
ORIGINAL PAPER

Labelling algorithms for the elementary shortest path problem
with resource constraints considering EU drivers’ rules

Michael Drexl • Eric Prescott-Gagnon

Received: 3 September 2009 / Accepted: 16 February 2010 / Published online: 12 June 2010

� Springer-Verlag 2010

Abstract This paper describes how drivers’ rules

according to EU social legislation can be formally mod-

elled using the resource concept and how ‘legal’ vehicle

routes and schedules can be computed by exact and heu-

ristic labelling algorithms for solving the elementary

shortest path problem with resource constraints.

Keywords Drivers’ working hours �
EU social legislation � Labelling algorithms �
Elementary shortest path problem with resource constraints

1 Introduction

This paper presents a comprehensive approach for con-

sidering current EU legislation on drivers’ working hours.

The paper describes how drivers’ rules according to EU

social legislation can be formally modelled using the

resource concept and how ‘legal’ vehicle routes and

schedules can be computed by exact and heuristic labelling

algorithms in the context of the elementary shortest path

problem with resource constraints (ESPPRC). The contri-

bution of the paper is twofold: (1) It highlights important

properties of driver’s rules and their algorithmic conse-

quences and (2) it presents an algorithm for constructing

legal routes and for checking their feasibility/legality. The

algorithms presented in this paper can be used as subrou-

tines in exact or heuristic procedures for solving vehicle

routing problems with drivers’ rules.

We consider rules contained in Regulation (EC) No 561/

2006 of the European Parliament and of the Council of

15 March 2006 on the harmonization of certain social

legislation relating to road transport and amending Council

Regulations (EEC) No 3821/85 and (EC) No 2135/98 and

repealing Council Regulation (EEC) No 3820/85 [8] and

refer to these as drivers’ rules.

Note This is an OR paper, not a juristic text. It is

explicitly stated that none of the algorithms presented in

this paper is guaranteed to determine a ‘legal schedule’

for a vehicle route, because there is no precise mathe-

matical definition of the term ‘legal schedule’. The

determination of a legal schedule for a vehicle route is

not a question of mathematics or computer science, but

solely a juristic one. The pertinent regulations give

abundant room for interpretation, so that any dispute

concerning the legality of a route will eventually have to

be settled in court.

The paper is structured as follows. Sect. 2 defines the

necessary vocabulary. The relevant drivers’ rules are laid

down in Sect. 3. The existing literature is reviewed in

Sect. 4. Section 5 discusses some fundamental observa-

tions related to drivers’ rules. In Sect. 6, the resources

and resource extension functions (REFs) used to model

drivers’ rules exactly and heuristically within a dynamic-

programming-based solution framework for the elemen-

tary shortest path problem with resource constraints are

described. Sect. 7 presents and discusses the results of

computational experiments performed with implementa-

tions of the proposed REFs. The paper ends with a con-

clusion in Sect. 8.

M. Drexl (&)

Fraunhofer SCS, Nordostpark 93, 90411 Nuremberg, Germany

e-mail: michael.drexl@scs.fraunhofer.de

E. Prescott-Gagnon

École Polytechnique de Montréal and GERAD, C.P. 6079,

Succursale Centre-Ville, Montréal, QC H3C 3AT, Canada

123

Logist. Res. (2010) 2:79–96

DOI 10.1007/s12159-010-0022-9

2 Important terms

For the purposes of this paper, the following definitions

apply:

• Driving time is the time a driver is actually operating

a vehicle, sitting behind the steering wheel. The vehicle

does not necessarily need to move nor does the motor

need to be running; waiting in traffic congestion is also

counted as driving time.

• Other work is any working activity other than driving;

this comprises but is not limited to, loading and

unloading of vehicles and vehicle maintenance.

• Break time is time where a driver neither drives nor

performs other work.

• A rest period is a period where a driver neither drives

nor performs other work but may freely dispose of his

time.

• A (calendar) week is the time from Monday 0:00 hours

to Sunday 24:00 hours.

• A driving time interval is the time between two long

breaks or rest periods. A driving time interval ends after

a long break.

• A short break is a break time of at least 15 and at most

45 min.

• A long break is a break time of at least 45 min or at

least 30 min if a short break has already been taken

since the last long break or rest period.

• A vehicle route is called feasible if it respects

all resource constraints, except for the drivers’

rules.

• A feasible vehicle route is said to have a legal schedule

or, for simplicity, is called legal if it complies with the

drivers’ rules as specified in Sect. 3.

• A short arc is an arc with a travel time of at most

270 min. Long arcs are defined correspondingly.

3 Relevant rules

We consider the following rules:

• Interval driving time

A driver must not drive for more than 4 h 30 min

(270 min) consecutively.

• Daily driving time

The driving time between two daily rest periods (see

below) must not exceed 10 h. At most twice in a

calendar week, the driving time between two daily rest

periods may exceed 9 h.

• Weekly driving time

The driving time within a calendar week must not

exceed 56 h.

• Fortnightly driving time

The driving time in two consecutive calendar weeks

must not exceed 90 h.

• Breaks

After 4 h 30 min of driving, the driver must take a

break of at least 45 min. The break may be split into

two interruptions of at least 15 and at least 30 min in

this order.

Note The aforementioned rule does not mean that there

can be at most 4 h 30 min of driving in each interval of

5 h 15 min. Consider the following example. It is legal

for a driver to start his working day by driving for 1 h

30 min, then take a break of 15 min, drive for an

additional 3 h, take a break of 30 min, and then drive

for another 4 h 30 min. At the end of these 4 h 30 min

of driving, the driver has been driving for 7 h 30 min in

the last 8 h.

• Daily rest periods

There are two different rules determining when a daily

rest period is necessary:

– Within 24 h after the end of the last daily or weekly

rest period, there must be a daily rest period of at

least 9 h.

– Additionally, when the daily driving time is

exhausted, a daily rest period must be taken before

the driver may continue driving.

Between two weekly rest periods, there may be at most

three daily rest periods of less than 11 h (660 min).

A daily rest period may be split into two periods of at

least 3 h (180 min) and at least 9 h (540 min) in this

order.

• Weekly rest periods

There are also two different rules determining when a

weekly rest period is necessary:

– After at most 144 h after the end of a weekly rest

period, there must be an uninterrupted weekly rest

period of at least 24 h. If the duration of the weekly

rest period is less than 45 h, the difference between

45 h and the actual duration of the weekly rest

period must be added as an additional uninterrupted

rest period to an uninterrupted rest period of at least

9 h within three calendar weeks after the calendar

week where the thus shortened weekly rest period

ends.

– If the weekly or fortnightly driving time is

exhausted, a rest must be taken until the end of

the current calendar week, even if this is longer than

45 h.

The requirement that shortened weekly rest periods be

made up for within the subsequent 3 weeks would, in

80 Logist. Res. (2010) 2:79–96

123

effect, require the planning horizon of an instance to cover

at least 3 weeks. This is impossible. (Still worse, the

regulation on working hours [7] states in Article 4 (a) that

‘the ... maximum weekly working time may be extended to

60 h only if, over four months, an average of 48 h a week

is not exceeded’. This would require a planning horizon of

at least 8 months.) Hence, some decisions on the available

driving and working time and the required break and rest

time of a driver have to be taken outside of the planning

algorithm. They constitute assumptions, are exogenous to

the instance to be solved, and enter the instance as data.

The values of the corresponding resource variables are

determined in a preprocessing step. In the end, this means

that such decisions exclude certain legal routes in an

instance. In the context of empty (vehicle or container)

repositioning, [6], p. 3401, state that ‘it is extremely

difficult, if not impossible, to determine the appropriate

amount of empty travel’. This discussion shows that an

analogous statement holds for the balancing rules in EU

social legislation. Therefore, we consider the rules on

balancing weekly rest periods heuristically as follows. The

duration of the weekly rest period for each driver is

specified as input data, where the duration is always at least

24 h. If the planning horizon is such that at most one

weekly rest is necessary, the duration of the weekly rest

period may include balancing periods of previous weeks.

This means that the option to add such a balancing period

to a daily rest period is excluded. For instances where the

planning horizon is at most 24 h, these assumptions are not

restrictive. What is more, the weekly rest period rules

themselves need not be considered if at most one calendar

week is considered and if it is assumed that the previous

weekly rest period of each vehicle ends no earlier than at

the beginning of the considered calendar week. In this case,

as a week has 168 h and as the minimum weekly rest

period is 24 h, the vehicle is available during the complete

planning horizon (144 ? 24 = 168).

Note A daily rest period also resets the interval driving

time, and a weekly rest period also resets the daily and the

interval driving time (mind the ‘at leasts’ above).

We consider neither multi-manning, i.e. the case that there

are at least two drivers in the vehicle to do the driving, nor

issues related to multi-modal traffic, such as breaks and rest

periods on trains or ferries. Furthermore, we assume that the

rules apply to the complete instance, i.e. that each visited

customer is located within the area of application of the rules.

