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Abstract Autonomous control in logistics enables single

logistics objects to control the production and transporta-

tion process. This shift from central planning to decen-

tralized control in real-time offers many possibilities to

cope with highly dynamic and complex systems. The

algorithms that define the decision behavior of each

logistics object, autonomous control methods, play a key

role in the successful implementation of autonomous con-

trol in logistics systems. A transparent classification is

needed in order to identify the basic elements these

methods consist of. This classification supports the evalu-

ation of autonomous control methods in terms of gain-

ing knowledge about which method characteristics are

responsible for a method’s performance. This paper defines

what autonomous control methods are, works out their

fundamental characteristics, presents multiple methods

developed so far, and compares these methods regarding

characteristics and performance.

Keywords Autonomous control � Categorization �
Decentral � Logistics � Production planning and control

1 Introduction

In the past few years, a change can be observed in the area

of logistics. Technological developments and changing

market conditions have resulted in rising complexity in

production and consequently in logistics. These changes

include an increasing number of product variants, faster

delivery times, and shorter product life cycles [7]. The

complexity of nowadays logistics processes has significant

impact on the performance of logistics processes in terms

of delivery time and delivery reliability [3, 5, 8, 18]. A new

approach to deal with complexity is to increase the level

of autonomous control in logistics processes [10]. The

Collaborative Research Center (CRC 637) ‘‘Autonomous

Cooperating Logistic Processes—A Paradigm Shift and its

Limitations’’ in Bremen, Germany, aims at developing new

methods in production planning and control (e.g. [12, 13,

17]) as well as in transportation control (e.g., [9, 15]) in

order to overcome the obstacles created by today’s com-

plexity and dynamics. Simulation studies have already

shown that increasing the level of autonomous control

improves the logistic performance [14]. At the same time,

the availability of new information technologies such as

any type of wireless communication (e.g. RFID), distrib-

uted computing, and computer miniaturization serves as an

enabler for autonomous control. The CRC focuses its work

on decentralized methods that have the ability to utilize

given flexibility potentials in logistics processes [23], but

also on gaining more knowledge on autonomously con-

trolled system behavior, e.g. identifying the limitations of

autonomous control.

Several different autonomous control methods have

been developed and tested in simulation studies. These

previously conducted studies have illustrated that auton-

omous control can realize a higher logistics target
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achievement in comparison to conventional production

planning and control [9, 14, 25]. However, it remains

unclear which basic characteristics make up autonomous

control and what is their influence on the logistics system

performance. The goal of this work is to identify basic

elements of autonomous control methods and their influ-

ence on performance so that future methods can be

developed systematically by focusing on parameters that

contribute to a higher achievement of logistics targets.

This paper provides an overview on the current under-

standing of autonomous control in logistics as well as,

more specific, on the term autonomous control methods in

Sect. 2. By collecting the basic elements of these methods,

a classification pattern is elaborated. In Sect. 3, a literature

survey of currently available autonomous control methods

is presented. The methods are classified in terms of the

previously developed pattern, and a systematic similarity

analysis is conducted. Section 4 presents a comparison of

the methods’ performance. The performance evaluation has

been done using computer simulations. The conclusion

brings together all insights and points out the next steps for

research in this field.

2 Autonomous control methods

For getting a better understanding how autonomous control

works if applied in manufacturing and transportation

environments or in computer simulations for scientific

purposes, it is necessary to consider the single elements

that compose an autonomous controlled system. Autono-

mous control itself is defined as follows:

‘‘Autonomous control in logistics systems is charac-

terized by the ability of logistics objects to process

information, to render and to execute decisions on

their own.’’ [24]

The definition consists of different elements from dif-

ferent layers. On the one hand, there are the logistics sys-

tem, the logistics objects, and the information, which are

structural elements that describe the environment in which

autonomous control takes place. Information processing

and decision rendering and execution on the other hand are

activities that characterize the way the flow of goods is

controlled in such a system. Thus, two different layers can

be observed in a logistics system: the logistics processes as

well as the control methods that operate on the logistics

processes. In this paper, the focus is set on control methods

that enable logistics objects to take their own decision in

contrast to a scheduled and centralized production planning

and control strategy.

A prerequisite for the survey presented in Sect. 3 is

having a definition of the term autonomous control method

as well as a scheme for characterization. From the above

mentioned description of autonomous control and its ele-

ments follows this definition:

An autonomous control method is a generic algorithm

that describes how logistics objects render and exe-

cute decisions by their own.

