant is also evaluated using the small

instances with known optimal solutions. The results indi-

cate that the performance largely depends on the initiali-

sation heuristic and suggest also that a well-balanced

combination of genetic operators is crucial to obtain good

solutions.
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Combinatorial auction � Multiobjective optimisation �
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1 Procurement of transportation contracts

Shippers, like retailers as well as industrial enterprises,

often procure the transportation services they require via

reverse auctions, where the objects under auction are

transportation contracts. Usually, such contracts are

designed as framework agreements lasting for a period of

1–3 years, and defining a pick-up location, a delivery

location, and the type and volume of goods that are to be

transported between both locations. Additionally, further

details such as a contract-execution frequency, e.g., deliv-

ery twice a week, and the required quality of service, e.g., a

predefined on-time delivery rate, are specified in a trans-

portation contract. A carrier can bid for one or more con-

tracts. In each bid, the carrier states how much he wants to

be paid for accepting the specified contracts.

Transportation procurement auctions are of high eco-

nomic relevance. Caplice and Sheffi [4] report on the size

of real-world transportation auctions in which they were

involved over a period of 5 years. According to their report,

in a single transportation auction up to 470 (median 100)

carriers participated, up to 5,000 (median 800) lanes were

tendered, and the annual cost of transportation amounted up

to US-$ 700 million (median US-$ 75 million). Elmaghraby

and Keskinocak [10] present a case study of a procurement

auction event in which a do-it-yourself chain operating

mainly in North America procured transportation services

for about a fourth of the in-bound moves to their chain

stores, which corresponds to a number of over 600 lanes. In

the study at hand, the terms lane and transportation contract

T. Buer (&) � G. Pankratz

Department of Information Systems, Faculty of Business

Administration and Economics, University of Hagen,

58084 Hagen, Germany

e-mail: tobias.buer@fernuni-hagen.de

G. Pankratz

e-mail: giselher.pankratz@fernuni-hagen.de

123

Logist. Res. (2010) 2:65–78

DOI 10.1007/s12159-010-0031-8



are used interchangeably. Similarly, shippers in Europe

strive to consolidate their transportation procurement

activities by running European-wide tenderings. As a

consequence, transportation procurement auctions in Eur-

ope have significantly increased in size and scope over the

last few years which makes it difficult to manage them

without the help of advanced information technology. In

recent years, specialised Internet portals have emerged,

which offer contractors a neutral environment for issuing

their logistics contracts. Sizes of tenderings processed via

such platforms reportedly scale up to several hundreds of

contracts [5].

In the scenario presented here, there are a number of

interesting problems on the carrier’s as well as on the

shipper’s side. This paper focuses on the allocation prob-

lem that has to be solved by the shipper after all bids are

submitted. In particular, two characteristics of the given

scenario are of interest.

First, from a carrier’s point of view, there are comple-

mentarities between some of the contracts. That is, the

costs for executing some contracts simultaneously are

lower than the sum of the costs of executing each of these

contracts in isolation. The cost effect of such comple-

mentarities is also referred to as economies of scope.

Second, allocation of contracts to carriers has to be

done taking into account multiple, often conflicting

decision criteria. While some of the criteria (e.g., limiting

the total number of carriers employed) may be naturally

expressed as side constraints, other criteria should be

considered explicitly as objectives. In particular, there is

usually a trade-off between the classical cost-minimisa-

tion goal on the one hand and the desire for high service

quality on the other. Both objectives are of almost equal

importance to most shippers, cf. Caplice and Sheffi [3]

and Sheffi [20].

In their recent review of the carrier selection literature,

Meixell and Norbis [17] identified that the issue of econ-

omies of scope is dealt with in only a few papers and

should be emphasised in future research. In order to exploit

economies of scope (i.e., complementarities) between

contracts in the bidding process, the use of so-called

combinatorial auctions is increasingly recommended [1, 2,

20]. Combinatorial auctions allow carriers to submit bids

on any subset of all tendered contracts (‘‘bundle bids’’).

Through this, carriers can express their preferences more

extensively than in classical auction formats. However,

bundle bidding complicates the selection of winning bids.

This problem is known as the winner determination prob-

lem (WDP) of combinatorial auctions. In the procurement

context, the WDP is usually modelled as a variant of a set

partitioning or set covering problem, both of which are

NP-hard combinatorial optimisation problems. For a

survey on winner determination problems, see e.g., [1].

As to the multiple-criteria property of the allocation

problem, there are two ways by which most shippers solve

the conflict between cost and quality goals:

One way is to restrict participation in the auction to

those carriers that comply with the minimum quality

standard required to meet the quality demands of any of the

contracts. Thus, the service quality performance of all

remaining carriers is considered equal, and the only

objective is to minimise total procurement costs. Unfortu-

nately, unless the contract requirements are fairly homo-

genous, this approach leads to the quality requirements of

many contracts being exceeded. The second way is to take

into account service-quality performance differences

between carriers by applying penalties or bonuses to the

bundle bid prices, depending e.g., on a carrier’s service-

quality in previous periods.

This paper focuses on a third alternative, which inte-

grates quality and cost criteria by explicitly modelling the

WDP as a bi-objective optimisation problem. This model

extends a previous model presented in [2], which can be

seen as a special case of the model presented in this paper.

Previous work does not generally focus on modelling

and solving winner determination problems under explicit

consideration of multiple objectives. Different kinds of

winner determination problems in combinatorial auctions

for transportation contracts are treated in [4, 10, 15, 20,

21]. All these studies focus on bundle bidding to exploit

complementarities between contracts and consider mini-

misation of total procurement costs to be the only

objective.

The structure of the remaining paper is as follows:

Sect. 2 defines the bi-objective winner determination

problem that is being studied. To solve this problem, an

exact bi-objective branch-and-bound and a bi-objective

genetic algorithm are introduced in Sect. 3. The algorithms

are evaluated on newly generated benchmark instances in

Sect. 4. Finally, Sect. 5 gives an outlook on planned future

work.

2 A bi-objective winner determination problem

(2WDP-SC)

The winner determination problem (WDP) of a combina-

torial procurement auction with two objectives is a gener-

alisation of the well-known set covering problem (SC).

Hence the problem at hand is called 2WDP-SC. It is for-

mulated as follows:

Given is a set of transport contracts T. Let t denote a

transport contract with t [ T; a set of bundle bids B where a

bundle bid b [ B is defined as triple b: = (c, s, p). This

means a carrier c [ C is willing to execute the subset of

transport contracts s at a price of p. Given is furthermore a
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set Q: = {qct|Vc [ C ^ Vt [ T} where qct C 0 indicates the

quality level by which carrier c fulfils the transport contract

t. Note that this is a rather expressive way to integrate

quality aspects in the model. However, in practice, it may

be difficult to capture all the qct values. In this case, the

model also allows to represent quality levels of lower

granularity depending on the granularity of the shipper’s

carrier assessment. At the margin, if the shipper evaluates

carrier quality only on a one-value-per-carrier basis, the

quality values for carrier c will be initialised as qct1 ¼ qct2

for all t1, t2 [ T.