One important rule stated in the regulation on working

hours [7] is that after at most 6 h of work (driving or other

work), a break of at least 30 min is required. It can be

assumed that in many cases this rule will automatically be

complied with, because in most practical situations, most

of the working time will be driving time, and because the

rules in Regulation (EC) No 561/2006 etc. require breaks to

be taken earlier and more frequently than the rules in the

regulation on working hours.

Another rule stated in the regulation on working hours

limits the working time per calendar day to 10 h (with

exceptions). However, as this regulation is overruled by

Regulation (EC) No 561/2006 etc., driving time during a

calendar day may exceed 10 h, whereas driving time ?

other work may not. In principle, overall daily working

time can easily be counted (in a resource variable), but it is

not done here for simplicity.

4 Literature review

The monographs by [13] and [20] consider drivers’ rules

from a juristic perspective and offer a wealth of comments

on and explanations of the above-mentioned regulations as

well as numerous examples for legal and illegal schedules.

It is noteworthy that these authors do not completely agree

on the interpretation of the rules.

In the OR literature, there are different approaches for

the consideration of drivers’ rules:

• by means of appropriate variables and constraints in an

MIP model [17, 25]

An LP-based algorithm is not an option for the

constructive solution of practical problems. However,

it may be fast enough to check the feasibility/legality of

given routes. Moreover, the development of MIP

models fosters the understanding of the problem and

facilitates and accelerates the development of practi-

cally relevant models and algorithms.

• by means of increasing the allowed driving times of

drivers and travel times of arcs [3]

These authors consider daily driving and break regu-

lations by increasing the maximal daily driving time,

Tmax
without, of 9 h by the required break time of 45 min to

Tmax
with and by increasing the travel time of each arc by

the factor Tmax
with=Tmax

without. They write on p. 184: ‘With

this approach some slack is implicit in the schedule

which may accommodate the real breaks that can be

introduced in the final stage of the scheduling.’

• by means of constructing an extended, multi-stage

network with a duplicate of the original network on

each stage, where the connecting arcs between the

stages correspond to breaks ([4], p. 180 f.)

• by means of introducing artificial customers (vertices)

corresponding to breaks or rest periods (Scheuerer

(2007): personal communication)

• by means of resource variables and extension functions

in dynamic-programming-based labelling algorithms or

in local-search-based heuristics (Grünert (2002): per-

sonal communication); [10, 16, 18, 24]

Logist. Res. (2010) 2:79–96 81

123

The algorithm by [16] is remarkable in two respects.

First, this approach also considers the working time

regulations stated in [7]. Second, it uses heuristic

dynamic programming by restricting the state space in

two ways: (1) by limiting the number of labels (states)

to be considered in the next iteration of the algorithm,

and (2) by limiting the number of new labels to be

constructed from one existing label. In this way, the

time complexity of the algorithm does not increase

when optional rules, such as splitting breaks, are

considered.

• by means of resource variables and constraints in

constructive heuristics such as insertion procedures

[1, 9]

[1] consider the drivers’ rules relevant in the USA.

These rules, however, are very simple compared with

the EU rules. The rules simply require that the

minimum rest time after at most 11 h of driving and

at most 14 h on duty (driving and waiting) is 10 h.

Nevertheless, the algorithm developed in the paper is

highly complicated and sophisticated. For a given

route, the algorithm determines, in Oðn3Þ time, whether

or not there exists a schedule respecting drivers’ rules.

The algorithm is based on a backward search principle.

It starts at the last vertex in the route with the heuristic

assumption to take rests as late as possible, i.e. as early

as possible in a forward direction. The authors describe

several issues arising when drivers’ rules are to be

considered, but, as similar driving time limits constitute

a subset of the EU rules, all of these issues were

discovered independently by the authors of the present

paper.

[19] use a tree search algorithm for checking the

legality of a given route. These authors also consider

the whole set of drivers’ rules as described in Sect. 3

within a large neighbourhood search algorithm where

the route reconstruction operator is based on heuristic

branch-and-price; columns are generated heuristically

by tabu search.

Further publications considering drivers’ rules are

[6, 23], and [2]. [23] considers the rules on interval breaks

in a routine for computing a schedule for a given route. The

arrival time at each stop of the route is first computed

without taking into account necessary breaks and is then

shifted by 45 min for each necessary break. (Besides pre-

senting a labelling algorithm as mentioned earlier, [24] also

describe an approach similar to the one by [23] but con-

sider the rules relevant in the USA.) [6] use a depth-first

recursive procedure to compute legal duties for drivers

within a heuristic for assigning vehicles and drivers to

scheduled trips of an LTL carrier in the USA. [2] consider

the European rules in an application to road feeder service

planning in air cargo transportation. Given scheduled

vehicle trips, the task is to assign vehicles and drivers to the

trips. To this end, the authors develop a sophisticated

recursive procedure for determining the time since the last

daily rest. (The break requirements are only approximately

considered (similar to the approach by [3] mentioned pre-

viously). The daily rests, however, are considered for the

single- and double-manning case.) This procedure is

embedded in a column generation heuristic and a meta-

heuristic based on large neighbourhood search for solving

the overall problem.

Very recent papers are [9, 12], and [11]. In [9], based

on his earlier work [10], the author develops a formal

algorithmic framework for considering all rules con-

tained in Regulation (EC) No 561/2006 etc., including

weekly rules and multi-manning regulations. [12]

develop a polynomial algorithm for the legality test of

the rules relevant in the United States, and [11] describe

a polynomial algorithm for the legality test of double-

manned routes considering the EU rules. No computa-

tional tests with implementations of these algorithms are

presented.

It must be noted that no paper presents an algorithm

implementation for considering weekly rules.

5 Fundamental observations concerning drivers’ rules

This section describes some fundamental observations

relevant for the consideration of drivers’ rules. In this

section, service times are assumed to be zero.

The first observation shows that the maximum attainable

driving time within a calendar day or any 24-h period is

considerably longer than what might be expected.

Observation 1 The maximum attainable driving time

within a calendar day or any 24-h period is 13 h 45 min.

Example 1 The following example of a feasible schedule

for a driver shows the maximum attainable driving time

within a calendar day (or any 24-h period):

1 min driving at 23:44 hours

15 min break at 23:45 hours

4 h 29 min driving at 0:00 hours

30 min break at 4:29 hours

4 h 30 min driving at 4:59 hours

9 h daily rest at 9:29 hours

4 h 30 min driving at 18:29 hours

45 min break at 22:59 hours

16 min driving at 23:44 hours

Observation 2 To make a correct decision as to which

break or rest periods to take between two vertices, it is

necessary to consider the complete route.

82 Logist. Res. (2010) 2:79–96

123

This means that it is not sufficient to consider only the

partial route from the start vertex to the current vertex and

the direct successor of the current vertex. Example 2

illustrates this observation.

Example 2

When at vertex i and when the decision which breaks or

rests to take only takes into account the travel time between

i and j and the time window at j, no break will be taken.

Then, a daily rest is necessary between j and d and the time

window at d is missed. To avoid this, it is necessary to

consider the travel time between j and d and the time

window at d already when planning the breaks or rests to

take between i and j.

Observation 3 It is generally sensible to start a new

driving time interval, i.e. to reset the interval driving time,

after each break or rest period of at least 45 min, whether

or not the interval driving time is already exhausted.

This is true because by doing so, additional flexibility is

gained, and the rules do not limit the number of driving

time intervals between two daily rest periods.

Observation 4 For legality reasons, it may be necessary

to take a break or rest period, even when no driving time

limit is reached.

In Example 2, it is possible to reach d within its time

window only when a (reduced) daily rest is taken before j,

although neither the interval nor the daily driving time is

exhausted when arriving at j.

Observation 5 Split breaks and split daily rest periods

are only useful when waiting time is possible, which of

course is always possible when time windows are present.

The following example shows that splitting a break may

be the only way to get a feasible schedule.

Example 3

In order to reach vertex j in time and in compliance

with drivers’ rules, it is sufficient to take a break of

45 min after 270 min of driving, somewhere between

vertices i and j. The beginning of service at j is then 330.

Due to the time windows, this means a waiting time of

5 min before the service at j can begin. In order to

comply with the drivers’ rules, an additional break of

45 min is necessary before reaching vertex d. The arrival

time at d is then 655, which lies after the end of the time

window at d. If an additional break of 15 min is taken

before j (transforming the 5 min waiting time into break

time, which is possible), a break of 30 min between j and

d is sufficient with regard to the drivers’ rules and d can

be reached in time.

Example 3 also demonstrates the following observation.

Observation 6 It may be sensible to take a break or rest

period directly before a vertex with waiting time, even

when the waiting time is shorter than the break or rest

period into which it is transformed.

In Example 3, there is a waiting time of 5 min

before vertex j, which are used to take a split break of

15 min.

It is easy to see that, when there are no drivers’ rules,

the overall duration of a route cannot be reduced by

finishing the route later than the earliest possible time.

When drivers’ rules are present, however, this is no

longer true.

Observation 7 To minimize overall route duration, it is

not generally sensible to try to also minimize route com-

pletion time (end of service at last node). In other words,

when drivers’ rules are considered, minimizing route

duration and minimizing route completion time are con-

flicting goals.