There are many different ways an autonomous control

method can operate. A simple method could allow each

semi-finished part to choose the next production step in a

job-shop scenario by preferring that machine with the

lowest number of waiting items in front of a machine

[11]. Another example is a method that is inspired by

ants’ foraging behavior. It uses virtual pheromones,

emitted by the parts, which then indicate a preferred path

through the production [4]. The diversity of possible

autonomous control methods leads to the questions of the

methods’ individual performance and calls for a compar-

ison of these methods. A previously developed Autono-

mous Control Application Matrix is available to support

the evaluation and comparison efforts [22]. A comparison

of simulation results is presented in Scholz-Reiter et al.

[14], but only taking into consideration three different

methods and aiming at showing the relation between

process complexity and level of autonomous control.

Beside the evaluation of single methods, it is necessary to

understand the structure of a method and to be able to

identify similarities and differences in order to interpret

the comparison results. Additionally, the categorization

presented in this paper can be used in the future to create

a toolbox for autonomous control method development.

Upon availability of performance results for multiple

methods, the performance can be connected to the method

characteristics and thus offers information which charac-

teristics to consider when creating a method for a specific

application purpose.

A recent approach for classifying autonomous control is

called the Catalogue of Criteria for Autonomous Control in

Logistics [2]. This catalog collects criteria from the deci-

sion-making, information processing, and decision execu-

tion. For each criterion, four possible properties are offered

for classifying the logistics system. The result of the

classification leads to a degree of autonomous control. This

degree describes—taking into consideration the thirteen

different criteria—how much a system is autonomously

controlled and thus makes different logistics systems

comparable in terms of the usage of autonomous control.

For the purpose presented in this paper, namely making the

building blocks of autonomous control methods visible,

this approach is not feasible as it only offers the degree of

autonomous control as a single figure but is not able to

compare multiple methods regarding their basic elements

of their construction.
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Coming from the methods that have been analyzed,

characterization of autonomous control methods can be

done by using seven dimensions that have been defined:

temporal data, planning steps, artificial values, communi-

cation type, data scope, actor, and data storage. Each

dimension is separated in reasonable sections, e.g. planning

steps can be described in discrete steps as 1, 2, 3, or more

planning steps. For categorization purposes, the dimension

values have been arranged in up to four groups. An over-

view of dimensions, values, and descriptions can be found

in Table 1.

The dimension Temporal data indicates whether the

method uses data from the past, future, or both. Past data

are defined as any kind of figure that can be extracted

from the environment, e.g. buffer inventory level of a

machine, moving average of processing time at a

machine, etc. Future data can be planned data or esti-

mated values for the above mentioned figures. Caution

should be exercised at this point as estimated values are

often determined by calculating averages from past data,

and thus, these kind of values have to be classified as

past data. The number of Planning steps points out how

deep the algorithm searches in a decision tree. Usually

autonomous control methods are kept simple and have a

very short information horizon, which corresponds to

having 1 planning step, but some algorithms additionally

take into consideration what can happen two, three, or

more steps after the pending decision. Artificial values

are figures that are not extracted directly from the envi-

ronment but are generated by the algorithm itself. These

artificial values can be pheromones as presented in the

above mentioned ant approach, but also virtual money

used in auction-theoretic approaches. The Communication

type describes how communication is conducted by the

algorithm. It distinguishes between communication

among the moving logistics objects (parts), among the

fixed objects (machines), among all objects, or commu-

nication with a central control entity. The communication

itself can range from a simple data request (e.g. a part

demands the current buffer inventory level from a

machine) to extensive negotiations between agents (e.g.

parts bidding in an auction for resources). The Data

scope provides information about the number of variables

used for decision making. The dimension Actor points

out whether the parts, the machines, or a central entity

act as decision maker in the algorithm. An issue

regarding this dimension is the fact that from the decision

point of view, it is not important who takes the decision.

Only the input parameters and the target system define

the outcome of the decision. This dimension is never-

theless part of the categorization, as it plays an important

role when implementing an autonomous control method

in a real logistics environment. The hardware layout of

an autonomous control solution is strongly influenced by

this characteristic. Finally, Data storage describes where

the figures are stored that form the basis for decision

making. Again, this dimension is closely related to the

hardware implementation.

3 Autonomous control methods survey

In this section, autonomous control methods presented in

the literature are described, characterized in accordance

with the above defined dimensions, and compared by per-

forming a systematic similarity analysis.

