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Abstract One of the most significant problems of supply

chain management is the distribution of products between

locations. The delivery of goods from a warehouse to local

customers is a critical aspect of material logistics. The

Heterogeneous Fixed Fleet Vehicle Routing Problem

(HFFVRP) is a variant of the Vehicle Routing Problem

(VRP) that aims to provide service to a specific customer

group with minimum cost using a limited number of

vehicles. We assume that the number of vehicles is fixed.

We must decide how to make the best use of the fixed fleet

of vehicles. In this paper we describe a Tabu Search

algorithm embedded in the Adaptive Memory (TSAM)

procedure to solve the HFFVRP. Computational experi-

ments indicating the performance of the algorithm con-

cerning quality of solution and processing time are

reported.

Keywords Fixed fleet � Vehicle routing problem �
Tabu search � Adaptive memory

1 Introduction

Much of the traditional logistics literature focuses on the

outbound distribution of products to distribution centres

and customers. Logistics may be defined as the provision of

goods and services from a supply point to various demand

points, Eilon et al. [1]. A complete logistic system involves

transporting raw materials from a number of suppliers or

vendors, delivering them to the factory plant for manu-

facturing or processing and eventually distribution to cus-

tomers. Both the supply and the distribution procedures

require effective transportation management. Good trans-

portation management can save for private companies a

considerable portion of their total costs. Potential cost

savings include: lowered trucking cost due to better opti-

mization of routes and shorter distances, reduced in-house

space and related costs and less penalty incurred due to

untimely delivery. One of the most significant measures of

transportation management is effective vehicle routing.

The operations research community shows that the

Vehicle Routing Problem (VRP) is one of its great success

stories. The interplay between theory and practice is rec-

ognized as a major driving force for this success. Many

variants and extensions of VRP have been subject of

research during the last four decades. Some well-studied

characteristics include a fixed fleet and heterogeneous

vehicles.

The VRP was first introduced by Dantzig and Ramser

[2] and since then it has been widely studied. It is a

complex combinatorial optimization problem. The problem

involves a fleet of vehicles set-off from a depot to serve a

number of customers at different geographic locations with

various demands. Several authors have made a literature

review that deals with vehicle routing these include those

of Bodin et al. [3], Laporte [4–6], and Toth and Vigo [7].

Vehicle routing problems are divided into various areas.

Problems related to providing service through fixed fleets

are complicated in comparison with unlimited fleet vehicle

routing problems. The Heterogeneous Vehicle Routing

Problem (HVRP) is studied in two different ways. On the

one hand, some researchers make an assumption that there

are an unlimited number of vehicles of each type and they

try to find the optimal set of vehicles to be scheduled in the
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problem. This is called the Fleet Size and Mix VRP

(FSMVRP). On the other hand, other researchers study the

case where there is a fixed fleet of vehicles and try to

schedule this fleet to the customers in an optimal way. This

problem is called Heterogeneous Fixed Fleet VRP

(HFFVRP).

In the literature, three variants of VRP with heteroge-

neous fleet (HFVRP) have been studied. The first one is

introduced by Golden et al. [8], in which variable costs are

uniformly given over all vehicle types with the number of

available vehicles assumed to be unlimited for each type.

The second version considers the variable costs depending

on vehicle type, which is neglected in the first version. The

third one, called Heterogeneous Fixed Fleet VRP

(HFFVRP), generalizes the second version by limiting the

number of available vehicles of each type. This version is

the one dealt with in this paper.

When the number of vehicles is unlimited, we must

determine the best composition of the fleet. We are not

studying this version of the HFVRP in this paper and refer

the reader to the paper of Gendreau et al. [9] and Choi and

Tcha [10]. In this work, we are interested in the Heteroge-

neous Fixed Fleet Vehicle Routing Problem (HFFVRP) that

involves a limited number of vehicles which can be heter-

ogeneous or homogeneous. In this problem, the aim is to

provide service to the customer group with minimum cost.