The task is to find a set of winning bids W � B; such

that every transport contract t is covered by at least one bid

b. Furthermore, the total procurement costs, expressed in

objective function f1, are to be minimised and the total

service quality, expressed in objective function f2, is to be

maximised. The 2WDP-SC is modelled as follows:

min f1ðWÞ ¼
X

b2W

pðbÞ ð1Þ

max f2ðWÞ
¼

X

t2T

maxfqctjc 2 fcðbÞjb 2 W ^ t 2 sðbÞgg ð2Þ

s.t.
[

b2W

sðbÞ ¼ T : ð3Þ

Each transport contract t has to be chosen at least once

(3). Accordingly, some contracts may be covered by two

or more winning bids and therefore ‘‘paid more than once’’

by the shipper. Hence, preferring a set covering to a

set partitioning formulation might seem at first

counterintuitive. However, given the same set of bundle

bids, the total cost of an optimal solution to the set covering

problem never exceeds the total cost of an optimal set

partitioning solution and might be even lower. Of course, a

set partitioning formulation is appropriate if each carrier

could be forced to submit a bundle bid on each of the

2|T| - 1 contract combinations. However, this seems

unrealistic in practical scenarios due to the high number

of possible combinations. For this reason, from the

shipper’s point of view, the set covering formulation

appears more suitable. Nevertheless, if a contract is

covered by more than one winning bid, there is at least

one carrier who must not carry out this contract, although

that carrier’s bid won the auction. In the scenario at hand,

this is possible, as it appears reasonable to assume free

disposal [19]. In the transportation, procurement context,

free disposal means that a carrier has no disadvantage if he

is asked by the shipper to carry out fewer contracts than he

was paid for.

The first objective function (1) minimises the total cost

of the winning bids. The second objective function (2)

maximises the total service-quality level of all transport

contracts. Note that {c(b)|b [ W ^ t [ s(b)} is the set of

carriers who have won a bid on transport contract t. Since

contracts need to be executed only once but may be part of

more than one winning bid, it is not appropriate to simply

add up the respective qualification values of all b [ W.

Instead, it appears reasonable to assume that the shipper

will break ties in favour of the bidder who offers the

highest service level for a given contract. Hence, by

assumption, for each transport contract t only the maximum

qualification values qct with c [ {c(b)|b [ W ^ t [ s(b)} are

added up. Note that this rule might introduce an incentive

for the carriers towards undesired strategic-bidding

behavior. As this paper does not focus on auction-mecha-

nism design, we leave this issue to forthcoming research.

3 Solution approaches for the bi-objective winner

determination problem

To solve the 2WDP-SC, this section presents two algorithms.

The first is an exact algorithm based on the idea of branch-

and-bound. Taking into account the NP hardness of the

bi-objective set covering problem, the non-linear objective

function f2, and the large size of real world problems, the

branch-and-bound approach will probably solve only some

of the relevant problems in reasonable time. Therefore, a

second solution approach is presented which is an extension

to a successfully applied multiobjective genetic algorithm.

Both algorithms aim to find all trade-off solutions without

weighting the two objective functions. Thus, the shipper

does not have to quantify his preferences, which can be

challenging [20]. Both algorithms find a set of non-domi-

nated solutions (the true Pareto set or a good approximation

set, respectively). The shipper finally has to choose a solution

from this set according to his subjective preferences. The

latter is outside the scope of this study. For notational con-

venience, the 2WDP-SC is treated in the following as a pure

minimisation problem, i.e., the objective function f2 is

redefined as f2:= (-1) � f2 and is to be minimised.

At first, the underlying terminology is defined (cf. e.g.,

[25]): The set of all feasible solutions of an optimisation

problem is denoted by X. A solution x [ X is evaluated by a

vector-valued objective function f(x) = (f1(x),…, fm(x)) with

fðxÞ 2 R
m: A solution x1 [ X dominates another solution

x2 [ X (written x1 � x2), if and only if no component of the

vector-valued objective function f(x1) is larger and at least

one component of f(x1) is smaller than the corresponding

component of f(x2). A solution x* is called Pareto optimal if

there is no x [ X that dominates x*. The set of all Pareto

optimal solutions is called Pareto (solution) set X�: A set of

solutions X is called an approximation of X� or (Pareto)

approximation set, if every solution in X is not dominated by

any other solution in X:
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3.1 A branch-and-bound algorithm based

on the epsilon-constraint method

In order to solve the 2WDP-SC exactly, the Epsilon-

constraint method [6, 13] is used. The idea of the Epsilon-

constraint method is to optimise a single objective

function, treating the other objective function as additional

side constraint whose value is bounded by a particular e. To

obtain the Pareto set, a proper sequence of single objective

optimisation problems has to be solved for different values

of e. Here, the 2WDP-SC is linearised by treating f2 as side

constraint. The derived single-objective minimisation

problem is denoted as eWDP-SC and consists of the

objective function (1) with the covering constraint (3) and

the epsilon-constraint f2(W) \ e.
Using a problem-independent branch-and-bound app-

roach based on linear relaxation, though seeming natural,

proved unsuitable for solving the eWDP-SC. This is due to

the non-linearity of the second objective function f2, in

which for each transport contract, a max{.} term is cal-

culated and the results are summed up over all contracts.

To obtain a linear model, all max{.} terms have to be

replaced by additional side constraints and additional

decision variables (e.g., [22]). Compared to the |B| decision

variables of the non-linear eWDP-SC, the linearised variant

of the model contains |B| ? |T| ? |T| � |B| decision vari-

ables. For example, even for a small problem instance with

40 bundle bids and 20 contracts, there are already 860

decision variables.

Therefore, a problem-specific branch-and-bound proce-

dure is introduced to solve the eWDP-SC. This algorithm,

referred to as eLookahead-branch-and-bound (eLBB),

consists of two main components. The first component

(repeatLBBForDifferentEpsilons, Alg. 1) iteratively selects

a feasible value for e and hands it over to the second

component, the actual branch-and-bound procedure Look-

aheadBB (Alg. 2). This procedure solves the eWDP-SC to

find the cost minimal solution for the given quality level e.

Algorithm 1 repeatLBBForDifferentEpsilons

1: input: set of bundle bids B

2: W  LookaheadBBðB; 0Þ
3: initialise approximation set X fWg
4: � f2ðWÞ // worst (highest) e

5: ��  f2ðBÞ // best (lowest) e

6: while e[ e* do

7: W  LookaheadBBðB; �Þ
8: X X [ fWg
9: � f2ðWÞ

10: end while

11: output: X which is the Pareto set

Alg. 1 initially determines the worst and the best

possible values of f2, which relate to the maximum and

minimum e-values, respectively (keep in mind that f2 was

redefined to a minimisation objective). On the one hand,

the maximum (worst) feasible value for e is calculated by

solving the eWDP-SC using LookaheadBB with e = 0.

The obtained solution coincides with the minimal cost

solution of the set covering problem. On the other hand,

the minimum (best) possible value for e, denoted as e*, is

simply given by f2(B) (generally, B is not in the Pareto

set).