3.1 Methods description

Various methods for autonomous control in logistics are

available today. Some of them have been developed in

the course of the research of the CRC 637, while others

were invented without explicitly naming them autono-

mous control methods. The descriptions of each single

autonomous control method identified can be found in

Table 2.

Table 1 Autonomous control categorization dimensions

Dimension Values Description

Temporal data Past Indicates whether the method uses

data from the past, future

(planned), or both
Future

Hybrid

Planning steps 1 Number of future steps (e.g.

machines) the method considers2

3

More

Artificial values No Usage of artificial values for

decision making, e.g. virtual

pheromones
Static

Dynamic

Communication

type

Part-machine Communication and data exchange

between logistics objects or a

central entity and logistics

objects

Part–part

Machine–

machine

Central

Data scope Low (1–2) Number of variables used for

decision makingMedium (3–5)

High ([5)

Actor Part Logistics object that actively

decidesMachine

Central

Data storage Part Location of data storage

Machine

Central
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Table 2 Autonomous control methods survey including method name (short name in parentheses), key idea, basic algorithm description, and

remarks

Method Ant algorithm (Ant) Cunning ant system (C-Ant)

Source Ant colony control for autonomous decentralized shop floor

routing by Cicirello and Smith [4]

The cunning ant system by Tsutsui and Pelikan [16 ]

Key ideas Ants carry products Two different types of ants exist

Different jobs have different types of pheromones c-Ants, cunning Ants base most of their path on previous paths

Machines have pheromone concentrations d-Ants are conventional ants, who donate their path to the c-Ants

Ants choose machines based on pheromone concentration Both locate pheromones at spots on their path

Pheromones expire over time different pheromones will be overwritten

Optional: ants sometimes choose machines randomly pheromones evaporate after some time

Algorithm 1. Initially choose a random machine 1. Let in some d-ants and some c-ants

2. Avoid machines with different pheromones 2. Let the d-ants choose the paths with the higher pheromone

concentration with a higher likelihood

3. Go to machines with same pheromones 3. Let already deposited pheromones expire at a constant rate

4. Let pheromones expire after some time 4. Let c-ants retrieve the paths of the d-ants and use them partially

for their own paths

5. Increase pheromone concentration if ant has visited the

machine

6. Overwrite old pheromones if the pheromone type of the ant is

different

7. Update pheromone concentrations once ant is through

8. Optional: choose a random machine

Remarks Long initiation time;

Not flexible if job influx changes

Algorithm avoids stagnations and is thus more flexible than the

ordinary ant algorithm

Method Pheromone approach (Ph) Bee foraging (Bee)

Source Autonomous control of production networks using

a pheromone approach by Armbruster et al. [1]

Autonomous control of a shopfloor based on bee’s foraging

behaviour by Scholz-Reiter et al. [13]

Key ideas Average throughput time is used as a pheromone Bees indicate good food sources via dancing

To model evaporation, only the last n throughout

times are considered

Food sources are measured by quality and quantity

Number of relevant parts for the throughput time

is the rate of evaporation

More bees go to the better sources

Algorithm 1. Calculate average throughput times for the last n parts 1. Choose the best food place

2. Go for the machines with the lowest average

throughput times

2. Different food sources (machines) exist

a. Advertise (dance) and send information

aa. Number of recruited bees depends on the number of dances

ab. The quality of the source depends on the length of the dance

b. Just use but don’t recruit

c. Abandon machine and join pool of unemployed bees

Remarks Slow adjustment to change Long initiation time

Not flexible if job influx changes

Method Simple rule based 1 (SRB 1) Simple rule based 2 (SRB 2)

Source Autonomous control of a shop floor based

on bee’s foraging behaviour by

Scholz-Reiter et al. [13]

The Influence of Production Networks’ Complexity on the

Performance of Autonomous Control Methods

by Scholz-Reiter et al. [11]

Key ideas Compares estimated waiting time at buffers Compares estimated waiting time at buffers

Uses future events Uses data from past events

Algorithm 1. Parts are rated in estimated processing time 1. When a part leaves a machine it sends information

about the processing times
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Table 2 continued

Method Simple rule based 1 (SRB 1) Simple rule based 2 (SRB 2)