Due to the complexity of the HFFVRP, no exact algo-

rithms have ever been presented for it. It is widely studied

by heuristic design as those proposed in Salhi et al. [11]

and Osman and Salhi [12]. Recently, the solution methods

for the HFFVRP have substantially progressed in Taillard

[13], Taillard and Rochat [14], Taillard [15], Tarantilis

et al. [16], Li et al. [17]. Classical heuristics for the

HFFVRP including the saving-based algorithms are pre-

sented in Desrochers et al. [18]. Golden et al. [8] develop a

saving heuristic to solve the Fleet Size and Mix Vehicle

Routing Problem as well as techniques for generating a

lower bound and an underestimate of optimal solutions.

Gendreau et al. [9] have proposed the Tabu Search (TS)

algorithm for the Fleet Size and Mix VRP (FSMVRP).

Also, Choi and Tcha [10] propose a column generation

method to solve the HFVRP.

Taillard [15] developed a heuristic column generation

method (HCG) to solve the HFFVRP. A new metaheuristic

called Back-tracking Adaptive Threshold Accepting

(BATA) was developed by Tarantilis et al. [16] in order to

solve the HFFVRP. Recently, Li et al. [17] developed a

record-to-record travel algorithm for the HFFVRP. They

have built an integer programming model and solved the

linear relaxation by column generation.

Tabu Search was introduced by Glover [19] in which he

also coined the term metaheuristics and defined these as

strategies designed to guide inner heuristics aimed at

specific problems. Tabu Search is an extension of classical

local search methods typically used to find approximate

solutions to difficult combinatorial optimization problems.

In order to improve the solution, the TS is embedded in the

Adaptive Memory Procedure (AMP).

The main idea in the AMP is to record in a structure the

individual components (the vehicle routes) making up elite

solutions as they are found. These components are kept

sorted in the AMP with respect to the objective function

value of the solution to which they belong.

Our contribution is twofold. First, in the presence of the

limited fleet constraints, the problem becomes more com-

plex, which implies that the choice of a good metaheuristic

can provide a good result. Our most interesting contribu-

tion is the introduction of three constructive initial solu-

tions. Our algorithm will allow the possibility to start with

multiple constructive methods, at each step we try to

improve the solution constructed with another constructive

method.

Second, a major contribution of the paper is the devel-

opment of the efficient hybrid metaheuristic based on the

AMP with high-quality solution produced.

The remainder of this paper is organized as follows: In

Sect. 2, we describe the HFFVRP. In Sect. 3 we give the

main paradigm of TS. Section 4 presents the details of our

metaheuristic procedure. Section 5 explains how we solve

the HFFVRP. Section 6 presents our computational study

and provides the analysis of our results. Finally, Sect. 7

concludes this paper.

2 The heterogeneous fixed fleet vehicle routing problem

The HFFVRP can be described as follows: Let

N = {1,…,n} be the set of customers and G = (V, A) be a

directed graph where V ¼ v0; v1; v2; v3; . . .; vnf g is the

vertex set and A ¼ ðvi; vjÞ : vi; vj 2 V ; i 6¼ j
� �

is the arc set.

The vertex v0 represents a depot at which is grouped a fleet

of vehicles while the remaining vertices correspond to

cities or customers. Each customer vi has a non-negative

demand qi. Denote by zk the fixed cost of a vehicle k, gk its

variable cost per distance unit, and Qk its capacity. cijk

represents the cost of the travel from customer i to j with a

vehicle of type k. There are several types of vehicles, with

T denoting the set of routes of such types. nk is the number

of vehicles of type k. In this version of the HFFVRP, the

values of nk are fixed. Then, the number of vehicles of type

k is limited and the fleet is known in advance. Let m ¼ Tj j
represent the sum of routes realized of nk for all types of

vehicles. With each arc (vi, vj) is associated a distance dij.

A route lk is feasible with respect to the route length

constraint if
P

ðvi;vjÞ2A dk
ij cijk � cmax where dk

ij ¼
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1 ifði; jÞ 2 route lk

0 otherwise

(

and dmax is the maximum cost of

the travel.