After the minimum and maximum bounds for e are

known, repeatLBBForDifferentEpsilons triggers Look-

aheadBB to consecutively calculate the solutions in the

Pareto set. Alg. 1 computes in each iteration of the while-

loop one solution. The loop starts with the highest (worst)

e, calls LookaheadBB and then decreases e to the f2 value of

Algorithm 2 LookaheadBB

1: input: (b1, …, bmax), e

2: bestCost 1
3: bestSolution fg
4: initial problem node PN  ffg; 1;1g
5: initialise queue and add PN to queue

6: while queue not empty do

7: PN  problem node with minimum lower bound from queue

8: remove PN from queue

9:

10: contribute false

11: if f1(PN.W [{bPN.i}) \ bestCost then

12: if sðbPN:iÞ n
S

b2PN:W sðbÞ6¼; then

13: contribute true

14: else if f2(PN.W) C e and f2(PN.W [ bPN.i) \ f2(PN.W)

then

15: contribute true

16: end if

17: end if

18:

19: if contribute = true then

20: PN1 fPN:W [ fbPN:ig;PN:iþ 1;PN:lbg
21: processNode(PN1)

22: end if

23:

24: freeBids fbi 2 ðb1; . . .; bmaxÞji [ PN:ig
25: if PN.W [ freeBids is feasible then

26: PN2 fPN:W ;PN:iþ 1;PN:lbg
27: processNode(PN2)

28: end if

29: end while

30: output: bestSolution
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the current Pareto solution until e = e*. By this approach,

the number of required while-iterations to find the Pareto

set is minimal, i.e., the number of costly LookaheadBB

calls is as low as possible.

The branch-and-bound procedure LookaheadBB (Alg. 2)

solves the eWDP-SC for a given e and the set of bundle

bids B, represented as sequence (bi)b [ B with 1 B i B max

and max = |B|, by implicitly enumerating the solution

space. The solution space is divided into subspaces which

are represented in the branch-and-bound tree as problem

nodes. Here, a problem node is a triple PN : = (W, i, lb) in

which PN.W represents the current (probably incomplete)

solution, i.e., the set of winning bids, PN.i represents the

index of the bundle bid investigated in the node, and PN.lb

is the lower bound of the current solution PN.W for f1. All

active problem nodes are saved in a priority queue

according to ascending values of PN.lb.

The algorithm was developed according to the following

main ideas:

Branching on bundle bids. Each node PN has two

potential descendants PN1 and PN2. PN1 contains the

current bundle bid bPN.i as winning bid (bPN.i [ PN1.W),

whereas PN2 does not ðbPN:i 62 PN2:WÞ: Two additional

rules are used to decide whether a descendant node should

be generated at all:

– PN1 is only generated if bPN.i contributes to reach a

feasible solution. This means that the current bundle

bid bPN.i has to cover at least one transport contract

uncovered so far, or, if the epsilon constraint is not yet

met, adding bPN.i must reduce f2.

– On the other hand, PN2 is only generated if the current

winning bids PN.W and the remaining free bids jointly

lead to a feasible solution with respect to both the

covering and the epsilon constraints. In checking this

property, the algorithm has to lookahead on future bundle

bids, which led to the labelling Lookahead in eLBB.

Solving a relaxed problem to obtain a lower bound. For

each problem node, a lower bound is calculated by solving

a residual set covering problem which is defined through

the remaining free bids, the transport contracts still

uncovered and by dropping the integrality constraints.

LookaheadBB uses the procedure processNode (Alg. 3)

to control how to continue processing a given PN. Pro-

vided that PN.W is feasible and a new lowest cost

solution is found, the current best solution and the cur-

rent best cost value are updated. Additionally, all prob-

lem nodes from the queue whose lower bound is less

than the current best-known cost value are removed.

Provided that PN.W is infeasible, a new lower bound

PN.lb is computed. The lower bound equals f1(PN.W)

plus the cost value of the optimal solution to the residual

linear relaxed set covering problem. This set covering

problem is defined by those contracts not covered by

PN.W which have to be covered by a subset of the

bundle bids given by freeBids.

Algorithm 3 processNode

1: input: problem node PN

2: if PN.W is feasible then

3: if f1(PN.W) \ bestCost then

4: bestCost  f1ðPN:WÞ;
5: bestSolution PN:W

6: delete all problem nodes in queue with lower bound

C bestCost

7: end if

8: else

9: if PN.i B |B| then

10: PN.lb f1ðPN:WÞþ cost of linear relaxed solution to the

residual set covering problem.

11: add PN to queue

12: end if

13: end if

3.2 A genetic algorithm based on SPEA2

To heuristically solve the 2WDP-SC, a multiobjective

genetic algorithm (MOGA) is applied. This approach has

been proven suitable for solving hard multiobjective

combinatorial optimisation problems, e.g., [8]. The pro-

posed MOGA follows the Pareto approach and searches for

a set of non-dominated solutions.

To find a Pareto approximation set, a MOGA controls a

set of core heuristics. The core heuristics of a MOGA can

be divided into problem-specific and problem-independent

operators. For those problem-independent operators that

care for the specialties of population management in the

multiobjective case (fitness-assignment strategy, selection

of parents and insertion of children in the population), the

methods proposed by Zitzler et al. in their Strength Pareto

Evolutionary Algorithm 2 (SPEA2) are applied [23, 24].

The decision to use SPEA2 relies on its competitive per-

formance particularly for solving bi-objective combinato-

rial optimisation problems [24]. In addition, standard bitflip

mutation and standard uniform crossover [9] have been

chosen as problem-independent mutation and crossover

operators, respectively.

As problem-specific operators, three core heuristics are

introduced: Simple Insert, Greedy Randomised Construc-

tion and Remove If Feasible. Remove If Feasible is applied

as a problem-specific mutation operator, whereas Simple

Insert and Greedy Randomised Construction are both used
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to initialise a population as well as to repair an infeasible

solution. The latter is necessary because both the uniform

crossover operator and the bitflip mutation operator may

end up with infeasible solutions.

Since all three problem-specific core heuristics operate

on encoded individuals, the chosen encoding is presented

first. A binary encoding of a solution seems suitable for set

covering-based problems like the 2WDP-SC. Every gene

represents a bundle bid b. If b [ W the gene value is 1, and

if b 62 W the gene value is 0.

Simple Insert (SI) in each iteration randomly chooses a

bundle bid b that contains at least one still uncovered

transportation contract as a winning bid. The transport

contracts sb in bid b are marked as covered. These steps

are repeated until all contracts T are covered and SI

terminates.

Greedy Randomised Construction (GRC) is inspired by

the construction phase of the metaheuristic GRASP [12]

and is slightly adapted for the bi-objective case (see

Alg. 4). During each iteration, a winning bid is selected

randomly from the restricted candidate list (RCL).