2. Current buffer levels are calculated as a sum

of the estimated processing time

2. This information is used by the following parts

to decide where to go next

3. Choose the machine with the

lowest processing time buffer

3. Parts choose the machine which provides the lowest

mean duration of waiting and processing for parts of the

same type

Remarks Useful with high number of machines Useful with high number of products;

Changes more slowly compared to the previous method

Method Queue length estimator (QLE) Due date (DD)

Source Modeling and analysis of production logistics processes

based on biologically inspired strategies by J. Bendul

(Master’s thesis, University of Bremen, Germany)

Modeling and analysis of production logistics processes

based on biologically inspired strategies by J. Bendul

(Master’s thesis, University of Bremen, Germany)

Key ideas Computes and estimates buffer states Uses the queue length estimator (QLE)

Part decides autonomously based on various factors Orders parts by earliest due date

Algorithm 1. All buffer states of machines that can perform

the next step are computed

1. After a part leaves a machine it chooses its next

destination based on the QLE method

2. The part decides whether to switch to a different

production line based on processing times or setup

times, using local information

2. Within the queue of parts to be processed the part

with the most urgent due date is chosen

to be processed next

3. Parts compare their own estimated time with the

estimated time of the parts in the buffers and takes

the machine with the minimal time

Remarks Similar to the simple rule methods above Similar to the simple rule methods above

Method One logistics target per rule (OLTPR) Market based control (market)

Source Developed in this research group Developed in this research group according to Vollmer [20]

Key ideas Implement various rules at the machines and parts, where

each rule tried to achieve a specific logistics target

Virtual currency is introduced

Can be easily extended with new rules to further

improve outcome

Parts carry a shopping list of work that needs

to be done on them

Each job needed for a part has a budget associated

Distance traveled to the machine has a price

Parts auction for access to the machine

Shopping List can be altered during the production process

Algorithm 1. Utilization: each machine send a stronger attraction

signal as its buffer becomes less full

1. Parts with shopping list and budgets enter the

production process

2. On time delivery: parts are prioritized by their due date 2. Parts bid on the machines on their shopping list

3. On time delivery: parts prefer machines with

short throughput time

3. Highest bidder gets access to the machine

4. The parts bid according to the minimal price of the

machine and the distance cost

5. Machines grant access for the parts, if they are the

highest bidder

Remarks The various rules have to be weighted appropriately

to achieve good performance

It is not clear how to choose the budgets

Price levels on the machines are important for production activity

Development of price levels might be usable to investigate

overall state of the production process, thus provide macro data

Production is more dynamic as shopping lists can be

altered during the process
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3.2 Systematic comparison of autonomous control

methods

A systematic comparison of two autonomous control

methods can be achieved by a mathematical definition of

the similarity between two methods. For two autonomous

control methods Mk and Ml, the similarity is labeled Skl.

Similarities can be defined for each categorization dimen-

sion, and the similarity for the i-th categorization dimen-

sion is labeled Skl
i . The total similarity Skl between two

Table 2 continued

Method Holonic manufacturing (Holonic) Bionic manufacturing system (Bio)

Source According to van Brussel [19]; A market approach to holonic

manufacturing by Markus et al. [6]

Reinforcement learning approaches to Biological Manufacturing

Systems by Ueda [17]

Key ideas Two agents bargain over the next item to be processed Attraction fields dependent on the type of job exist

Agents are machines and management Fields attract specific jobs

Management and machines bargain for the jobs to do Jobs have DNA like information about what work

needs to be done on them

Management punishes machines for delays Machine have operating knowledge that evolves

Machines bid to get jobs from management

Algorithm 1. After a part leaves a machine it chooses its next

destination based on the QLE method

1. Machines(Robots) are attracted by fields

2. Within the queue of parts to be processed the part

with the most urgent due date is chosen

to be processed next

2. Parts send out fields, depending on the production

process they require

Remarks Punishment have to be chosen carefully No specific algorithm provided

Existence of social dilemma; machine decision

might cause overall loss, but gain for machine

Based on manufacturing processes that require robots

and on the spot machines

Requires a central authority

Method Link-state internet routing protocol (LSIRP) DLRP (DLRP)

Source Developed in this research group according

to Wenning et al. [21]

Autonomous control by Means of Distributed Routing

by Wenning et al. [21]

Key ideas Based on a link-state routing protocol Parts request a route from machines

Each machine has a map of the entire facility Machines communicate best routes to a destination