This observation is illustrated in Example 4.

Example 4

Observation 8 Whereas it is always sensible to extend a

daily or weekly rest period such that no waiting time

remains at the next vertex, it may be sensible to extend a

daily or weekly rest period further, such that the service at

the next vertex may begin later than the earliest possible

time.

Logist. Res. (2010) 2:79–96 83

123

This quite counterintuitive observation is demonstrated

in the following example.

Example 5

Due to the rule that a daily rest period must have been

taken not more than 24 h after the end of the preceding

daily rest period (cf. Sect. 3), holding other things equal,

it is sensible to let a daily or weekly rest period end as

late as possible without delaying the beginning of service

at any subsequent vertices. This means that if waiting

time remains before a vertex after taking a daily or

weekly rest period, this waiting time can and should be

used to extend the daily or weekly rest period. In

Example 5, the earliest point in time when vertex k can

be reached is 585. Then, there is a waiting time of

675 min. Therefore, a daily rest period must be taken

before beginning the service at k. A weekly rest period is

not necessary yet and is also not possible due to the time

window at k. A daily rest period need not take longer

than 660 min. However, in the depicted situation, the

daily rest period can be extended by 15 min, and the

service at k can still start as early as possible

(270 ? 45 ? 270 ? 660 ? 15 = 1260). By doing so,

after leaving k, the time since the end of the last daily

rest is shorter (0 compared to 15), and more flexibility is

gained in this respect for the rest of the route (which

might continue beyond l). Unfortunately, if the daily rest

period ends at time 1260, a break of 45 min is necessary

between k and l, and l is not reached in time

(1260 ? 270 ? 45 ? 30 = 1605 [1590). Hence, the

best way to obtain a legal schedule for the route in

Example 5 is to take a daily rest period 1 min before

reaching k, thereby resetting the interval driving time, go

on driving for 1 min until k is reached, and then take a

split break of 15 min. Then, the time window at k is

maintained, a break of 30 min en route between k and l

is sufficient and also l is reached within its time window.

A similar example can be constructed for weekly rest

periods.

For the situation of Example 5, the legal status is

unclear: the rules do not specify whether a split break or a

split daily rest may be taken only after a strictly positive

amount of driving time, or if after driving 0 min in the

current driving time interval or the current daily driving

period, a split break of 15 min or a split daily rest period of

180 min may already be taken. Assuming that there must

be a positive amount of driving time between two con-

secutive breaks or rests [Rang (2008): personal communi-

cation], the following observation can be made.

Observation 9 During a waiting time, up to three dif-

ferent break or rest times may have to be taken.

This can be seen as follows. If waiting time before a

vertex is to be transformed into break or rest time, and if

the waiting time is at least 1 min longer than the break or

rest time into which it is to be transformed, but less than

15 min longer, it may be sensible to drive until 1 min

before reaching the vertex where the waiting time occurs,

take the break or rest time, then drive the final minute until

the vertex is reached, and then take a split break. If the

waiting time is at least 15 min longer than the break or rest

time into which it is to be transformed, it is always sensible

to do so. The situation is similar with regard to the use-

fulness of taking a split daily rest. Moreover, if the first

break or rest time during a waiting time is at least a

shortened daily rest period, it may even be sensible to drive

until 2 min before the vertex is reached, take the daily rest

period, drive for another minute, take a split daily rest,

drive the final minute, and then take a split break.

Observation 9 leads to the final observation, which is a

really remarkable one.

Observation 10 There may be up to four breaks or rest

periods even on a short arc with a travel time of not more

than 4 min.

Example 6 Assume that a driver is supposed to drive a

route from o to d with i, j, k, l, and d being the last five

vertices of the route (in this order, see the following

figure). Further assume that the driver reaches vertex i at

time zero (for simplicity) having a remaining daily

driving time of 1 min and having already taken three

reduced daily rests since the last weekly rest period and

two extended daily driving times in the current calendar

week.

To drive this route, the following sequence of activities

is possible:

1 min driving at time 0

660 min daily rest at time 1

1 min driving at time 661

660 min daily rest at time 662

1 min driving at time 1322

180 min split daily rest at time 1323

1 min driving at time 1503

15 min split break at time 1504

269 min driving at time 1519

30 min break at time 1788

1 min driving at time 1818

84 Logist. Res. (2010) 2:79–96

123

268 min driving at time 1819

135 min waiting time at time 2087

540 min daily rest at time 2222

1 min driving at time 2762

Without taking four breaks or rests between i and j, vertex

d cannot be reached within its time window. In particular,

if the two daily rests taken between i and j were merged

into one rest of 1320 min after driving for 1 min, the end of

the last daily rest before j would be at time 1321. Then, due

to the 24-h rule, the daily rest of 540 min would have to

start at time 2221 and the time window at l would be

missed. Furthermore, also if the last daily rest was not split

so that at time 2222 a rest of 540 min is sufficient, d could

not be reached within its time window.

Note that, except for Observations 1 and 3, all of the

aforementioned observations or rather complications arise

only when there are time windows.

6 A labelling algorithm for the elementary shortest

path problem with resource constraints and drivers’

rules (ESPPWDR)

The standard solution technique for (E)SPPRCs is a

labelling algorithm based on dynamic programming. In

principle, such an algorithm works similar to a labelling

algorithm for shortest path problems without resource

constraints, e.g. the well-known Dijkstra algorithm. The

basic concepts used in such an algorithm are the following

(cf. [15]). A resource is an arbitrarily scaled one-dimen-

sional quantity that can be determined or computed at the

vertices of a directed walk in a network. Examples are cost,

time, load, or the accumulated interval driving time. The

value of a resource at a vertex is stored in a resource

variable. An arbitrarily scaled resource is constrained if

there is at least one vertex in the network where the

associated resource variable must not take all possible

values. A cardinally scaled resource is constrained if there

is at least one vertex in the network with a finite upper or

lower bound on the value of the resource. The resource

window of a nominally scaled resource r at a vertex is the

set of allowed values of r at this vertex. The resource

window of a cardinally scaled resource r at a vertex i is the

interval ½lbr
i ; ubr

i � j � �1; þ 1½. A resource extension

function (REF) is defined on each arc in a network for each

resource considered. An REF for a resource r maps the set

of all possible vectors of resource values at the tail of an

arc to the set of possible values of r at the head of the arc.

More precisely, let R: = (r1, . . ., r|R|)T be a vector of

(values of) resource variables. Then, an REF for a resource

r is a function f r : A � R
jRj 7!R. An REF for a cardi-

nally scaled resource r indicates (lower bounds on) the

consumptions of r along the arcs. When seeking a path

from an origin vertex o to a destination vertex d, partial

paths from o to a vertex i=d are extended along all arcs

(i, j) emanating from i to create new, extended paths. For

each o-i-path, there is a corresponding label l resident at i

that stores the values of all resource variables at i for its

path, along with the information on how it was created: the

arc (h, i) over which i was reached and (a reference to) the

label of the o-h-path whose extension along (h, i) yielded

the o-i-path. (This makes it easy to reconstruct the path

corresponding to a label.) Initially, there is exactly one

label corresponding to the path (o). W.l.o.g., the values of

the resource variables of the initial label are all set to the

lower bounds of their respective resource windows at o. A

label l is feasible if and only if the value of each resource

variable in l is within the resource window of its respective

resource. If a label is not feasible, it is discarded. An

extension of a path/label along an arc (i, j) is feasible if the

resulting label at j is feasible. An h-j-path is feasible if,

for each arc (i, i0) in the path, a feasible label at i exists

which can be extended along (i, i0) to a feasible label at i0.
To keep the number of labels as small as possible, it is

decisive to perform a dominance procedure to eliminate

feasible but unnecessary labels. A label l1 dominates a

label l2 if both reside at the same vertex, if the value of

the resource variable of each nominally scaled resource in

l1 is equal to the corresponding value in l2, if the value of

the resource variable of each cardinally scaled resource in

l1 is ‘better’ (less or greater, depending on the resource)

than or equal to the corresponding value in l2, and if the

value of the resource variable of at least one cardinally

scaled resource in l1 is strictly ‘better’ than the corre-

sponding value in l2. Dominated labels are discarded as

well.

For a labelling algorithm, Observations 2 and 10 mean

that several new labels have to be created when extending a

label along an arc; one label for each potentially sensible

sequence of decisions on breaks or rests along an arc.

Creating several new labels from an existing one is, in

principle, equivalent to introducing parallel arcs. However,

an approach using parallel arcs has several serious

drawbacks:

• The structure of the underlying graph must be modified.

• The break or rest times that generally need to be

considered are 0, 15, 30, 45, 180, 540, 660, and n

minutes, where 14405 n5 2700, and n is specified

as input data. This means that there are at least

87 = 2;097;152 possible combinations of breaks and

rest periods even on a short arc. Though most of these

combinations are never relevant, the number of relevant

combinations is considerable and becomes intractable

on long arcs.

Logist. Res. (2010) 2:79–96 85

123

• Due to the previous item, it is clear that long arcs have

to be split, i.e. each parallel arc has to be split into two

or more consecutive arcs.