Algorithm 4 GreedyRandomisedConstruction (GRC)

1: input: infeasible solution W

2: while W infeasible do

3: best bundle approximation set RCL fg
4: for all b [ B \W

5: if b not dominated by any b0 [ RCL then

6: RCL RCL [ fbg
7: end if

8: end for

9: randomly chose a b from RCL

10: W  W [ fbg
11: end while

12: output: feasible solution W

Note that the RCL is an approximation set of best

bundles, which holds only non-dominated bundles with

respect to the rating function g: = (gp, gq) with

gpðb;WÞ ¼
pðbÞ=jsðbÞ n sðWÞj for jsðbÞ n sðWÞj[0

1 for jsðbÞ n sðWÞj ¼ 0

�

gqðb;WÞ ¼ ðf2ðWÞ � f2ðW [ bÞÞ=
X

b02W[b

js b0ð Þj:

Both functions assign smaller values to better bundles.

While gp rates a bundle according to the average additional

costs attributed to each new (i.e., still uncovered) contract

in b, gq weights the reduction in f2 caused by adding b to

the solution by the reciprocal total number of procured

contracts (in the current solution).

Remove If Feasible (RIF) randomly chooses a winning

bid b0 [ W, labels b0 as visited, and removes b0 from W. If

after this the solution W is still feasible, then another ran-

domly chosen winning bid (which is also labelled as vis-

ited) is removed etc. If W becomes infeasible by removing

b0, then b0 is reinserted in W. RIF terminates if all winning

bids are labelled as visited.

Via combination of the core heuristics, a set of different

algorithms A is obtained (see Fig. 1). Each algorithm Ai 2
A; i ¼ 1. . .8 is denoted as a triple, e.g., A2 is represented

by (SI/BF/GRC) which reads as follows: A2 uses SI to

construct solutions, bitflip mutation (BF) as mutation

operator and GRC as repair operator. Since uniform

crossover is the only crossover operator, this operator is not

considered as a distinctive feature in the taxonomy of

Fig. 1. In order to refer to a set of algorithms, the wildcard

* is used at one or more positions, e.g., (*/BF/GRC)

identifies A2 and A6.

4 Evaluation

The eLBB and the eight MOGA variants are tested on a set

of newly generated benchmark instances, which reflect

some important economic features of the transportation

domain. First, the generation of these instances is descri-

bed. After that, the results of the eLBB and the eight

MOGA variants are presented.

4.1 Generating test instances

To the best of our knowledge, no benchmark instances

exist for a multiobjective WDP like the proposed 2WDP-

SC. However, there are several approaches for generating

problem instances for single-objective winner determina-

tion problems with various economical backgrounds, e.g.,

the combinatorial auction test suite ‘‘CATS’’ of Leyton-

Brown and Shoham [16] or the bidgraph algorithm intro-

duced by Hudson and Sandholm [14]. To generate test

instances for the 2WDP-SC, some ideas of the literature are

extended to incorporate features specific to the procure-

ment of transportation contracts.

As this investigation does not address any game theo-

retical issues like strategic bidding and incentive compat-

ibility, it is assumed that carriers reveal their true

preferences. Thus, the terms ‘‘price’’ and ‘‘cost valuation’’

of a contract combination can be used synonymously.

General requirements of artificial instances for combina-

torial auctions are stated by Leyton-Brown and Shoham.

Both postulations seem self-evident but have not always be

accounted for in the past [16]:
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– Some combinations of contracts are more frequently

bid on than other combinations. This is due to usually

different synergies between contracts.

– The charged price of a bundle bid depends on the

contracts in this bundle bid. Simple random prices, e.g.,

drawn from [0,1], are unrealistic and can lead to

computationally easy instances.

Furthermore, it seems reasonable to demand that the

following additional requirements specific to transportation

procurement auctions are met:

– All submitted bids are binding and exhibit additive

valuations (OR-bids, cf. [18]). Hence, a carrier is

supposed to be able to execute any combination of his

submitted bids at expenses which do not exceed the sum

of the corresponding bid prices. Extra costs do not arise.

Due to the medium-term contract period of 1–3 years in

the scenario at hand, capacity adjustments are possible in

order to avoid capacity bottlenecks. Furthermore, the

carrier has the opportunity to resell some contracts to

other carriers who guarantee the same quality of service.

– From the previous assumption, it follows that a rational

carrier c does only bid on combinations of contracts

that exhibit strictly subadditive cost valuations. The

cost valuation of a set of contracts s is called strictly

subadditive, if for each partition T of the set s, the cost

valuation of s is strictly lower than the sum of the cost

valuations of all parts of the respective set partition.

Formally, the carrier-specific set Pc of all strict

subadditive bids can be defined as expressed in the

following formula, in which P(s) denotes all set

partitions of s and P(s) denotes the power set of s:

Pc ¼ s � Tcj8T 2 PðsÞ : pcðsÞ\
X

s02T
pc s0ð Þ

( )
;

with PðsÞ ¼ T � PðsÞj
[

s02T
s0 ¼ s ^

\

s02T
s0 ¼ ;

( )

Strict subadditivity in terms of cost is due to synergies

between contracts. Bids composed of contracts which

exhibit strict subadditive cost valuations are referred to

as essential bids. Since all submitted bids are supposed

to be OR-bids, any non-essential bid could always be

replaced by an equivalent combination of two or more

essential bids. Therefore, bidding on non-essential bids

is redundant.

– The 2WDP-SC was modelled as a set covering

problem, as it appeared reasonable to assume free

disposal. Free disposal means that the price charged by

carrier c for any subset of a set of contracts s is not

greater than the price carrier c would charge for s.

Formally, this is expressed in the following formula, in

which Bc denotes the set of bundle bids submitted by

carrier c:

p b0ð Þ � pðbÞ j 8s b0ð Þ � sðbÞ ^ b; b0 2 Bc:

To be an instance suited to the 2WDP-SC, the bundle

bids of each carrier should also feature the free dis-

posal property.

– Finally, it is assumed that the carrier-specific costs of a

transport contract depend on both the contract’s

resource requirements and the service-quality level at

which the carrier is able to perform the contract.

The bids are generated using Algorithm 5, which takes

four values as input: the number nBids of bids to be gen-

erated, the sets C and T that represent carriers and transport

contracts, respectively, and the density q of the synergy

matrix. The synergy matrix consists of binary values,

which indicate the pairwise synergies between contracts.

Synergies between contracts imply that the respective

contract combination is cost subadditive. A higher density

tends to result in more and larger contract combinations a

carrier has to consider.

First of all, BidGeneration (Alg. 5) initialises some

variables. For each carrier, a subset of contracts Tc is

determined as the set of contracts that the carrier is sup-

posed to be willing to bid for. While it is not necessary that

all Tc are disjoint, they must jointly cover all contracts in T.