Parts can be sorted according to any rule

Algorithm 1. A map of the facility and the connections between

machines is built/provided

1. Each machine is a knowledge broker

2. Shortest paths are computed based on various chosen

criteria, generally using Dijkstra’s algorithm

2. Before a part decides on a best route it ask the

current machine about possible ways

to reach the destination

3. As the situation changes (breakdowns, buffer states,

new machines) only the changes are propagated

among the machines

3. Each machine includes relevant information from

its knowledge base and forwards it to its successors

4. To make sure that insignificant changes are not

propagated there must be a lower threshold

4. The successors do the same and forward this information

along the production chain

5. The request is propagated through the network until the

destination (drain) is reached

6. Then the last broker (the drain or the last machine)

sends a reply directly to the part with all

the collected information

7. After receiving one or multiple probable paths the

part decides on the better way to take

Remarks The machines can self-organize if information about

the part production cycle is included

A timeout may be included to reduce the amount

of waiting for possible paths

The threshold may need to be scaled by the

local buffer level

Can be computationally expensive
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autonomous control methods Mk and Ml is defined as the

arithmetic mean of the categorization-based similarities

Skl
i : Skl ¼ 1

n

Pn
i¼1 Skl

i . The categorization-based similari-

ties Skl
i are defined for each categorization dimension

individually.

The similarity Skl
1 for temporal data is given by the

following similarity matrix:

Past Hybrid Future

Past 1:0 0:5 0:0
Hybrid 1:0 0:5
Future 1:0

ð1Þ

According to this definition, two methods are completely

similar with respect to the temporal data if they use data

from the same temporal range. Distinctions about the data

number, origin, and quality are not made in the present

analysis.

The similarity Skl
2 for planning steps is defined by a 4

9 4 similarity matrix:

ð1Þ ð2Þ ð3Þ ð[ 3Þ
ð1Þ 1:0 0:5 0:333 0:0
ð2Þ 1:0 0:5 0:0
ð3Þ 1:0 0:333

ð[ 3Þ 1:0

ð2Þ

The present analysis does not make a distinction for

methods using more than 3 planning steps.

The similarity Skl
3 for artificial values is defined by the

following similarity matrix:

No Static Dynamic

No 1:0 0:0 0:0
Static 1:0 0:5

Dynamic 1:0

ð3Þ

Autonomous control methods using artificial values

have no similarity to methods using no artificial values.

Autonomous control methods using static artificial values

are defined as 50% similar to methods using dynamic

artificial values.

For the communication type, the four values are non-

exclusive, and more than one communication type can be

realized in an autonomous control method. The similarity

Skl
4 for the communication type is defined as the arithmetic

mean of the similarities for all communication types:

Skl
4 ¼ 1

4

X4

j¼1

Skl
4j with Skl

4j ¼
1 : Mk

4j ¼ Ml
4j

0 : Mk
4j 6¼ Ml

4j

(

ð4Þ

The similarity Skl
5 for data scope is defined by the same

similarity matrix as Skl
1 with the labels replaced by low,

medium, and high.

The similarities Skl
6 and Skl

7 for actor and data storage,

respectively, follow the as definition as for Skl
4 , but the

arithmetic mean is created from three contributions.

It should be mentioned that the temporal data Mk
1 and

data scope Mk
5 can also be represented as nonexclusive data

pairs (past/future) and (low/high), respectively, which leads

to a similar definition of Skl
1 and Skl

5 as for Skl
4 . Thus, for 5

out of 7 categorization dimensions, an identical similarity

definition is used.

The classification of the autonomous control methods

with respect to the newly defined categorization dimen-

sions (see Table 1) is shown in Table 3. So far, the

Bionic Manufacturing System method (Bio) is conceptual

research only, and a classification is not possible at the

moment. For the other 13 autonomous control methods, a

classification according to the categorization dimensions

is possible. These data are used to calculate the simi-

larities Skl for all pairs (Mk, Ml). The full similarity

matrix is shown in Table 4. For symmetry reasons, only

the upper triangle is shown, and the diagonal elements,

which are always 100%, are omitted. The SRB1 method

and the QLE method have a similarity of 100%. This

does not mean that both methods are identical. The

classification of the autonomous control methods is based

on a rather rough scheme, and small differences in any

of the categorization dimensions are not observable in

the analysis.

Data from Table 4 are used to identify clusters of similar

methods. A method cluster is defined as a set of autono-

mous control methods with all similarities Skl larger than

the threshold 71.43%, which corresponds to an identical

classification for 5 out of 7 categorization dimensions. Four

autonomous control method clusters could be identified

(see Fig. 1 for a graphical representation). The categori-

zation values for the four clusters are shown in Table 5.