The HFFVRP consists of designing a set of vehicle

routes, each starting and ending at the depot such that each

customer is visited exactly once by exactly one vehicle of

the available fleet, the total demand of a route does not

exceed the capacity of the vehicle assigned to it, the route

length constraint is maintained, and the total cost is

minimized.

Using binary decision variable

xlk ¼
1 if the lth route is selected and performed by

a vehicle of type k

0 otherwise

8
><

>:

Taillard [15] gives the following mathematical

formulation of the problem:

Min
XK

k¼1

Xm

l¼1

clk xlk

subject to

Xk

k¼1

Xm

l¼1

ailxlk ¼ 1 i ¼ 1; . . .; n

Xm

l¼1

xlk � nk k ¼ 1; . . .;K

xlk 2 0; 1f g l ¼ 1; . . .;m k ¼ 1; . . .;K

where clk denotes the cost of the lth route performed

by a vehicle of type k, and where ail ¼
1 if the customer i 2 lth route of T

0 otherwise

(

.

3 Tabu Search algorithm

The TS is described, introduced, and refined by Glover

[19]. Tabu Search is a type of metaheuristic that has been

widely used to solve complex combinatorial optimization

problems. As many other metaheuristics, the success of TS

is, in large part, due to its ability to steer the search pro-

cess from getting stuck in a local optimum. This is

achieved by allowing a move to a neighbouring solution

that may result in deterioration in the objective value but

that simultaneously avoids cycling back through previous

moves. Tabu Search procedures exploit the short-term

memory, i.e. the Tabu list, which keeps track of recently

visited solution or their attributes. A move to a neigh-

bouring solution is permitted if the neighbouring solution

is neither contained in the Tabu List (TL) nor possesses an

identical attribute (e.g. objective value) to a solution in

that list. However, a move to a neighbouring solution

could be selected based on some aspiration criteria even if

it is prohibited by the TL.

Tabu Search explores different kinds of memories in the

search such as recency based (short-term), frequency based,

long-term memories, etc. Usually it uses one neighbour-

hood structure and, with respect to that structure, performs

descent and ascent moves building a trajectory.

4 Metaheuristic procedure

Our proposed solution algorithm is based on the AMP

(Golden et al. [8], Arntzen et al. [20]) to solve the

HFFVRP. The AMP was first proposed by Taillard and

Rochat [14] as an enhancement of TS to solve the Vehicle

Routing Problem (VRP). It was motivated by the work of

Glover regarding surrogate constraints (Glover [21]). An

important principle behind AMP is that good solutions may

be constructed by combining different components of other

good solutions. A memory containing components of vis-

ited solutions is kept. Periodically, a new solution is con-

structed using the data in the memory and improved by a

local search procedure. The improved solution is then used

to update the memory.

Our algorithm uses a TS embedded in AMP. The choice

of our solution procedure is based on the success of TS to

solve a wide range of challenging problems. A key feature

of TS is its use of AMP to enhance a search strategy.

A pseudo-code of the Adaptive Memory Procedure

(AMP) is given below:

1. Initialize the memory M.

2. While a stopping criterion is not met, do the following:

a. Construct a new solution combining components

of M.

b. Apply a Tabu Search algorithm to (let be the

improved solution).

c. Update M using components of

We develop a TS algorithm applied in the local search

phase of the adaptive memory.

5 Hybrid tabu search algorithm to solve the HFFVRP

In the sequel, we investigate and develop a TS heuristic

embedded in Adaptive Memory Procedure (TSAM) to

solve the HFFVRP.

The TSAM proposed herein for the HFFVRP can be

roughly characterized into four steps: Initialization, gen-

eration of an initial solution, solution improvements, and

updating the AMP.
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The details of each step of the TSAM are detailed

below:

5.1 Initialization (Step 1 in the adaptive memory)

To begin with, a certain amount of storage space called

adaptive memory is allocated within the AMP. A set of

routes is generated as described below and stored in the

adaptive memory. The feasibility in the initialization is

made with respect to the route length constraint and by

avoiding the violation of capacity constraints.

For each arc (vi, vj) in A, we receive a profit value based

on the distance travelling from vj to vj and the number of

times this arc appears in the solution denoted by g(vi, vj) if

the vehicle of type k travels from customers vi to vj

(ðvi; vjÞ 2 lk).