After that, the following steps are performed for each

carrier. First, the carrier-specific synergy matrix is ran-

domly filled according to density q. The service-quality qct

at which carrier c is able to execute contract t is chosen

Initialize Population

Mutation

Repair

CRGIS
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SI GRC GRC CRGIS CRGIS SI

Variant A i A
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Fig. 1 Eight possible

combinations of core heuristics

to form an algorithm Ai
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randomly from the integer values one to five, with higher

values indicating a higher service level. Furthermore, to

each contract, a resource demand rct is assigned. This is an

abstract indicator for the resources required by a carrier c to

carry out contract t. The resource demand of a given

contract may vary from carrier to carrier, as carriers might

have, e.g., different locations of their depots, different

types of vehicles or existing transportation commitments

which influence the required resources. The values rct are

chosen randomly between 0.1 and 0.5.

Algorithm 5 BidGeneration

1: input: nBids, density of synergy matrix q, T, C

2: V c [ C: randomly select relevant contracts Tc , T, such thatS
c2C Tc ¼ T

3: for all carriers c [ C do

4: V i, j [ Tc: set sc
ij  1 with probability q, indicating that

between contracts i and j exist synergies

5: V t [ Tc: randomly set contract quality qct [ {1, 2, 3, 4, 5}

6: V t [ Tc: randomly set resource demand rct [ [0.1, 0.5]

7: determine essential contract combinations Pc

8: subadditiveBidGraphAlgorithmðPcÞ to calculate prices p(s)

for each s 2 Pc:

9: end for

10: 8c 2 C : Bc  select Pcð Þ
11: output: all carrier bids B ¼

S
c2C Bc

To obtain the set of essential contract combinations in

line 7, assume for each carrier c a synergy graph

SGc = (Tc, Ec). Let the vertices be the contracts Tc carrier

c is interested in. If two contracts i, j [ Tc feature syner-

gies, that is sc
ij ¼ 1; then both contracts are connected

via an edge, that is Ec ¼ ði; jÞjsc
ij ¼ 1 ^ i; j 2 Tc

n o
: It is

assumed that any number of contracts can be combined in a

single bid, as long as the sum of the corresponding resource

demands does not exceed a maximum total resource

demand of 1. This capacity limit is motivated by the fact

that unfolding of complementarities generally is subject to

resource limitations. For example, contracts often feature

synergies if they are carried out conjointly in the same tour,

which, however, is subject to vehicle capacity restrictions.

The resource demand of each contract t [ Tc is given by rct.

Then, the set of feasible essential combinations of contracts

equals the set of all possible induced subgraphs of SGc withP
trct B1.

In the next step, a price for each combination of contracts

is determined using the SubadditiveBidGraph algorithm,

which is explained below. After that, the select operator

choses among all feasible contract combinations those

combinations on which each carrier is supposed to place his

bids. Therefore, all contract combinations in P are rated

according to two criteria: average cost per contract p(b)/

|s(b)| and average quality per contract
P

t [ s(b)qc(b)t/|s(b)|.

Then, the best contract combinations with respect to these

criteria are selected according to the dominance concept. In

doing so, select makes sure that on the one hand, the total

number of bids submitted by all bidders is nBids, and on the

other hand, each t [ T is covered by at least one bundle bid

to obtain a solvable instance.

The SubadditiveBidGraph algorithm (cf. Alg. 6) is applied

to determine prices for the essential contract combinations,

which comply with the assumptions of free disposal and strict

subadditivity. The algorithm is based on the approach of

Hudson and Sandholm [14], which generates bids with free

disposal. This approach is extended, such that all generated

bids also show strictly subadditive cost valuations.

Algorithm 6 SubadditiveBidGraph

1: input: set of essential contract combinations Pc; carrier c

2: Asup  ði; jÞji; j 2 Pc and i � jf g
3: Asub  ði; jÞji; j 2 Pc and i 	 jf g
4: initialise bidgraph BG Pc;Asup;Asub

� �

5: 8s 2 Pc with jsj ¼ 1 :

UBðsÞ  LBðsÞ  pðsÞ  RandomBasePriceðs; cÞ
6: initialise lower bounds

8s 2 Pc with jsj ¼ 1 : UpdateLowerBoundsðBG; sÞ
7: initialise upper bounds

8s 2 Pc with jsj[ 1 : UBðsÞ ¼
P

t2s pðtÞ
8: k 2

9: while k� jPj do

10: for all s 2 fs 2 Pjjsj ¼ k ^ LBðsÞ 6¼ UBðsÞg do

11: set price randomly LBðsÞ UBðsÞ pðsÞ2
LBðsÞ;UBðsÞ½
12: UpdateLowerBounds(BG, s)

13: UpdateUpperBounds(BG, s)

14: end for

15: k k þ 1

16: end while

17: output: prices p(s) for each s 2 P consistent to the free

disposal and the subadditivity assumption

The idea of the original bidgraph algorithm as proposed

by Hudson and Sandholm is to define lower bounds LB(s)

and upper bounds UB(s) for each considered contract

combination s such that free disposal holds. Then the

procedure successively draws a price for each contract

combination between its lower and upper bounds; this price

is propagated through the bidgraph to sharpen the lower

and upper bounds of the remaining contract combinations.

In order to extend this approach to support contract

combinations that exhibit both free disposal and strictly

subadditive cost valuations, the bidgraph is initialised as

follows: The vertices of the bidgraph BG represent all
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essential contract combinations P: There are two sets of

arcs, Asup and Asub. The arcs in Asup indicate a superset

relation, i.e., an arc (i, j) from vertex i to j means that the

contracts in j are a superset of the contracts in i. Similarly,

the arcs in Asub represent all subset relationships.

In line 5 through 8 of Alg. 6, the lower and upper bounds

of all k-combinations of contracts are initialised. For a

given k 2 N; let the set of all k-combinations of contracts

be defined as fs 2 P : jsj ¼ kg: The lower bounds LB for

all single contracts (k = 1) are initialised by Algorithm 7.

The price p({t}) of a single contract t is a random variable

that is normal distributed with mean l and variance r2. The

values of p({t}) are forced into the interval [minPrice,

maxPrice] with minPrice = 0.5 and maxPrice = 1.5. As

stated above, higher resource requirements and a higher

service level should tend to result in a higher price. Thus, l
depends on the resource demand rct and the service quality

qct of contract t. The variance r2 is set to 1.0.

After RandomBasePrice (Alg. 7) has initialised the LB

of all 1-combinations, Alg. 8 recursively propagates these

prices through the bidgraph and updates the lower bounds

of all superset contract combinations if necessary. By now,

the upper bounds for the k-combinations, k [ 1, can be

calculated as the sum of the prices of all respective

1-combination contracts.

Algorithm 7 RandomBasePrice

1: input: single-contract set {t}, carrier c

2: minPrice  0:5

3: maxPrice  1:5

4: resources_multiplier rct=0:3 //expected mean of rct (Alg. 5)

5: qualification_multiplier qct=3 //expected mean of qct (Alg. 5)

6: l 1:0þ resources_multiplier � qualification_multiplier

7: r2  1:0

8: pðftgÞ  normal distributed random variable with mean l and

variance r2

9: if p({t}) [ maxPrice OR p({t}) \ minPrice then

10: RandomBasePrice({t}, c)

11: end if

12: output: p({t})

Algorithm 8 UpdateLowerBounds

1: input: BG, s

2: for all s0 2 BG:Pj s; s0ð Þ 2 BG:Asup do

3: if LB(s0) \ p(s) then

4: LB(s0) /p(s)

5: UpdateLowerBounds(BG, s0)

6: end if

7: end for

To ensure strictly subadditive valuations, the while-loop

of Alg. 6 sets the bid prices for all k-combinations in the

order of non-decreasing k, starting with k = 2. For all

k-combinations with LB(s) =UB(s), a price is drawn

randomly between LB(s) and UB(s) and propagated

through the bidgraph to adjust the lower and upper bounds

of the other contract combinations.