• Along all but one arc of a set of parallel arcs, the

resources which are independent of drivers’ rules are

updated redundantly.

• Many new labels are created in the first place and then

eliminated in the dominance step. It is much more

efficient not to create these labels at all.

An alternative approach is to use vertices corre-

sponding to breaks or rest periods by introducing one

artificial vertex for each break or rest period, two anti-

parallel arcs between each original vertex and each

artificial vertex, and between each pair of artificial ver-

tices. This approach avoids the aforementioned draw-

backs; most notably, it is not necessary to explicitly

determine all relevant combinations of breaks or rest

periods—these combinations are determined by the

algorithm. However, this approach may lead to the

generation of an excessive number of labels by cycling

between the break or rest vertices, and it may be difficult

to consider the extension of daily and weekly rests.

Therefore, using break or rest vertices was also not

pursued here.

6.1 Underlying network

In practice, it is common that upon arrival at a customer

location, a driver has to perform some active service (tasks

such as manoeuvring or paperwork at the local dispatching

office), followed by passive service (time spent doing

nothing when customer staff is responsible for loading or

unloading), again followed by active service (tasks such as

cleaning the cargo area on the lorry, checking cargo

security, or paperwork). In models for routing problems,

service time at a customer location is usually simply added

to the travel times of the arcs emanating from the vertices

corresponding to the locations. This is obviously not pos-

sible when drivers’ rules are considered. To account for

service times and to be able to distinguish between active

service times such as times for loading or unloading per-

formed by the driver (which have to be counted as other

work) and passive service times (which may be counted as

break or rest time, because the driver can dispose freely of

this time), we use the following approach. With each

customer location vc, a possibly empty ordered sequence of

active and passive service times is associated. In the

digraph used to represent the real-world network, each vc

with nast
c active and npst

c passive service times is represented

by a sequence of vertices vc;in; vc;intermediate;1; . . .;
vc;intermediate;nast

c �2; vc;out. These vertices are linked by service

arcs with zero travel time to form an elementary path from

vc,in to vc,out. Service arcs represent active service times, i.e.

time-consuming processes at the same physical location.

Passive service times are essentially equivalent to waiting

times and are considered at vertices. It is assumed that

waiting and passive service times are additive, i.e. it is

assumed that waiting and passive service times merge

seamlessly. In other words, passive service times are

waiting times which start only after the beginning of the

time window of the respective vertex. vc,in is the head of all

travel arcs representing movements in space and time from

other locations to vc, and vc,out is the tail of all arcs rep-

resenting movements in space and time from vc to other

locations.

No vertices are introduced to model locations where

breaks or rests can be taken, i.e. it is assumed that breaks

and rests can be taken anywhere on a route. This is a

considerable simplification, but the alternative, to have a

vertex for every parking place, roadhouse, and side street in

the geographical region defined by the customer locations,

is not an option.

Formally, we consider an ESPPRC instance defined on…
a digraph D = (V, A) with V = {o, 1, . . ., n, d}. o is the

origin vertex, d is the destination vertex. For each i 2
V ; ½aservice

i ; bservice
i � is the service time window of

i; ½adeparture
i ; bdeparture

i � is the departure time window of i, and

sservice passive
i is the passive service time at i. For each arc

a [A, if the tail vertex of a is i and the head vertex is j, the

notation ij is used to designate a. cij denotes the cost of

traversing ij; stravel
ij is the travel time needed for traversing ij,

and sservice active
ij is the active service time along ij. For each

arc ij, either stravel
ij [0 and sservice active

ij ¼ 0 or vice versa.

The service time window of a vertex specifies the

interval when the service at that vertex may begin. With

tarrival
i denoting the arrival time at a vertex i (before

transforming any waiting time into break or rest time),

beginning of the (passive) service at i is possible no earlier

than at maxfaservice
i ; tarrival

i g; and no later than at bservice
i :

Departure is possible no earlier than maxfadeparture
i ; tarrival

i g,

and no later than bdeparture
i .

The relevant standard resources in the ESPPRC are cost

and time.

The objective is to compute an elementary shortest path

from o to d and a corresponding legal schedule while

respecting the resource constraint for capacity and the time

windows at the vertices. At d, the labels with minimal cost

are considered optimal. If there is more than one label with

minimal cost, labels with minimal duration among all

labels with minimal cost are preferred.

Note that, contrary to the approaches by [1] and [19], the

procedures presented in this section are not only able to

compute a legal schedule for a given route but also to

86 Logist. Res. (2010) 2:79–96

123

simultaneously create a route and compute a legal schedule

for it.

6.2 Resources

To consider the standard resource constraints and the

drivers’ rules mentioned in Sect. 3, the following resource

variables are needed within a label or resource vector

li resident at a vertex i:

• ci: cost of the partial path up to i

• ti: point in time where the service at i begins

• predi: predecessor arc

• predlabel: predecessor label

• sdrive;cur interval
i : accumulated driving time in the current

driving time interval

• sdrive;daily
i : accumulated driving time since the last daily

rest period

• sdrive;cur calendar week
i : accumulated driving time in the

current calendar week

• sdrive;cur calendar fortnight
i : accumulated driving time in

the current calendar fortnight

• ssince last daily rest
i : accumulated time since the end of

the last daily rest period

• smax ext of last daily rest
i : maximum amount by which

the end of the last daily rest period may be extended

without violating the time windows of subsequent

vertices

• ssince last weekly rest
i : accumulated time since the end of

the last weekly rest period

• smax ext of last weekly rest
i : maximum amount by which

the end of the last weekly rest period may be extended

without violating the time windows of subsequent

vertices

• ssince start of calendar week
i : elapsed time since Monday,

0:00 h, in the current calendar week

• next ddt
i : number of extended daily driving times in the

current calendar week

• bsplit break
i : boolean variable specifying whether there

has already been a split break of 15 min in the current

driving time interval (bsplit break
i ¼ 1) or not

(bsplit break
i ¼ 0)

• bsplit rest
i : boolean variable specifying whether there has

already been a split daily rest of 180 min during the

current daily driving time (bsplit rest
i ¼ 1) or not

(bsplit rest
i ¼ 0)

• bddt extended
i : boolean variable specifying whether the

current daily driving time has been extended

(bddt extended
i ¼ 1) or not (bddt extended

i ¼ 0)

• nred daily rests since last weekly rest
i : number of reduced

daily rest periods since the end of the last weekly rest period

• XATi: latest arrival time at i when starting at the

predecessor vertex h on the current partial path at th, if

there were no time windows at i

• LATi: latest arrival time at i when time windows are

considered

• Durationi: minimal duration of the partial path up to i

These resource variables specify the value of the respective

resource at the moment when the service at i begins.

The resource variables XATi, LATi, and Durationi are

due to [19]. Alternative resources that could have been

used here for minimizing route duration were developed by

[14, 21, 22], and [5].

6.3 Overall resource extension function

The decisive point that makes the consideration of drivers’

rules difficult is that it is not possible to say at a certain

point in time where a break or rest period is necessary or

where a wait occurs which break or rest to take without

considering the rest of the route. As stated elsewhere, the

method chosen here for coping with this difficulty is to

create several new labels when extending one old label. For

an exact labelling algorithm, this means that when

extending a label along an arc, it is necessary to consider

all sensible combinations of breaks and rest periods. (Exact

means that the algorithm will find a legal schedule if one

exists.) To do this correctly, a label is extended iteratively:

resources may be updated several times along an arc. The

whole procedure is very lengthy and intricate and cannot be

described in full detail here, but the principle is as follows.

At each iteration, the extension process moves in time (and,

where applicable, in space) along the arc until one of the

time resources reaches a limit. Then, all break or rest

periods that can be taken at the current point in time are

identified. For each such break or rest period, the resources

are updated accordingly via the REFs, and a tentative label

is created and stored for later extension. The old label is

then considered extended. This process is repeated until the

end vertex of the arc is reached. Depending on the resulting

waiting time, additional breaks or rest periods are taken by

transforming waiting time and passive service time com-

pletely or partially into break or rest time. (This is the

reason why passive service time is stored at vertices rather

than along arcs: passive service time is not accounted for

iteratively; it is always considered all at once.) The labels

resulting from this last step are then returned to the label-

ling algorithm as the result of extending one label along an

arc. This overall resource extension process is formalized

in the algorithmic description depicted in the following

table:

Logist. Res. (2010) 2:79–96 87

123

6.4 Exact resource extension

The table on the next page specifies the potentially relevant

combinations of break or rest times that can be created by

transforming waiting and passive service time (if the sum of

these times is at least 1 min) and the conditions when each

combination has to be considered. srem indicates the

remaining arc travel time until the head of the arc is reached.

When a time limit expires along an arc, the situation is

similar to the one in the above table, but simpler: in this case,

no combinations of breaks and/or rest times are necessary.

Along service arcs, only daily and weekly rest periods

have to be considered. At the end of service arcs, no

waiting occurs.

The REFs for cost, predecessor arc, and predecessor

label are straightforward. The difficulty with the other

resources introduced in the preceding section is that they

are strongly interdependent. In essence, to update one such

resource, all other resources have to be considered, too.