We are going to skew the selection in favour of the most

profitable vertices.

To generate an initial solution, define an advantage to

insert the arc (vi, vj) in the solution by:

avijk ¼
ðgðvi;vjÞ�clkÞ

cijk
if ðvi; vjÞ 2 route lk

1
cijk

otherwise

(

To choose an arc of a set �A � A, let

av �Ak ¼
P

ðvi;vjÞ2 �A avijk.

To choose an arc (vi, vj) in �A we proceed by first

selecting randomly a number a 2 0; av �Akb c. Then, select

the arc ðvis ; vjsÞ such that s is the smallest integer value

such that
Ps

l¼1 aviljlk � a.

The procedure to generate m routes of the adaptive

memory sums up as follows:

Step 1: Create m vehicle routes containing only an arc

(v0, v0). Also create the set M ¼ ðvi; vjÞ : cv0vik þ cvivjkþ
�

cvjv0k � cmaxg. Let k = 1 and move to Step 2.

Step 2: If �A contains only one arc (v0, v0), select by

roulette wheel an arc (vi, vj) from M and insert it into route

lK. Let �A ¼ A � ðvi; vjÞ and ck ¼ cv0vi
þ cvivj

þ cvjv0
.

Otherwise, continue the construction of route lK as

follows:

– Choose with roulette wheel an arc ðvi; vjÞ 2 �A
– Insert an arc (vi, vj)and select two vertices

p and q in lK, so that the evaluation functions

ðavvpvik þ avvivjk þ avvjvqk � avvpvqkÞ : cvpvik þ cvivjkþ
�

cvjvqk � cvpvqk � cmaxg will be maximal.

If such (vi, vj) is not found (because cK þ cvpvikþ
cvivjk þ cvjvqk � cvpvqk � cmax), go to Step 3.

– Insert (vi, vj) between p and q and adjust the length of

the route: lK ¼ cijk þ cvpvik þ cvivjk þ cvjvqk � cvpvqk.

– Let �A ¼ A � ðvi; vjÞ
– If �A 6¼ /, repeat Step 2

Step 3: Let k = k ? 1. If k B m, go back to Step 2.

The Hybrid TSAM in the initialization phase may be

started from heuristic created solution. In the first step we

consider that all vehicles are at the depot. Second, for every

step we select a customer based in the constructive meth-

ods described above and we insert it in the best position

that minimizes the total cost. In the next phase we try to

construct a solution and to repair and improve the solution

constructed from the routes generated in the AMP.

5.2 Construction of solution (Step 2 in the adaptive

memory)

The TSAM procedure starts from an initial solution s

constructed in the AMP. Then to improve the solution we

use the regret heuristic used by Potvin and Rousseau [22],

Liu and Shen [23]. Generate an order ak1
; ak2

; . . .; akm
f g in

which the routes of the AMP are considered.

The regret heuristic works in the following way:

• Initialization

– For every artificial vertex (chosen vertex) vi 2 V : find

the closest transport vertex vj and the second closest

transport vertex vz.

– Calculate a regret value REGi ¼ ciz � cij.

– Sort the regret value in descending order.

– Allocate the closest transport vertex to the artificial

vertex according to this order; if a transport vertex is

the closest to two or more artificial vertex, it is assigned

to the one with the highest regret value.

– Continue with the same procedure until all of the

transport vertices are assigned to a route. Always find

the closest and second closest transport vertex to the

last included vertex.

5.3 Solution improvements (Step 3 in the adaptive

memory)

In order to improve the solution, we propose to use a TS

algorithm as a local search. We give a pseudo-code of the

proposed algorithm in Fig. 1.