In doing so, it must be assured that the upper bound never

exceeds the costs of any partition of s since this may lead to

inconsistencies with respect to the subadditivity requirement.

Therefore, Alg. 9 solves a set partitioning problem to opti-

mality. The instance of the set partitioning problem is given by

the sets {j | (s, j) [ Asub} and the associated costs UB(j).

Algorithm 9 UpdateUpperBounds

1: input: BG, s

2: for all s0 2 BG:Pj s; s0ð Þ 2 BG:Asup do

3: p�  price of optimal set partitioning solution to {s0 | (s, s0)
[ BG.Asub} and associated UB(s0)

4: if p* \ UB(s0) then

5: UB s0ð Þ  p�

6: UpdateUpperBounds(BG, s0)

7: end if

8: end for

The BidGraphAlgorithm continues until the prices of all

essential bids are set. After that, the select-Operator of Alg. 5

is applied as described above. The procedure keeps gener-

ating bids for all carriers, until the test instance is complete.

4.2 Measuring the quality of an approximation set

To compare the performance of single-objective heuristics

in terms of achieved solution quality, a major step is to

compare the objective function values of the best found

solutions, respectively. The matter is more complicated in

the bi-objective case, as approximation sets have to be

compared. Often there are no clear dominance relations

between the solutions of different approximation sets, see

e.g., Fig. 2a. Therefore, various indicators to measure the

quality of approximation sets are discussed in the literature,

cf. [25] for a detailed discussion of the state of the art.

To evaluate the solution quality of an approximation set,

the popular hypervolume indicator IHV is used [23]. IHV

measures the dominated subspace of an approximation set,

bounded by a reference point RP. RP must be chosen such

that it is dominated by all solutions of the approximation

set. Furthermore, the reference point has to be identical for

all compared heuristics on the same problem instance.

Here, for each instance, RP is defined as f max
1 ; f max

2

� �
¼

ðf1ðBÞ; 0Þ; respectively.
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Furthermore, the objective values of all solutions

are normalised according to fi ¼ f i � f min
i

� �
= f max

i � f min
i

� �

with i ¼ 1; 2; f max
1 ¼ f1ðBÞ; f min

2 ¼ f2ðBÞ � 1; f max
2 ¼ 0:

Thus, values of IHV range from zero to one, and larger

values indicate better approximation sets. However, as RP

can be chosen freely to a large degree, IHV is an interval-

based measure. Therefore, the quality gap between algo-

rithms can only be expressed via absolute differences of

IHV, but not via percentage ratios of IHV.

4.3 Evaluation of the eLookahead–branch-and-bound

The eLBB was implemented in Java 6. A floating point

precision of ten digits is used. The lower bounds are cal-

culated by Dantzig’s Simplex Algorithm in the imple-

mentation of the Apache Commons Math Library (version

2.1). The algorithm was tested on an Intel Pentium 4

(2.0 GHz) with 500MB RAM available to the Java Virtual

Machine.

Preliminary testing gave evidence that computation

times of eLBB rapidly increase with the number of bundle

bids. Even moderate problem sizes caused the eLBB to run

several hours before terminating. Therefore, a set of eight

rather small test instances was generated according to Sect.

4.1 in order to evaluate eLBB. The instances vary only in

the number of bundle bids (up to 80) and in the number of

transport contracts (up to 40). The number of participating

carriers and the density of the synergy matrix are held

constant with values of 10 and 50%, respectively.

The results of these instances are reported in Table 4 in

Sect. 4.4.2. The table shows the number of solutions in the

Pareto set and the required runtime in seconds. In addition,

the table contains results from the MOGA, which will be

discussed in more detail in Sect. 4.4.2.

The findings demonstrate that eLBB is suited to solve

small instances with up to 60 bundle bids in less than an

hour. For solving problem instances with 80 bundle bids,

eLBB consumes several hours of runtime. The test of the

instance with 80 bundle bids and 40 contracts was aborted

after a runtime of 24 h. These results strongly suggest that

exact approaches like the eLBB are inappropriate as a

solution approach for practical procurement scenarios

which easily reach problem sizes of several hundreds of

bundle bids. Nevertheless, for small instances, the optimal

solutions obtained by the eLBB provide a valuable

benchmark for evaluating the quality of heuristic approa-

ches like the MOGA (cf. Sect. 4.4.2).

4.4 Evaluation of the genetic algorithm

The eight genetic algorithms A1 to A8, (cf. 2) were tested on

the same hardware platform as the eLBB (Pentium 4,

2.0 GHz, 500 MB Ram available to the Java Virtual

Machine). The problem-specific heuristics were coded in

Java 6; for the problem-independent parts the SPEA2

distribution coded in C was used [11].

For the evaluation of the genetic algorithms, two data

sets were considered.

On the one hand, problem instances of practical size as

reported in Sect. 1 were generated. These instances are

referred to as large instances. The instances vary in the

number of bids (500–2,000), the number of contracts (125–

500) and the number of carriers (25–100). In addition, the

density q of the synergy matrix was varied (25–75%). With

respect to the observation that auctions with fewer transport

contracts usually tend to attract fewer bidders, it appeared

reasonable to restrict the combinations of instance parameter

values to those shown in Table 2. Since for the large

instances, absolute benchmarks in the form of optimal

solutions are not available, the relative performance of the

eight MOGA variants on these instances is compared

instead. The results of these tests are discussed in Sect. 4.4.1.

f1

f2

min

min

solution
algorithm A

solution
algorithm B

f1

f2 RP

hyper volumemin

min

(a)

(b)

Fig. 2 Illustration of hypervolume indicator IHV. a Solutions of two

approximation sets found by two algorithms A and B. b The shaded
areas of each algorithm depict the dominated subspace, respectively.

Note that the light-shaded area is overlapping the dark-shaded area
in part. The volume of the dark-shaded area is greater than the

volume of the light-shaded area, therefore algorithm B is considered

better than algorithm A
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On the other hand, the small instances described in Sect.

4.3 were also used to evaluate the eight genetic algorithms.

The results for these instances are compared to those of the

exact eLBB algorithm in Sect. 4.4.2.

4.4.1 Results and discussion for large instances

In this section, the relative performance of the eight

MOGA variants is evaluated using the large problem

instances. The parameter values of the genetic algorithms

were derived from some preliminary testing. Two to five

alternative values for each parameter were tested on three

randomly selected instances. The values that gave the best

results in manageable time are those presented in Table 1.