The clusters 1, 2, and 3 overlap, and 5 methods belong to

more than one cluster. This indicates that all 8 methods

(Ant, Bee, DD, OLTPR, Ph, QLE, SRB1, and SRB2) of the

clusters 1, 2, and 3 are similar, which is confirmed by

inspection of the categorization values (Table 5). Common

features for the autonomous control methods of the clusters

1, 2, and 3 are

– Planning Step is 1

– Part–Machine communication is used

– Data Scope is either low or medium

– Decisions (Actor) are made by parts

– Data Storage is on the machine

The Pheromone Approach fulfills the similarity criterion to

all methods of the clusters 1, 2, and 3, and the methods Ant,

Bee, DD, OLTPR, QLE, SRB1, and SRB2 can be regarded

as modifications of the Pheromone Approach although

most methods have a completely different derivation. The

methods LSIRP and DLRP create cluster 4, which deviates

from cluster 1, 2, and 3 in the following categorization

values
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– Planning Step is larger than 3

– Machine–Machine communication is used

– Data Scope is high

– Decisions (Actor) are made by machines

The methods C-Ant, Market, and Holonic cannot be

assigned to any of the method clusters, and each method is

a singular development so far.

The cluster analysis shows that many of the autono-

mous control methods developed so far bear much

resemblance to each other despite their derivations from

different origins. So far, rarely used categorization values

could be the starting point for the development of new

autonomous control methods that differ significantly from

the existing ones, and the following features should be

considered:

– Planning Step is larger than 1

– Artificial Values are used

– Communication is not restricted to Part–Machine

– Data Scope is high

– Decisions (Actor) is not restricted to parts

– Storage is not restricted to machine

4 Simulation studies

After classifying and analyzing the different methods, a

comparison regarding their performance will be presented

in the following. To compare different autonomous control

methods, a generic and common production scenario is

used. The shop floor consists of m parallel production lines

where each production line comprises n machines Mij

(i = 1, …, m, and j = 1, …, n). Each machine has an input

buffer Bij with a maximum level of 40 items. K is the

number of different products that can be produced by the

production system.

At the source, the raw materials for each product type

enter the system. The input frequencies for the raw

materials are expressed by three temporally shifted sinus-

shaped functions. This input model assumes a continu-

ously varying number of incoming orders and reflects the

dynamics within the production system. It is assumed

that the different products have different operation

times on the machines. The priority rule applied at the

machines is first-come-first-served (FCFS) if no other

rule is applied by the respective autonomous control. As

the scenario is related to the classical job-shop factory

layout, all production lines are connected at every stage.

Every line is able to process every kind of product, and

the parts can switch to a different line at each production

stage. The product’s choice of the next processing

machine is determined by the applied autonomous con-

trol method.T
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To compare the different methods, simulations were

conducted for production scenarios from m = 3 to m = 9

with m = n and K = 3 (products A, B, and C). The

operation time was determined in relation to the simulation

time. Product A had an operation time of 0.1%, product B

of 0.5%, and product C of 1% of the total simulation time.

To analyze the performance of different control methods,

all methods that have been described in detail by their

publication sources were selected. As the autonomous

control methods are designed to cope with complex and

dynamic manufacturing systems, the comparison is carried

out for scenarios with and without machine breakdowns.

The breakdowns of the machines represent an additional

kind of dynamics and unpredictability of the system beside

the input fluctuation. The breakdowns occurred randomly

with a probability of 75% and a repair time of 1 min.

In order to determine the performance of the different

autonomous control methods, several key indicators are

measured. All results presented here are average values

over five independent simulation runs. First, the overall

output quantity during the simulation run is counted. Fig-

ure 2 shows the results. Except for the Ant and SRB2

algorithm, the investigated methods show a linear increase

in the output quantity for both cases with and without

machine failures. This shows the general performance but

does not take into consideration the achievement of the

different logistics targets. The logistics targets are short

lead times, high due date reliability, high utilization, and

low inventory [7]. In the simulation, the lead time is

measured as the mean throughput time of the parts in the

manufacturing system. The due date reliability is measured

as the standard deviation of the throughput time, because it

is assumed that low standard deviation indicates high

predictability of lead time and results in high due date

performance. The utilization is measured as percentage of

time the machines are busy in relation to the total time

capacity. The inventory level is measured as the average

number of parts in the buffers in front of the machines.