This is because the old resource levels of all resources

related to drivers’ rules are needed to determine which

(combinations of) break and/or rest times are relevant, and

these times, in turn, are relevant to compute the new values

of these resources. Moreover, due to the iterative nature of

the algorithm just described, the resources related to driv-

ers’ rules are updated several times. All this leads to the

fact that the updating mechanisms for the resources related

to drivers’ rules are quite complicated. It is beyond the

Overall resource extension function

Input: a Pareto-optimal label l, an arc ij with tail i and head j, where l resides at i, and an empty list Lnew labels for storing the new labels to be

created.

Let Ltentative labels be an empty FIFO-list of tentative labels.

Insert l into Ltentative labels .

While Ltentative labels is not empty

Let lcur be the first element of Ltentative labels .

Remove lcur from Ltentative labels .

Compute the following values for subsequent use:

• sremaining: remaining travel or active or passive service time along ij

• sbreak accumulated: accumulated break or rest times on the current path

• sdrive remaining;cur interval: remaining interval driving time

• sdrive remaining;daily: remaining daily driving time

• sdrive remaining;weekly: remaining weekly driving time

• suntil next daily rest: remaining time until start of next daily rest

• suntil next weekly rest: remaining time until start of next weekly rest

• sdrive remaining min: minimal remaining driving time; takes into account the preceding five resources

• scur extension of last daily rest: maximal amount of time by which the last daily rest can be extended such that the service at j can still

begin as early as possible

• scur extension of last weekly rest: maximal amount of time by which the last weekly rest can be extended such that the service at j can still

begin as early as possible

• bdo not take break: boolean value indicating whether after sdrive remaining min time units, a break is sufficient to continue working

• bdo not take daily rest: boolean value indicating whether after sdrive remaining min time units, a daily rest is sufficient to continue working

If j can be reached without exceeding any time limit

Compute the sum of waiting and passive service time swaitþservice passive
j for lcur at j.

Determine the relevant combinations of break or rest times that can be created by transforming the waiting and the passive service time.

For each such combination

Create from lcur a new label lnew corresponding to the current combination.

Compute the resource values for lnew using the values just computed and insert lnew into Lnew labels .

else

Move along ij until a time limit is reached.

Determine the relevant combinations of break or rest times that can be used to reset all exhausted time resources.

For each such combination

Create a new tentative label lnew tentative corresponding to the current combination.

Compute the resource values for lnew tentative using the values just computed and insert it into Ltentative labels:

Lnew labels now contains zero or more new labels residing at j.

Return value: the number of new labels.

88 Logist. Res. (2010) 2:79–96

123

scope of this paper to specify them all in complete detail.

As an example, a verbal description of the REF for the

interval driving time is given subsequently.

sdrive;cur interval is set to zero,

• if, at the head vertex, at least one break of at least

45 min is taken, or

• if there has already been a split break in the current

driving time interval and one of the break or rest

periods taken at the head vertex is at least 30 min long.

Otherwise, the interval driving time is the driving time

since its last reset, which may have occurred on a previous

arc or which occurs on the current arc

• if one of the break or rest periods taken along the arc,

before reaching the head vertex, is at least 45 min long,

or

• if there has already been a split break in the current

driving time interval and one of the break or rest

periods taken along the arc is at least 30 min long, or

• if, along the arc, a break or rest period of at least 15 and

a break or rest period of at least 30 min are taken in this

order.

The other REFs for the exact algorithm are described in

the Appendix.

6.5 Dominance

The dominance procedure depicted on the next page is used

(where (a ? b : c) returns b if a is true and c otherwise).

As is usual, the above-mentioned procedure checks

whether l1 dominates l2, and if so, i.e. if the procedure

returns true, discards l2. If the procedure returns false, this

does not mean that l2 dominates l1. Therefore, the proce-

dure may have to be called twice for each pair of labels.

Considering the number of resources and their intricate

interdependencies, it is not surprising that the aforemen-

tioned dominance procedure is rather complicated yet

extremely weak. Indeed, the procedure is too weak: it will

unnecessarily often return false, i.e. it will not recognize all

dominated labels. This is necessary for the overall labelling

algorithm to be exact, as the development of an exact

dominance procedure is out of the question, because the

underlying logic quickly becomes intractable.

One reason why the dominance procedure is so weak is

the check, at the beginning of the routine, whether both

labels have the same value for ssince start of calendar week.

This check is necessary because, on the one hand, the

earlier the time, the more flexibility there is to visit addi-

tional customers, but on the other hand, the later the time,

the sooner the calendar week will be over and the sooner

Potentially relevant combinations of break or rest times for exact resource extension

Break/rest time of if

15 bdo not take break ¼ 0 and bsplit break
j ¼ 0 and sdrive remaining min [srem

30 bdo not take break ¼ 0 and bsplit break
j ¼ 1

30?15 bdo not take break ¼ 0 and bsplit break
j ¼ 1 and swaitþservice passive

j [30

45 bdo not take break ¼ 0 and bsplit break
j ¼ 0

45?15 bdo not take break ¼ 0 and bsplit break
j ¼ 0 and swaitþservice passive

j [45

180 bdo not take daily rest ¼ 0 and sdrive remaining min [srem and minfsdrive remaining daily; suntil next daily restg[srem

180?15 bdo not take daily rest ¼ 0 and swaitþservice passive
j [180 and minfsdrive remaining daily; suntil next daily restg[srem

540 bdo not take daily rest ¼ 0

540?15 bdo not take daily rest ¼ 0 and swaitþservice passive
j [540

540?180 bdo not take daily rest ¼ 0 and swaitþservice passive
j [720

660 bdo not take daily rest ¼ 0

660?15 bdo not take daily rest ¼ 0 and swaitþservice passive
j [660

660?180 bdo not take daily rest ¼ 0 and swaitþservice passive
j [840

540?180?15 bdo not take daily rest ¼ 0 and swaitþservice passive
j [735

660?180?15 bdo not take daily rest ¼ 0 and swaitþservice passive
j [855

weekly rest (in any case)

weekly rest ? 15 swaitþservice passive
j [weekly rest duration

weekly rest ? 180 swaitþservice passive
j [weekly rest duration

weekly rest ? 180 ? 15 swaitþservice passive
j [weekly rest duration ? 180 min

0 no other break or rest time considered except for weekly rest

or swaitþservice passive
j \ shortest break

or rest time already considered

Logist. Res. (2010) 2:79–96 89

123

the driving time in a calendar week or fortnight and the

number of enlarged daily driving times are reset. To

evaluate the importance of this check, computational tests

were also performed with a dominance procedure without

this check.

6.6 Heuristic resource extension

The REF described earlier leads to a non-polynomial

algorithm (as the algorithm presented in [19], too). How-

ever, as the most important area of application of a code for

considering drivers’ rules is as a subroutine within a sur-

rounding vehicle routing (meta)heuristic, fast heuristic

algorithm is necessary. A heuristic algorithm must not

return an illegal schedule as legal, although it may erro-

neously return that no legal schedule exists. This is similar

to test procedures in software development: if such a rou-

tine works correctly, then, if it returns that there is an error,

there is one, but if the routine does not find an error, this is

not a guarantee that there is none.

The objective pursued with a heuristic algorithm is, in

the first place, to obtain a legal schedule as often as pos-

sible and, in the second place, to obtain as short as possible

a duration.

There are many different strategies that can be used

when pursuing this objective. In this paper, two possible

strategies for speeding up the algorithm by (over-)simpli-

fying the resource update are proposed:

• A moderate strategy:

– After 4 h 30 min of driving, take a break of 45 min

unless the remaining time until the daily or weekly

driving time expires is not more than 45 min. If this

is the case, take a daily or weekly rest of 11 h or

24 h respectively. However, take a daily or weekly

rest only if the time window of the next customer

permits and if a daily or weekly rest becomes

necessary before the next customer can be reached.

– After 9 h of driving, take a daily rest of 11 h unless

the remaining time until the next weekly rest

Dominance function

Input: two labels l1 and l2 both residing at the same vertex j.