5.3.1 Initial solution

The TS starts from an initial solution s constructed with the

nearest neighbourhood method where customers are placed

in an array sorted in the increasing order of demand. In this

method, the customer with the biggest demand is appended

to a route. When the next to-be inserted customer’s dis-

tance exceeds the length of cycles on the current route, a

new route is initiated.
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5.3.2 Neighbourhood structures

The TS algorithm that we have implemented uses two

structures of neighbourhoods:

• Permutation-neighbourhood

Let vi and vi0 be two vertices on two different routes li(s)

and li0 ðsÞ. A permutation-move consists of replacing lvi
ðsÞ

and lvi0 ðsÞ by ðlvi
ðsÞ � viÞ þ vi0 and ðlvi0 ðsÞ � vi0 Þ þ vi,

respectively.

• two-move

In a two-move, vertex vi is moved from its route to a

route l 6¼ lvi
ðsÞ. Route l can be an empty route. Hence, lvi

ðsÞ
and l are replaced by lvi

ðsÞ � vi and l ? vi, respectively.

A conventional Tabu List (TL) contains pairs (i, l)with

the condition that it is forbidden to move customer i to

route l. A move (i, l) is considered as Tabu if ði; lÞ 2 TL.

The TS is stopped where hmax iterations have been per-

formed without improving the best solution found s*.

To improve the solution generated for each algorithm,

we use two improvement procedures:

5.3.3 Exchanging of vertices between two routes

For two randomly selected routes l1 and l2 from the current

solution s, these improvement procedures make one-vertex

exchange between route l1 and l2 (Brandão [24]), starting

with the first vertex on l1. We scan from the first to the last

arc on l2to examine whether an exchange of the first vertex

on l1 with the current vertex on l2 makes the total cost of

the two routes shorter. The exchange is made immediately

when such vertex on l2 is found. Then, the procedure is

repeated with the second vertex on l1 and scanning vertex

on l2. This procedure stops when all one-vertex exchanges

between l1 and l2 leading to improve route duration have

been performed.

5.3.4 A random vertex-insertion procedure

For a selected route, this semi-greedy random insertion

approach randomly removes a subset of vertices from the

route and re-inserts them in the resulting partial route in a

greedy way.

5.4 Updating the adaptive memory

(Step 4 in the adaptive memory)

The strategy adopted in this paper is based in the frame-

work of Tabu Search algorithm, but also borrows some

heuristic ideas from the greedy constructive heuristics

mentioned before. The main features of the algorithm are

in the constructive greedy methods used in the different

phases to improve the solution.

Below, the implementation of each part of the TSAM to

solve the HFFVRP is described.

The Steps of the hybrid metaheuristic are summarized as

follows:

Step 1: Generate m routes derived from solution nearest

neighbour methods.

Start with AMP ¼ / (adaptive memory procedure).

Step 2: While a stopping criterion is not met, do the

following:

Initialize the m routes to AMP0, s = /.

Apply the constructive method mentioned in Sect. 5.1.

Repeat, while AMP0
= /

Choose randomly a route l [ AMP0

Let s0 ¼ s0 [ flg.

For each route l0 [ AMP
0
, where l \ l0 = /

Let AMP0 ¼ AMP0nfl0g.

Apply regret heuristic.

Step 3: Improve the new constructed solution.

For each route l in s, let AMP ¼ AMP [ flg

0

0 0

max

Tabu Search

:

; ; 0; 0;

( 1; ; )

{ //apply nearest neighbour

_ ( );

( 1; ; )

{//find the best non-tabu solution

updat

current best

current

Begin

s initial solution

s s s s TL

for j j nbclient j

s Nearest Neighbour s

for i i i

θ

θ

= = = =
= < + +

=
= < + +

e TL;

//use the permutation local search

s = ( );

2 (s );

( );

( )

{

;

;

}

;

}

}

Tabu Search

current

current

current

best

best

permutation s

s move

value evaluate s

if value s

s value

updateTL

end

θ

′
′= −

=
<

=
+ +

Fig. 1 Pseudo-code of Tabu Search algorithm
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Find a solution s* (best solution) by considering the

routes in

Apply Tabu Search algorithm

Exchange vertices between two routes and perform the

random vertex-insertion procedure.

Step 4: Update the AMP by inserting the new con-

structed routes and removing routes (if necessary) which

belong to the worst solutions.

6 Computational results

This section reports on the performance of the proposed TS

heuristic embedded in Adaptive Memory (TSAM) over the

benchmark test problems of Golden et al. [8] and Li et al.