The same values were applied to all MOGA variants and

were kept constant through all experiments.

The results for the hypervolume indicator are presented

in Table 2. The last column indicates the IHV value of the

reference approximation set X ¼
S

A2A XA:

The results in Tables 2 and 3 were statistically evaluated

with the Kruskal–Wallis and the Mann–Whitney rank sum

test. All statistical conclusions are stated at a significance

level of 5%. With respect to the given test instances, the

compared heuristics and the applied quality indicator, the

following conclusions may be drawn.

– The probability distributions of the IHV values of the

eight algorithms differ significantly. The ranks given in

Table 2 are derived by a systematic pairwise compar-

ison of the hypervolume values using the Kruskal–

Wallis rank test.

– A8 performs very well, as could be expected, since it

incorporates three problem-specific heuristics. Accord-

ing to the Kruskal–Wallis rank test, taking into account

all 240 outcomes, A8 dominates all other algorithms but

A7. A8 computes the best results for 25 out of 30 test

instances, followed by A7 which achieves the highest

value 5 times, and A5 which scores 4 times the best value.

– The variants A1, A2, A3, A4 that belong to the class

(SI/*/*) never achieve a best value in any one of the

instances (cf. Table 2).

– The impression that a weak initial population signifi-

cantly compromises final solution quality even if more

elaborate mutation and repair operators are used

intensifies by considering test no. 1 in Table 3. The

approximation sets derived by the class of algorithms

which use GRC as initialisation heuristic clearly

outperform the class of algorithms which use SI as

initialisation heuristic. This is true even on a signifi-

cance level of 0.0001.

– From the fact that the overall performance strongly

depends on the initialisation heuristic, one can assume

that any effort invested here will be rewarded.

– Tests 2 and 3 give no hints that the more intelligent

operators RIF and GRC (applied in the repair phase)

promise better results than BF and SI in the general

case. However, the performance of RIF significantly

improves if it is applied to an intelligently initialised

population (test 5, test 4).

– Tests 6 and 7 give evidence that the mutation operators

BF and RIF do not show different behaviour, even if

the repair operator is changed. However, if RIF is

applied successfully to an individual, then there is no

need to apply any repair operator, as the operator leaves

the individual feasible by definition.

– Interestingly, an influence of the repair heuristic on the

performance of all algorithms is not observable (test

8–11). This result gets emphasised as we could not

prove a significant performance advantage of A8 over

A7 (both differ only in the applied repair operator). This

followed from the Kruskal–Wallis Test, which takes

into account all 240 observations (30 instances, 8 algo-

rithms). However, statistics paint a different picture if

only the 60 observations resulting from A7 and A8 are

compared with a signed rank test. Then, A8 clearly

outperforms A7. Hence, in well-balanced algorithms,

the repair operator may be of importance.

4.4.2 Results and discussion for small instances

For the set of small instances, the solutions found heuristi-

cally by the GA are now compared to the Pareto optimal

solutions found by eLBB. This is done to gain more insights

into the performance of the MOGA, especially whether the

MOGA is capable of finding optimal solutions and how close

the approximate solutions are to the Pareto front.

The seven small instances that could be solved by eLBB

(cf. Sect. 4.3) were computed by all eight variants of the GA.

As before, the computing time was fixed to 5 min. In

accordance with the results for the large instances, the variant

A8 performed best, i.e., in all seven instances it reached the

best hypervolume value. For this reason, Table 4 compares

only the results of A8 to the Pareto optimal solutions.

Table 1 Chosen parameter values for the test

Parameter Value

Size of population 50 individuals

Uniform crossover-probability 15%

Bit-exchange-probability in uniform-crossover 50%

Mutation-probability 100%

Bitflip-probability 10%

Runtime 300 s

No. of parents l for creating k offspring 4

No. of offspring k generated by l parents 4
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In Table 4, column DIHV shows the difference of the

hypervolume attained IHV(eLBB) - IHV(A8) by the two

algorithms. The third column to the right states for each

instance the number of solutions in the Pareto set. In addition,

the second column to the right specifies the number of

solutions found by A8 which are Pareto optimal, i.e., which

are members of the Pareto solution set derived by eLBB.

The GA variant A8 is able to find optimal solutions for

six out of seven instances. No optimal solution was found

for the 60 bundle-bids/40 contracts instance. For the

smallest instance (for which it is trivial to generate all

possible solutions), all solutions of the Pareto set are found

and DIHV equals zero.

Note that in general, a higher number optimal solutions

found by the GA does not necessarily imply that the cor-

responding approximation set is closer to the true Pareto

set. In particular, an approximation set that does not con-

tain any optimal solution still may be quite close to the

Pareto frontier. For example, consider the 60 bundle, bids/

40 contracts instance for which A8 does not find any

optimal solution. Nevertheless, DIHV indicates that A8

obtains a good approximation of the true Pareto frontier.

The Pareto frontier and the approximation frontier attained

by A8 for this instance are simultaneously visualised in

Fig. 3. Though being close to the optimal points, the

solutions of A8 appear slightly shifted to the right.

Table 2 Comparison of IHV for eight MOGA variants applied to the set of 30 large test instances (specified by columns 1–4)