Figure 3 shows the mean throughput time for the dif-

ferent methods. Without machine failures, the distribution

appears evenly among the methods, having QLE, Holonic,

LSIRP, and DLRP performing in a similar pattern, whereas

Ant and SRB2 perform significantly worse (see Fig. 3a). In

case of machine failures, SRB2 still performs worse than

the other methods, but the difference compared to the other

methods is smaller as displayed in Fig. 3b. The standard

deviation of the throughput time shows again the distinct

difference between the SRB2 and Ant method in relation to

the rest of the investigated methods (see Fig. 4). However,

again, the difference is smaller in the case of machine

failures than that without machine failures. The two

machine utilization graphs (see Fig. 5) show a similar

pattern of performance where the drop in the performance

in Fig. 5b is caused by the machine failure. The previously

mentioned well-performing group of methods achieves to

keep the utilization on a high level, whereas with an

Ant

Bee

SRB 2

Ph

SRB 1

QLE

OLTPR

DD

LSIRP

DLRP

C-Ant
Market

Holonic

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Fig. 1 Autonomous control method clusters

Table 4 Autonomous control methods similarity in %

C-Ant Ph Bee SRB 1 SRB 2 QLE DD OLTPR Market Holonic LSIRP DLRP

60 79 82 71 86 71 56 58 63 36 32 49 Ant

52 63 31 45 31 46 49 61 45 56 65 C-Ant

82 79 93 79 77 80 56 29 54 70 Ph

61 75 61 67 69 60 32 36 52 Bee

86 100 85 73 35 36 32 49 SRB 1

86 70 73 49 21 46 63 SRB 2

85 73 35 36 32 49 QLE

88 43 35 31 48 DD

55 32 43 60 OLTPR

63 50 50 Market

54 37 Holonic

83 LSIRP
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increasing size of the production system, the SRB2 and Ant

method cannot keep utilization on the same level.

Regarding work-in-process (WIP), only the Ant method

shows a different, worse performing behavior, significantly

for bigger production systems with machine failures (see

Fig. 6).

Table 5 Common characteristics of the method clusters identified

Methods Cluster 1 Cluster 2 Cluster 3 Cluster 4

Ant, Ph, Bee, SRB 2 Ph, SRB 1, SRB 2, QLE, OLTPR Ph, SRB 1, QLE, DD, OLTPR LSIRP, DLRP

Temporal data Past Different values Different values Past

Planning steps 1 1 1 [3

Artificial values Different values No No No

Communication type Always including

part-machine

Always including

part-machine

Always including

part-machine

Always including

machine-machine

Data scope Low/medium Low/medium Low/medium High

Actor Part Always including part Always including part Always including machine

Data storage Machine Always including machine Always including machine Always including machine
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Although the simulation results cannot finally prove the

behavior of autonomous control methods according to the

presented pattern, they definitely support the assumption

that there is a systematic structure behind these methods.

Two methods, namely Ant and SRB2, performed signifi-

cantly different regarding nearly all logistics target indi-

cators. Both methods are part of Cluster 1 and, at the same

time, do not belong to Cluster 3 (see Fig. 1). All other

tested methods, however, are distributed among the other

clusters but behave similarly in the computer simulations.

Another hint given by the simulation results is the auton-

omous control methods’ behavior as a function of pro-

duction network size. For all methods and all logistics

target indicators, a relatively robust outcome can be

observed. That means that in the presented scenario, the

size of the production network does not have a major

impact on the performance of the autonomous control

methods.

5 Conclusion

This paper deals with the decision-making algorithms in

autonomous control. A definition of the term autonomous

control method was presented followed by a classification

pattern for autonomous control methods in logistics. The

pattern offers the possibility to identify the components

that make up a certain autonomous control method and

helps delimiting different methods from each other apart

from their actual implementation. The survey showed 14

methods that have been developed in the recent years and

classified them according to the presented pattern. As a

result, four different clusters containing similar methods

could be identified.

The simulation studies supported the assumption that

there are similarities in logistics performance between

certain groups of autonomous control methods, while the

size of the production network does not significantly

influence the methods’ behavior.

The research group will extend the simulation studies in

the future in order to gain deeper knowledge on the relation

between autonomous control method characteristics and

the logistics performance. Furthermore, it will focus on

methods not included in the identified clusters, containing

the so far not implemented characteristics.
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