[17].

6.1 Implementation and instances

We consider two sets of instances to evaluate the perfor-

mance of the TSAM algorithm. The first set is composed of

the eight test problems developed by Golden et al. [8] for

the vehicle fleet size and mix routing problem which can be

viewed as a special case of HFFVRP where the travel costs

are the same for all vehicle types and the number of

vehicles of each type is limited. The specifications for the

HFFVRP problem set are given in Table 1. We use the

numbering scheme (problem 13 ��� problem 20) given by

Golden et al. [8].

The second set is composed by the five new test prob-

lems developed by Li et al. [17], selected from the large-

scale vehicle routing problems with 200–360 customers

from Golden et al. [25] and adapted to the HFVRP

(Table 2).

These problems contain between 50 and 360 vertices, all

randomly located over a square. They have fixed fleet,

capacity restrictions, no route length constraints, and no

service times at the vertices. Moreover, euclidean distances

are used in the entire problem.

The algorithm described here has been implemented in

C?? using Visual Studio C?? 6.0. Experiments are

performed on a PC Pentium 4, 3 GHz with 512 MB of

RAM. Thus, the TS algorithm runs 10 times on each

instance, and all results presented below are averages over

these 10 runs.

6.2 Parameter settings

The TS procedure employs a set of parameters whose

values need to be set before the algorithm is run. These

parameters include the number of Tabu iterations Nmax,

route improvement frequency v, route selection parameter

Table 1 Specifications of eight benchmark problems with at most six types of vehicles

Problem n Vehicle A Vehicle B Vehicle C Vehicle D Vehicle E Vehicle F %

QA fA aA nA QB fB aB nB QC fC aC nC QD fD aD nD QE fE aE nE QF fF aF nF

13 50 20 20 1 4 30 35 1.1 2 40 50 1.2 4 70 120 1.7 4 120 225 2.5 2 200 400 3.2 1 95.39

14 50 120 100 1 4 160 1,500 1.1 2 300 3,500 1.4 1 88.45

15 50 50 100 1 4 100 250 1.6 3 160 450 2 2 94.76

16 50 40 100 1 2 80 200 1.6 4 140 400 2.1 3 94.76

17 75 50 25 1 4 120 80 1.2 4 200 150 1.5 2 350 320 1.8 1 95.38

18 75 20 10 1 4 50 35 1.3 4 100 100 1.9 2 150 180 2.4 2 250 400 2.9 1 400 800 3.2 1 95.38

19 100 100 500 1 4 200 1,200 1.4 3 300 2,100 1.7 3 76.74

20 100 60 100 1 6 140 300 1.7 4 200 500 2 3 95.92

Table 2 Specifications for five new test problems with at most six types of vehicles

Problem n Vehicle A Vehicle B Vehicle C Vehicle D Vehicle E Vehicle F %

QA fA aA nA QB fB aB nB QC fC aC nC QD fD aD nD QE fE aE nE QF fF aF nF

H1 200 50 20 1 8 100 35 1.1 6 200 50 1.2 4 500 120 1.7 3 1,000 225 2.5 1 93.02

H2 240 50 100 1 10 100 1,500 1.1 5 200 3,500 1.2 5 500 120 1.7 4 96.00

H3 280 50 100 1 10 100 250 1.1 5 200 50 1.2 5 500 120 1.7 4 1,000 225 2.5 2 94.76

H4 320 50 100 1 10 100 200 1.1 8 200 400 1.2 5 500 120 1.7 2 1,000 225 2.5 2 1,500 250 3 1 94.12

H5 360 50 25 1 10 100 80 1.2 8 200 150 1.5 5 500 320 1.8 1 1,000 225 2.5 2 2,000 250 3 1 92.31

8 Logist. Res. (2010) 2:3–11
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T, number of neighbourhood solutions generated in the TS

b and maximum non-improvement iterations h. These

parameters were determined on the basis of a number of

preliminary runs. The values of these parameters are

defined as follows: Nmax = 200; v = 6; T = 30; b = 200,

h = 100.