|B| |T| |C| q A1 A2 A3 A4 A5 A6 A7 A8 X

500 125 25 25 0.8473 0.8476 0.8482 0.8252 0.8663 0.8663 0.8878 0.8914 0.8914

50 0.8623 0.8627 0.8624 0.8605 0.8827 0.8827 0.9028 0.9038 0.9038

75 0.8614 0.8612 0.8693 0.8667 0.8759 0.8759 0.8937 0.8983 0.8983

1,000 125 25 25 0.9167 0.9170 0.8943 0.8509 0.9371 0.9371 0.9466 0.9479 0.9480

50 0.9223 0.9220 0.8754 0.8652 0.9499 0.9499 0.9523 0.9508 0.9523

75 0.9341 0.9340 0.9233 0.9117 0.9490 0.9490 0.9533 0.9535 0.9536

250 25 25 0.8623 0.8623 0.8725 0.8725 0.8818 0.8818 0.8961 0.9021 0.9021

50 0.8627 0.8625 0.8647 0.8579 0.8720 0.8720 0.8948 0.9001 0.9001

75 0.8555 0.8553 0.8573 0.8648 0.8736 0.8736 0.8953 0.8961 0.8967

50 25 0.8482 0.8488 0.8235 0.8199 0.8864 0.8865 0.8924 0.8927 0.8974

50 0.8498 0.8482 0.8417 0.8357 0.8811 0.8811 0.8935 0.8943 0.8943

75 0.8500 0.8497 0.8431 0.8407 0.8800 0.8800 0.8937 0.8937 0.8937

2,000 125 25 25 0.9553 0.9547 0.8843 0.8812 0.9748 0.9748 0.9720 0.9720 0.9772

50 0.9586 0.9584 0.8944 0.8751 0.9778 0.9778 0.9785 0.9786 0.9786

75 0.9615 0.9614 0.9277 0.9213 0.9757 0.9757 0.9745 0.9746 0.9764

250 25 25 0.9268 0.9267 0.9150 0.9052 0.9516 0.9516 0.9531 0.9531 0.9531

50 0.9282 0.9277 0.9148 0.9130 0.9471 0.9471 0.9522 0.9532 0.9532

75 0.9261 0.9262 0.9317 0.9315 0.9440 0.9440 0.9486 0.9510 0.9510

50 25 0.9150 0.9148 0.8387 0.8229 0.9472 0.9469 0.9331 0.9337 0.9498

50 0.9228 0.9223 0.8775 0.8780 0.9494 0.9494 0.9530 0.9530 0.9546

75 0.9221 0.9222 0.8993 0.8983 0.9471 0.9471 0.9505 0.9508 0.9516

500 25 25 0.8700 0.8700 0.8880 0.8972 0.8911 0.8911 0.8988 0.9022 0.9022

50 0.8601 0.8601 0.8785 0.8863 0.8837 0.8837 0.8933 0.8942 0.8942

75 0.8579 0.8579 0.8807 0.8848 0.8777 0.8777 0.8885 0.8944 0.8944

50 25 0.8503 0.8499 0.8490 0.8510 0.8810 0.8810 0.8901 0.8902 0.8907

50 0.8605 0.8600 0.8587 0.8667 0.8826 0.8826 0.8938 0.8947 0.8947

75 0.8532 0.8529 0.8694 0.8666 0.8776 0.8776 0.8886 0.8887 0.8894

100 25 0.8367 0.8347 0.8263 0.8165 0.8726 0.8715 0.8708 0.8708 0.8809

50 0.8433 0.8416 0.8254 0.8305 0.8798 0.8770 0.8825 0.8827 0.8900

75 0.8468 0.8448 0.8465 0.8370 0.8803 0.8803 0.8939 0.8939 0.8939

Rank 5.5 5.5 7.5 7.5 3.5 3.5 1.5 1.5

Mean 0.8848 0.8848 0.8699 0.8676 0.9081 0.9079 0.9160 0.9166

Standard dev. 0.0405 0.0405 0.0308 0.0310 0.0378 0.0378 0.0311 0.0311

All IHV values were obtained in a single run for each of the eight MOGA variants A1 to A8. All runs were terminated after 5 min (300 s)
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Obviously, A8 is indeed able to find solutions at the same

level of f2 like eLBB, but at the cost of higher values of f1.

This effect seems to intensify for decreasing values of f2.

This provides an indication that developing the cost-

reducing abilities of the problem-specific core heuristics

could further improve the GA’s performance.

5 Conclusions and outlook

In this study, a model for a bi-objective winner determi-

nation problem in combinatorial transportation procure-

ment auctions was presented. The model, which is based on

a set covering formulation, simultaneously minimises total

procurement costs and maximises the service-quality level

of the execution of all transportation contracts.

To solve this model, two algorithms were introduced.

On the one hand, an exact bi-objective branch-and-bound

algorithm was proposed following the epsilon constraint

approach. On the other hand, the well-known multiobjec-

tive evolutionary algorithm SPEA2 was extended by a set

of problem-specific evolutionary operators to solve the

2WDP-SC. By differently combining these operators, eight

variants of this genetic algorithm were constructed.

The performance of the algorithms was evaluated on a

set of newly generated test instances. The test instances

were designed to reflect important economic properties of

the transportation domain, e.g., free disposal and strict

subadditivity of the submitted bids.

The exact branch-and-bound algorithm finds optimal

solutions only for small instances in reasonable time and

therefore proved unsuitable for transportation procurement

auctions of practical dimensions. The relative performance

of the eight MOGA variants was evaluated on the large

problem instances. The results show a strong dependence

of the MOGA performance on the quality of the initial

population. Unless the population is initialised using the

more elaborated heuristics, even the intelligent operators

do not compensate for the losses in solution quality. The

best genetic algorithm was also compared to the results of

the exact algorithm for the small instances. For these

instances, the genetic algorithm was able to generate

solutions in or close to the true Pareto solution set.

Our ongoing and future work on this topic takes the

following directions. In order to improve the performance

of the exact approach, calculation of lower bounds is being

enhanced using heuristics. In addition, another exact

approach instead of the sequential epsilon-constraint

approach is being developed which simultaneously opti-

mises both objectives. As to the heuristic approach, the

generic crossover and mutation operators of the GA still

leave room for improvement by integrating problem-spe-

cific knowledge. This also could mitigate the sensitivity of

Table 3 Statistical comparison of selected sets of algorithms

No. Ai vs. Aj H0 â (%)

1 (GRC/*/*) vs. (SI/*/*) reject 0.01

2 (*/RIF/*) vs. (*/BF/*) – 73.85

3 (*/*/GRC) vs. (*/*/SI) – 91.41

4 (SI/BF/*) vs. (SI/RIF/*) – 16.03

5 (GRC/RIF/*) vs. (GRC/BF/*) reject 0.01

6 (*/RIF/SI) vs. (*/BF/SI) – 75.48

7 (*/RIF/GRC) vs. (*/BF/GRC) – 67.65

8 (SI/*/GRC) vs. (SI/*/SI)) – 88.52

9 (GRC/*/GRC) vs. (GRC/*/SI) – 80.11

10 (*/BF/GRC) vs. (*/BF/SI) – 93.10

11 (*/RIF/SI) vs. (*/RIF/GRC) – 99.58

The null hypothesis H0 says that the hypervolume indicators of the

approximation sets obtained by Ai and Aj have the same distribution.

The significance level a of all rejections is 5%. Based on the given

results, â is the minimum level of significance level at which H0

would be rejected

Table 4 Comparison of heuristic approach A8 with exact approach

eLBB on eight small instances

|B| |T| IHV eLBB IHV A8 DIHV X�j j Found

by A8

Time (s) eLBB

20 5 0.8576 0.8576 0.0000 7 7 1

20 0.6095 0.6029 0.0066 11 6 2

40 20 0.8169 0.8126 0.0043 13 6 44

40 0.5677 0.5639 0.0038 12 3 112

60 20 0.8652 0.8537 0.0115 17 5 2,975

40 0.6988 0.6913 0.0075 10 0 362

80 20 0.8915 0.8870 0.0045 17 2 19,461

40 – – – – – [86,400

All runs of A8 were terminated after 5 min (300 s). The runs of eLBB

were terminated after 24 h (86,400 s), if the computation of the

Pareto set has not been finished by then

Fig. 3 Comparison of solutions found by A8 and eLBB for the

instance with 60 bundle, bids and 40 contracts
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the GA to the quality of the initial population. Furthermore,

an alternative heuristic approach is being developed based

on advanced neighbourhood search techniques. Finally,

several ways to integrate both exact and heuristic approa-

ches are being intensively explored. For example, overall

performance effects caused by seeding the exact approach

with bounds derived from the solutions found by different

construction heuristics are being studied. On the other

hand, using an exact approach to repair infeasible offspring

of a GA appears promising.
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