If c(l2) \ c(l1)

return false

If ssince start of calendar weekðl1Þ 6¼ ssince start of calendar weekðl2Þ
return false

If nred daily rests since last weekly restðl1Þ5 nred daily rests since last weekly restðl2Þ
or next ddtðl1Þ5 next ddtðl2Þ
or ssince last weekly restðl1Þ5 ssince last weekly restðl2Þ
or ssince last daily restðl1Þ5 ssince last daily restðl2Þ
or sdrive;cur calendar fortnightðl1Þ5 sdrive;cur calendar fortnightðl2Þ
or sdrive;cur calendar weekðl1Þ5 sdrive;cur calendar weekðl2Þ
or Durationðl1Þ5Durationðl2Þ

If sdrive;dailyðl1Þ5 sdrive;dailyðl2Þ
If sdrive;cur intervalðl1Þ5 sdrive;cur intervalðl2Þ and tðl1Þ5 tðl2Þ þ ðbsplit breakðl2Þ?30 : 45Þ

or tðl1Þ þ ðbsplit breakðl1Þ?30 : 45Þ5 tðl2Þ
or sdrive;cur intervalðl1Þ5 sdrive;cur intervalðl2Þ and tðl1Þ5 tðl2Þ

If bsplit breakðl1Þ and bsplit restðl2Þ
or bsplit breakðl1Þ ¼ bsplit breakðl2Þ and bsplit restðl1Þ
or bsplit restðl1Þ ¼ bsplit restðl2Þ and bsplit breakðl1Þ
or bsplit breakðl1Þ ¼ bsplit breakðl2Þ and bsplit restðl1Þ ¼ bsplit restðl2Þ
or bsplit restðl1Þ ¼ bsplit restðl2Þ and Durationðl1Þ þ 155Durationðl2Þ
or bsplit restðl1Þ ¼ 0 and bsplit restðl2Þ ¼ 1

and ðnred daily rests since last weekly restðl1Þ\nred daily rests since last weekly restðl2Þ and Durationðl1Þ þ 5405

Durationðl2Þ
or Durationðl1Þ þ 6605Durationðl2ÞÞ

return true

else if tðl1Þ þ ðbsplit restðl1Þ?540 : 660Þ5 tðl2Þ
return true

return false

90 Logist. Res. (2010) 2:79–96

123

becomes necessary is not more than 11 h. If this is

the case, take a weekly rest of 24 h. However, take

a weekly rest only if the time window of the next

customer permits and if a weekly rest becomes

necessary before the next customer can be reached.

– 144 h after the end of the last weekly rest, take a

weekly rest of 24 h.

– After 56 h of driving within one calendar week and

after 90 h of driving within one calendar fortnight,

wait until the end of the calendar week.

– Extend the daily driving time to 10 h if the time

window of the next customer does not allow taking

a (possibly reduced) daily rest and if the customer

can be reached when the daily driving time is

extended. Furthermore, extend the daily driving

time to 10 h if there will be no more than two daily

driving periods and daily rests in the current

calendar week or the planning horizon.

– Use the possibility to reduce the daily rest period to

9 h in a similar way.

– When there is waiting time,

• transform the waiting time into a break of

15 min if it is not longer than 15 min and if

there has not yet been a break of 15 min in the

current driving time interval;

• otherwise, transform it into a break of 30 or

45 min if it is not longer than 60 min;

• otherwise, transform it into a split daily rest of

180 min if it is not longer than 180 min or if the

time window does not permit taking a daily rest

of 11 h;

• otherwise, transform it into a daily rest of 11 h

if it is not longer than 22 h or if the time

window does not permit taking a weekly rest of

24 h;

• otherwise, transform it into a weekly rest of

24 h;

• Perform these transformations only if the time

window at the subsequent vertex permits;

otherwise, transform the waiting time into the

next shortest break or rest time that maintains

the time window at the subsequent vertex;

• If waiting time remains, consider adding a split

daily rest of 180 min and/or a split break of

15 min;

– Shift the end of the last daily and weekly rest as

much as possible.

• An aggressive strategy:

– Always use the shortest possible break or rest time.

– Enlarge the daily driving times on the first two

occasions per week.

– Reduce the daily rest periods on the first three

occasions per week.

– Transform waiting time into break or rest time only

if the resulting break or rest time does not exceed

the waiting time.

– Perform transformations of waiting into break or

rest time only if the time window at the subsequent

vertex permits; otherwise, transform the waiting

time into the next shortest break or rest time that

maintains the time window at the subsequent

vertex.

– If waiting time remains, consider adding a split daily

rest of 180 min and/or a split break of 15 min.

– Shift the end of the last daily and weekly rest as

much as possible.

In both strategies, only one new label will result from

extending an existing label along an arc. This means that

when performing a legality check along a given path, there

will always be only one label at a time and thus the

dominance check is inapplicable. When using the heuristic

algorithm as part of an otherwise heuristic or exact path

construction procedure, then of course there may be more

than one label at a vertex at the same time and the

dominance check is still necessary.

6.7 Separating path and schedule construction?

If it were possible to first solve the ESPPRC without

drivers’ rules, i.e. to determine all Pareto-optimal paths of

the problem when drivers’ rules are disregarded, and only

afterwards check the Pareto-optimal paths for compliance

with drivers’ rules, this would facilitate matters consider-

ably: The ESPPRC is much easier to solve when drivers’

rules are ignored, and the ESPPWDR is easier to solve on a

graph corresponding to an otherwise feasible elementary

path than on a general graph. (Solving the ESPPWDR on

an elementary path is effectively a legality check.)

It is of course possible that a dominated path is legal. It

is of course also possible that no Pareto-optimal path is

legal, because there is no legal path at all. Then, the

instance is simply infeasible. However, it must be ensured

that

• there is no legal dominated path while at the same time

there is no legal Pareto-optimal path and

• the consideration of drivers’ rules does not make a

previously dominated path dominate all previously

Pareto-optimal paths.

When solving an ESPPWDR instance without time

windows with a labelling algorithm, if a path P dominates a

path P0, P does by definition not have a higher consumption

of the time resource. Consequently, along P, there will not

Logist. Res. (2010) 2:79–96 91

123

be more breaks or rest periods than along P0. This means

that any schedule which is legal for P0 will also be legal for

P. This means that in the absence of time windows, the

above two conditions are met.

However, it is easy to see that when there are time

windows, which is usually the case, both conditions may be

violated: there may be a legal dominated path while all

Pareto-optimal paths may be illegal, because a necessary

break or rest period may lead to the violation of a time

window. Similarly, there may be a dominated path where

taking the necessary break or rest periods does not increase

the overall time of the path (perhaps because of a very long

waiting time at a vertex towards the end of the path),

whereas the consideration of break or rest periods incurs a

significant increase in overall time for all Pareto-optimal

paths. In conclusion, the hoped for two-stage procedure

does not generally work.

7 Computational experiments

7.1 Test instances

A considerable difficulty when implementing an algorithm

considering drivers’ rules is the debugging and testing for

correctness. There are no benchmark instances in the lit-

erature. Therefore, to debug and test the algorithms

described above, 50 test instances were developed by hand,

each of which constitutes an elementary path and tests

certain aspects of drivers’ rules. For each of these instan-

ces, the legal schedule(s) were identified by inspection, and

the algorithms and their implementations were adapted

where necessary to return correct results. ‘Correct’ means

that for all instances where there is no legal schedule, the

algorithms must never return a schedule as legal. More-

over, for all instances where there is a legal schedule, an

exact algorithm must find one.

To test the computational behaviour of the algorithms, a

set of random test instances also constituting elementary

paths was created. To create the instances, the road dis-

tances and pure (without breaks) driving times between the

25 biggest German cities were used to model full truckload

(FTL) long distance road transports by lorry. The velocity

profile used is shown in the following table.

Type of road Velocity profile of road [km/h]

Fast Medium Slow

Autobahn (motorway) 75 65 60

Bundesstraße (A-road) 45 42 40

Landstraße (country road) 40 35 30

Stadtstraße (urban road) 30 20 15

The objective function of the shortest path algorithm

used was the weighted sum of distance and travel time,

where the weight for distance was 0.1 and the weight for

travel time was 0.9. This is a usual setting in routing

systems.

The average driving time was 314 min. Assuming that

the vehicle is at the first pickup location at the beginning

of the planning horizon and that the route is perfect, i.e.

that the pickup of request i ? 1 is at the same location as

the delivery of request i, between ten and eleven pickup-

and-delivery requests can be performed within a six-day

working week. Therefore, two sets of test instances were

created. The first set has six locations/vertices and a

planning horizon of 4320 min (b¼ 3 days); the second has

twelve locations/vertices and a planning horizon of

8640 min (b¼ 6 days).

At each vertex, except for the first one, passive service

times ranging randomly between 15 and 120 min were

assigned. Active service times were not considered for

simplicity. They are modelled as arcs where only a subset

of the resources related to drivers’ rules are extended,

where no resources are extended that are not also extended

along travel arcs and where there are no waiting times at

the end vertices. Hence, they add nothing of computational

relevance to the problem.

One hundred random feasible instances of each type

were generated. For each instance, six and twelve cities

respectively were selected, and the selection sequence

defined the visiting sequence. Also for each instance, six

and twelve random time windows [a, b] were created with

05 a5 b5 4320ð8640Þ . The time windows were sorted by

increasing a and accordingly assigned to the cities in the

instance. During instance generation, instances without a

feasible schedule when disregarding drivers’ rules were

discarded.

Instances representing short-haul lorry transports with

short distances between customers and a large amount of

service time compared to driving time were also not cre-

ated, particularly because, as stated in the introduction,

rules on working hours as stated in [7], which are poten-

tially more relevant in short-haul transport, are not con-

sidered here.