6.3 Evaluation method

The results produced by our algorithms have been com-

pared with those produced by the algorithms of Taillard

[15], Tarantilis et al. [16] and Li et al. [17].

We begin the presentation of the results by examining,

in Table 3, the efficiency of the procedure of TSAM. This

table shows the strong performance of the TSAM algorithm

in the form of the quality of solution and in the best CPU

time.

In Table 4 we describe the efficiency of the TSAM

algorithm over other metaheuristics presented in the lit-

erature. It gives the comparison results between the

TSAM and the other methods proposed by Taillard [15],

Tarantilis et al. [16], and Li et al. [17]. We observe that in

seven out of eight test problems, the TSAM finds a better

solution.

In Table 5, we give the relative percentage deviation of

each algorithm’s solution from the best known solution. A

simple criterion to measure the efficiency and the quality of

an algorithm is to compute the relation percentage devia-

tion of its solution from the best solution reported in the

literature on specific benchmark instances. From this table

we conclude that the solution quality of the algorithms is

comparable with an average deviation that is between 1 and

5% for the eight test problems. Our algorithm still seems to

be superior in terms of solution quality with an average

deviation of 0.0222% (Table 5).

Finally, in Table 6 we report the comparative result on

five new test problems proposed by Li et al. [17]. It is

interesting to observe that over the five large instances,

four new best solutions were produced with our algo-

rithm. In the large test problems, the TSAM yields con-

sistently better results than the HRTR metaheuristic of Li

et al. [17].

Table 3 Computational results

for TSAM algorithms on eight

test problems

n number of nodes

TSAM Tabu Search embedded

in Adaptive Memory

Problem number n Total vehicles used Fixed cost Variable costs Time

TSAM (tabu search embedded in adaptive memory)

13 50 15 1,650 1477.34 3

14 50 6 6,800 590.00 8

15 50 9 2,050 1019.69 3

16 50 9 2,200 1112.92 2.26

17 75 10 1,035 1022.31 31.19

18 75 13 1,930 1768.51 25.35

19 100 8 9,500 1104.87 82.94

20 100 13 3,200 1510.72 71.09

Table 4 A comparison of TSAM, HCG, BATA, and HRTR according to overall costs

Problem Taillard Tarantilis et al. Li et al. Our algorithm

HCG Time (s) BATA Time (s) HRTR Time (s) TSAM Time (s)

13 1518.05 476 1519.96 843 1517.84 358 1477.34 3

14 615.64 575 611.39 387 607.53 141 590 8

15 1016.86 335 1015.29 368 1015.29 166 1019.69 3

16 1154.05 350 1145.52 341 1144.94 188 1112.92 2.26

17 1071.79 2,245 1071.01 363 1061.96 216 1022.31 31.19

18 1870.16 2,876 1846.35 971 1823.58 366 1768.51 25.35

19 1117.51 5,833 1123.83 428 1120.34 404 1104.87 82.94

20 1559.77 3,402 1556.35 1,156 1534.17 447 1510.72 71.09

The bold values are the best known solution

HCG Heuristic column generation solution from Taillard, Sun Sparc workstation, 50 MHz; BATA Backtracking Adaptive Threshold Accepting

solution from Tarantilis et al. [16], Pentium II, 400 MHz, 128 MB RAM; HRTR Record-to-record travel solution from Li et al. [17], Athlon,

1 GHz, 256 MB RAMS; TSAM Tabu Search Adaptive Memory, Pentium IV, 3 GHz, 512 MB RAM

Logist. Res. (2010) 2:3–11 9
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7 Conclusion

This work presents a TS heuristic embedded in Adaptive

Memory. The AMP and its mechanism for updating stored

solutions allow a comparatively large pool of good and

diversified solutions to be stored and used during the search

process, alternating between small and large neighbourhood

stages during the course of the TS. The computational results

obtained with the TSAM metaheuristic on a set of bench-

mark instances compare favourably to existing literature,

both with respect to solution quality and to computation time.

The results of this research show that the performance of the

proposed metaheuristic (TSAM) is competitive when com-

pared with other approaches presented in the literature.
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