7.2 Computational results

The instances were tackled with five different approaches:

1. without drivers’ rules

2. with exact consideration of drivers’ rules

3. with the conservative heuristic approach of consider-

ing drivers’ rules

4. with the aggressive heuristic approach of considering

drivers’ rules

92 Logist. Res. (2010) 2:79–96

123

5. with the REF from Sect. 6.4 and the dominance

procedure from Sect. 6.5 without the check whether

ssince start of calendar weekðl1Þ 6¼ ssince start of calendar weekðl2Þ

The dominance procedure described in Sect. 6.5 for the

exact algorithm is both very weak and rather time-con-

suming. Therefore, some computational tests were also

performed for the exact algorithm without using any

dominance at all.
The computational experiments were conducted to

answer the following questions:

• How do the computation times of the different

approaches compare?

• How many of the instances do not have a legal

schedule?

• For how many instances with a legal schedule do the

heuristic approaches find a legal schedule?

• How do the resulting schedule durations computed by

the different approaches compare?

• Which of the heuristic strategies is better? Does one

strategy dominate the other?

The results of the computational experiments are

depicted on the below tables. The first two tables refer to

the instances with six locations; the second two tables refer

to the instances with twelve locations. The first and the

third table show absolute values of the respective data; the

second and the fourth table show the percentage, i.e. rel-

ative, increase of the respective data compared to the

solution approach disregarding drivers’ rules. Each row

in each table refers to a particular solution approach as

indicated in the leftmost columns of each table. The second

columns indicate the number of feasible schedules

obtained. The third columns indicate the minimal, average,

and maximal arrival time at the end vertex of an instance.

Similarly, the fourth columns indicate the minimal, aver-

age, and maximal durations of schedules. In both columns,

the absolute values are given in minutes. The fifth columns

indicate the CPU times (where the absolute values are

given in seconds). The sixth columns show the number of

Pareto-optimal solutions generated by the shortest path

algorithm, and the rightmost columns show the number of

generated labels. As in the previous columns, also in col-

umns 6 and 7, the minimal, average, and maximal values of

the respective data are given. The running times for

the exact approach for the instances with twelve locations

were limited to 300 s; only instances where the algorithm

terminated within this time limit were considered to yield a

feasible schedule.

The tables below allow the following conclusions:

• For most instances, there is no legal schedule at all.

This means that in practice, to serve the customers of

such instances, more than one vehicle is necessary.

• The heuristic approaches of Sect. 6.6 (the moderate

and the aggressive strategy) find legal schedules for

only about half the instances for which a legal

schedule exists. This is unacceptable and clearly

underlines the importance of Observation 2: in a

labelling algorithm, decisions are taken without con-

sidering the rest of the route and this leads to wrong

decisions in many cases.

• The exact REF together with the heuristic dominance

finds more legal schedules than any other approach.

(This is due to the computation time limit, which

hinders the exact approach from finding at least as

many legal schedules.)

• The routines were used here to check given routes for

the existence of legal schedules. Such a legality check

(within a surrounding vehicle routing (meta)heuristic)

will probably be the most common use of any drivers’

rules algorithm. To this end, it is decisive that the

algorithms run fast, because they will be called very

often. The moderate and aggressive heuristic strategies

fulfil this requirement (but, as stated before, lack the

necessary solution quality). The exact REF, heuristic

dominance strategy is a compromise between solution

quality and running time, but the running time is

acceptable only for short routes. The exact algorithm,

of course, has much too high running times to be used

as a subroutine in a (meta)heuristic. However, in

practice, there are applications where the length of the

routes to be checked will be short, i.e. in most cases not

more than half a dozen stops, and to support a human

dispatcher by checking the legality of a route devised

by hand, the running times even of the exact algorithm

are acceptable.

The computational results for the exact algorithm

without using any dominance at all clearly showed that a

dominance procedure is absolutely vital and that even the

weak dominance procedure from Sect. 6.5 allows the

solution of many instances that would otherwise be

intractable.

Logist. Res. (2010) 2:79–96 93

123

8 Conclusion

This paper has described an exact and two heuristic

labelling algorithms for considering EU drivers’ rules in

shortest path problems with resource constraints. It has

highlighted several properties of legal schedules, has

described the resources, the resource extension functions,

and the dominance procedure used in the algorithms, and

has presented the results of computational experiments.

The central points of the paper can be summarized as

follows.

• The observations in Sect. 5 show that the consideration

of drivers’ rules is non-trivial. This is mainly due to the

fact that it is not possible to say at a certain point in

time where a break or rest is necessary or where a wait

occurs which break or rest to take without considering

the rest of the route.

• The basic ideas of the labelling algorithms are:

– More than one new label can be created from an old

one.

– Labels are extended iteratively along arcs.

• The resources used are strongly interdependent; all

resources are needed to identify the relevant break or

rest times, and these times, in turn, determine how the

resources are updated.

• The distinguishing features of the presented algorithms

are:

– The algorithms can construct a route, and not only

check the legality of a given route.

– The algorithms are able to check feasibility and

legality of a route simultaneously.

– They are able to consider arbitrarily long routes, i.e.

routes including one or several calendar weeks and

weekly rest periods.

– The network model used as input to the algo-

rithms considers active and passive service times,

i.e. non-driving time that must be counted as

working time or may be considered as break or

rest time respectively. The algorithms are able

to consider arbitrary sequences of active and

passive service times at customer locations.

Hence, the algorithms offer sufficient flexibility

Computational results

6 Locations, absolute No. feasible Arrival time Duration Running time No. Pareto-opt. sols. No. generated labels

No drivers’ rules 100 1731/2971/4240 1694/2206/3945 0/0/0 1/1/1 6/6/6

Exact 50 2887/3393/4240 2784/3011/3718 0/0.1/1.2 4/520/3354 120/2975/15,720

Heuristic moderate 16 3341/3641/4149 3192/3425/4041 0/0/0 1/1/1 6/6/6

Heuristic aggressive 36 2917/3447/4240 2891/3132/3783 0/0/0 1/1/1 6/6/6

Heuristic dominance 50 2887/3393/4240 2784/3011/3718 0/0/0 2/46/157 116/896/2215

6 Locations, relative No. feasible Arrival time Duration Running time No. Pareto-opt. sols. No. generated labels

No drivers’ rules 0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Exact - 50 0/11/70 1/40/72 ?/?/? 300/51,924/335,300 1900/49,488/261,900

Heuristic moderate - 84 2/19/59 5/61/88 ?/?/? 0/0/0 0/0/0

Heuristic aggressive - 64 0/10/50 1/47/75 ?/?/? 0/0/0 0/0/0

Heuristic dominance - 50 0/11/70 1/40/72 ?/?/? 100/4508/15,600 1833/14,838/36,817

12 Locations, absolute No. feasible Arrival time Duration Running time No. Pareto-opt. sols. No. generated labels

No drivers’ rules 100 4061/6724/8262 3579/5561/8019 0/0/0 1/1/1 12/12/12

Exact 5 6776/7117/7526 6610/6726/6952 6.3/7.2/301.6 95/5045/15,911 41,120/185,940/414,857

Heuristic moderate 2 7294/7550/7806 7182/7400/7618 0/0/0 1/1/1 12/12/12

Heuristic aggressive 2 7388/7553/7718 6803/7047/7290 0/0/0 1/1/1 12/12/12

Heuristic dominance 16 6632/7351/8182 6520/6851/7954 0/1.5/5.3 7/337/1592 5934/28,066/77,521

12 Locations, relative No. feasible Arrival time Duration Running time No. Pareto-opt. sols. No. generated labels

No drivers’ rules 0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Exact - 95 0/15/31 16/52/79 ?/?/? 9400/504,400/1,591,000 342,567/1,549,398/3,457,042

Heuristic moderate - 98 6/10/15 58/61/64 ?/?/? 0/0/0 0/0/0

Heuristic aggressive - 98 0/12/23 41/50/59 ?/?/? 0/0/0 0/0/0

Heuristic dominance - 84 0/6/31 8/39/79 ?/?/? 600/33,588/159,100 49,350/233,781/645,908

94 Logist. Res. (2010) 2:79–96

123

to accommodate most, if not all, practically

relevant situations.

– The algorithms output a concrete schedule.

– New heuristic strategies can be easily implemented.

• The computational experiments show the following:

– The exact algorithm is useful only for checking the

legality of very short routes. Such a use case may be

routes devised by human dispatchers for long-haul

transports at forwarding companies, where the

planning situation is usually highly dynamic and

only the next few stops of each vehicle en route are

known.

– The heuristic approaches are fast enough to be used

as subroutines for feasibility/legality checks in

vehicle routing (meta)heuristics but exhibit a rather

moderate solution quality due to the lack of a

backtracking option to correct unfavourable deci-

sions on breaks or rests.

Overall, the results presented in this paper are such that

further consideration of the described approach is worth-

while. Future research concerning the algorithms described

in this paper should consider, for example, the solution of

the vehicle routing problem with time windows and the

pickup-and-delivery problem with time windows with

drivers’ rules by branch-and-price, where the subproblems

are to be solved by the exact and the heuristic labelling

algorithms.

The paper closes with an invitation to the scientific

community to prove or falsify the following conjecture:

Decision problem LEGAL-ROUTE-DR

Input: An instance of the elementary shortest path problem

with time windows and a feasible solution p. Question: Is

there a legal schedule for p?

Conjecture

Decision problem LEGAL-ROUTE-DR is NP-complete.

Acknowledgments The authors are grateful to Mr Christoph Rang

for his very helpful advice on the legal aspects of drivers’ rules. This

research was funded by the Bundesministerium für Wirtschaft und

Technologie (German Federal Ministry of Economics and Technol-

ogy) under grant no. 19G7032A (M. Drexl).

Appendix: Resource extension functions

Note The subscripts indicating the vertex are suppressed, as

the update of the resource variables is also performed on

arcs, not only at the end vertex of each arc.

sdrive,daily is set to zero,

• if, at the head vertex, at least one rest period of at least

660 min is taken, or

• if there has already been a split daily rest in the current

daily driving time interval and one of the break or rest

periods taken at the head vertex is at least 540 min

long, or

• if it is still possible to take a reduced daily rest period in

the current calendar week and one of the break or rest

periods taken at the head vertex is at least 540 min

long.

Otherwise, the daily driving time is the driving time since

its last reset, which may have occurred on a previous arc or

which occurs on the current arc

• if one of the break or rest periods taken along the arc,

before reaching the head vertex, is at least 660 min

long, or

• if there has already been a split daily rest in the current

daily driving time interval and one of the break or rest

periods taken along the arc is at least 540 min long, or

• if it is still possible to take a reduced daily rest period in

the current calendar week and one of the break or rest

periods taken along the arc is at least 540 min long.

sdrive;cur calendar week is set to zero if the weekly or

fortnightly driving time limit is reached. Otherwise, it is set

to the total driving time since its last reset, which may have

occurred on a previous arc or which occurs on the current

arc if the weekly or fortnightly driving time limit is

reached.

sdrive;cur calendar fortnight is set to zero if the fortnightly

driving time limit is reached. Otherwise, it is set to the total

driving time since its last reset, which may have occurred

on a previous arc or which occurs on the current arc if the

fortnightly driving time limit is reached.

If either the weekly or the fortnightly driving time limit is

reached when travelling along an arc, a break or rest period is

taken until the end of the current calendar week.

The update of ssince last daily rest is equivalent to that of

sdrive,daily, except that not only the driving time is counted,

but also the waiting, break, and rest time and the active and

passive service time.

Every time a daily or weekly rest ends, the value of

smax ext of last daily rest is set to the maximum amount of

time by which the last daily rest can be extended such that

no time windows of subsequent vertices are violated.

Before each vertex, smax ext of last daily rest is set to

max smax ext of last daily rest � scur extension of last daily rest;0
� �

:

The update of ssince last weekly rest is equivalent to that of

ssince last daily rest:

The update of smax ext of last weekly rest is equivalent to

that of smax ext of last daily rest:

ssince start of calendar week is increased by the driving,

waiting, break, and rest time and by the active and passive

service time, and it is reset when it exceeds 168 h.

Logist. Res. (2010) 2:79–96 95

123

next ddt is increased by one each time the decision to

extend the daily driving time to 10 h is taken until

next ddt ¼ 2 . It is reset to zero whenever

ssince start of calendar week is reset.

bsplit break is set to one if a split break of 15 min is taken.

It is reset to zero after the next break or rest period of at

least 30 min.

bsplit rest is set to one if a split daily rest of 180 min is

taken. It is reset to zero after the next rest period of at least

540 min.

bddt extended is set to one if the daily driving time is

extended to 10 h. It is reset to zero after the next daily rest

period.

nred daily rests since last weekly rest is increased by one

each time the decision to take a reduced daily rest periods

is taken until nred daily rests since last weekly rest ¼ 3 . It is

reset to zero whenever ssince last weekly rest is reset.

For the update of XAT, LAT, and Duration, the reader is

referred to [19].

References

1. Archetti C, Savelsbergh M (2007) The trip scheduling problem.

Tech. rep., School of Industrial and Systems Engineering,

Georgia Institute of Technology

2. Bartodziej P, Derigs U, Malcherek D, Vogel U (2009) Models

and algorithms for solving combined vehicle and crew scheduling

problems with rest constraints: an application to road feeder

service planning in air cargo transportation. OR Spectrum

31:405–429

3. Brandão J, Mercer A (1997) A tabu search algorithm for the

multi-trip vehicle routing and scheduling problem. Eur J Oper

Res 100:180–191

4. Cordeau J, Desaulniers G, Desrosiers J, Solomon M, Soumis F

(2002) VRP with time windows. In: Toth P, Vigo D (ed) The

vehicle routing problem. SIAM Monographs on Discrete Math-

ematics and Applications, Philadelphia, pp. 157–193

5. Desaulniers G, Villeneuve D (2000) The shortest path problem

with time windows and linear waiting costs. Trans Sci 34:312–

319

6. Erera A, Karacık B, Savelsbergh M (2008) A dynamic driver

management scheme for less-than-truckload carriers. Comput

Oper Res 35:3397–3411

7. European Union (2002) Directive 2002/15/EC of the European

Parliament and of the Council of 11 March 2002 on the organi-

sation of the working time of persons performing mobile road

transport activities. Available at eur-lex.europa.eu/LexUriServ/

LexUriServ.do?uri=CELEX:32002 L0015:EN:HTML. Accessed

20th August 2009

8. European Union (2006) Regulation (EC) No 561/2006 of the

European Parliament and of the Council of March 15, 2006 on the

harmonisation of certain social legislation relating to road

transport and amending Council Regulations (EEC) No 3821/85

and (EC) No 2135/98 and repealing Council Regulation (EEC)

No 3820/85. Available at eur-lex.europa.eu/LexUriServ/LexUri-

Serv.do?uri=CELEX:32006 R0561:EN:HTML. Accessed 20th

August 2009

9. Goel A (2009a) Truck driver scheduling and regulation (EC) no

561/2006. Tech. rep., Zaragoza Logistics Center, Zaragoza

10. Goel A (2009b) Vehicle scheduling and routing with drivers’

working hours. Trans Sci 43:17–26

11. Goel A, Kok L (2009a) Efficient scheduling of team truck drivers

in the European Union. Tech. rep., Operational Methods for

Production and Logistics, University of Twente

12. Goel A, Kok L (2009b) Efficient truck driver scheduling in the

United States. Tech. rep., Operational methods for production and

logistics, University of Twente

13. Humphreys G (2007) Tachobook. Foster Tachographs, Preston

14. Ioachim I, Gélinas S, Soumis F, Desrosiers J (1998) A dynamic

programming algorithm for the shortest path problem with time

windows and linear node costs. Networks 31:193–204

15. Irnich S, Desaulniers G (2005) Shortest path problems with

resource constraints. In: Desaulniers G, Desrosiers J, Solomon M

(eds) Column generation. Springer, New York, pp. 33–65

16. Kok A, Meyer C, Kopfer H, Schutten J (2009) Dynamic pro-

gramming algorithm for the vehicle routing problem with time

windows and EC social legislation. Tech. Rep. 270, Operational

methods for production and logistics, University of Twente

17. Kopfer H, Meyer C, Wagenknecht A (2007) Die EU-So-

zialvorschriften und ihr Einfluß auf die Tourenplanung. Logistik

Manag 9:32–47

18. Meyer C, Kopfer H, Kok A, Schutten M (2009) Distributed

decision making in combined vehicle routing and break sched-

uling. Tech. Rep. 271, Operational methods for production and

logistics, University of Twente

19. Prescott-Gagnon E, Desaulniers G, Drexl M, Rousseau L-M

(2009) European drivers rules in vehicle routing with time win-

dows. Tech. rep., École Polytechnique de Montréal and GERAD

20. Rang C (2008) Lenk- und Ruhezeiten im Straßenverkehr. Vogel,

München

21. Savelsbergh M (1985) Local search in routing problems with time

windows. Annl Oper Res 4:285–305

22. Savelsbergh M (1992) The vehicle routing problem with time

windows: minimizing route duration. ORSA J Comput 4:146–154

23. Stumpf P (1998) Tourenplanung im speditionellen Güterfern-

verkehr. Gesellschaft für Verkehrsbetriebswirtschaft und Logistik

(GVB) e.V., Nürnberg

24. Xu H, Chen Z, Rajagopal S, Arunapuram S (2003) Solving a

practical pickup and delivery problem. Trans Sci 37:347–364

25. Zäpfel G, Bögl M (2008) Multi-period vehicle routing and crew

scheduling with outsourcing options. Int J Prod Econ 113:980–

996

96 Logist. Res. (2010) 2:79–96

123

	Labelling algorithms for the elementary shortest path problem with resource constraints considering EU drivers’ rules
	Abstract
	Introduction
	Important terms
	Relevant rules
	Literature review
	Fundamental observations concerning drivers’ rules
	A labelling algorithm for the elementary shortest path problem with resource constraints and drivers’ rules (ESPPWDR)
	Underlying network
	Resources
	Overall resource extension function
	Exact resource extension
	Dominance
	Heuristic resource extension
	Separating path and schedule construction?

	Computational experiments
	Test instances
	Computational results

	Conclusion
	Acknowledgments
	Appendix: Resource extension functions
	References

