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Abstract Given the impact of transportation costs on

both supplier selection and inventory replenishment deci-

sions in today’s enterprises, this article addresses both

problems simultaneously by proposing a mixed integer

nonlinear programming model to properly allocate order

quantities to the selected set of suppliers while taking into

account the purchasing, holding and transportation costs

under suppliers’ capacity and quality constraints. It is

shown that incorporating transportation costs in the process

of selecting suppliers and establishing an inventory policy,

not only affects the order quantity shipped from selected

suppliers, but also the actual selection of suppliers.

Because of the difficulty that arises when working with

actual transportation freight rates in large-scale problems,

two continuous functions that estimate actual freight rates

are analyzed. It is shown that the use of these functions is

very practical and easy to implement.

Keywords Supplier selection � Inventory replenishment �
Transportation costs

1 Introduction

This article considers the effect of transportation costs on

supplier selection and inventory replenishment decisions.

In particular, we study the use of trucks as a means of

transporting goods and incorporate the transportation cost

as a function of the shipment quantity. Companies often

need to determine if it is more cost-effective to order

smaller shipments from selected suppliers more frequently

at a higher per unit shipping cost, or to order larger ship-

ments less frequently, which increases the holding cost at

the manufacturing facility. Therefore, to derive inventory

policies that simultaneously determine how much, how

often and from which suppliers to order, purchasing,

holding, and transportation costs are considered.

Despite the importance of transportation costs in sup-

plier selection and order quantity allocation, existing

inventory models in the literature have typically assumed

that transportation costs are either managed by suppliers,

and therefore considered a part of the unit price, or man-

aged by the buyer, and accordingly included as part of the

purchasing cost. However, models with such assumptions

are insensitive to the effect of the shipment quantity on the

per-shipment cost of transportation and seem unrealistic

in situations where goods are moved in smaller size, less

than truckload (LTL) shipments [23]. One difficulty in

trying to incorporate transportation costs into the analysis

is the nature of the actual freight rate structure. Trucking

companies offer discounts on the freight rate to encourage

shippers to buy larger quantities (freight rates take the form

of a step function with a decreasing rate as shipping

weights increase). Two problems have been recognized

when trying to incorporate actual freight rates into inven-

tory models [15]: (1) determining the exact rates between

origin and destination is time-consuming and expensive;

and (2) the freight rate function is not differentiable.

The remainder of this article is organized as follows. In

Sect. 2, previous works related to transportation and

inventory management decisions are summarized. In
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Sect. 3, a discussion on actual transportation freight rates is

presented. Section 4 provides the description, assumptions

and notation of the proposed model. Section 5 introduces

two continuous functions that are used to estimate actual

freight rates in the proposed model. The development of

the proposed model is introduced in Sect. 6. Finally, an

illustrative example and some important conclusions

derived from this study are provided in Sects. 7 and 8,

respectively.

2 Literature review

In this section, different ways in which researchers have

incorporated the transportation cost into inventory man-

agement decisions are examined. Baumol and Vinod [2]

proposed an inventory theoretic model integrating trans-

portation and inventory costs. Their approach incorporates

three elements of transportation: cost of shipping (constant

shipping cost/unit), speed (mean lead time) and reliability

(variance of lead time). Their model assumes a constant

unit shipping cost and does not deal with freight rate dis-

counts. Other researchers have used this theoretic model as

a foundation for further development. For instance, Das [5]

extended Baumol and Vinod’s model to allow for inde-

pendent order quantity and safety stock decisions. Another

example is the model proposed by Buffa and Reynolds [3].

Their model includes the rates for LTL, truckload (TL),

and carload (CL) shipments. Although the transportation

cost was still considered to be constant per unit shipped,

they used indifference curves to perform a sensitivity

analysis by changing the values of the transportation fac-

tors. They concluded that the order quantity was sensitive

to the tariff rate, moderately sensitive to the variability in

lead time and insensitive to the mean lead time.

Langley [10] used an explicit enumeration procedure to

determine the optimal order quantity for a transportation

step function (equivalent to freight rate discounts). From

this analysis, Carter and Ferrin, Larson and Tyworth [4, 11,

19] continued to use enumeration techniques to determine

the optimal order quantity while explicitly considering the

actual freight rate structure. Rieksts and Ventura [16]

investigated models with TL and LTL transportation costs.

They derived optimal policies for both infinite and finite

planning horizons that allow a combination of the two

transportation modes as an alternative to using a unique

option exclusively. The LTL rates are assumed to be

constant per unit shipped.

Mendoza and Ventura [13] studied the case of a single

manufacturer and multiple suppliers, and proposed a mixed

integer nonlinear programming model to optimally allocate

order quantities to the selected set of suppliers while taking

into account inventory and transportation costs

simultaneously. They assumed that goods from suppliers

are transported using trucks. Actual transportation costs

were modeled with a piecewise linear function using binary

variables.

Due to the complexity of the structure of the actual

transportation freight rates, the use of freight rate conti-

nuous functions to estimate actual freight rates has been

repeatedly addressed in the literature, especially to solve

large-scale problems. Warsing [23] stated two key advan-

tages for using continuous functions. One is that conti-

nuous functions do not require the explicit specification of

rate break points for varying shipment sizes nor do they

require any embedded analysis to determine if it is eco-

nomical to increase, over-declare, the shipping weight on a

given route. Another advantage is that continuous functions

can be used in a wide variety of optimization models.

Swenseth and Godfrey [17] studied five alternative

freight rate (continuous) functions: constant, proportional,

exponential, inverse and adjusted inverse. They evaluated

these functions on their ability to estimate the actual freight

rates. Later, Swenseth and Godfrey [18] recommended the

use of the inverse and adjusted inverse freight rate func-

tions to approximate actual freight rates while determining

the optimal order quantity. In this case, the function that

best estimates the TL cost is the inverse function. Con-

versely, LTL is best estimated by means of the adjusted

inverse function. In overcoming some of the lack of fit

from the functions proposed by Swenseth and Godfrey,

especially in the case of LTL, Tyworth and Ruiz-Torres

[20], and Tyworth and Zeng [21] proposed the use of a

power function to model LTL freight rates.

To our knowledge, Mendoza and Ventura [13] is the

only publication that effectively links the issue of order

quantity allocation in the supplier selection problem with

multiple suppliers while considering inventory and

transportation costs simultaneously. However, their

model only works efficiently for small to medium-size

problems. Because of the difficulty that arises when

working with actual transportation freight rates in large-

scale problems, in this article we extend their model by

using two existing continuous functions to estimate the

actual freight rates.

3 Analysis of actual transportation freight rates

Freight can be transported using TL or LTL. According to

Swenseth and Godfrey [18], TL rates are usually stated on

a per-mile basis and LTL rates are generally stated per

hundred weight (CWT) for a given origin and destination.

Table 1 shows an example of freight rates for a particular

shipping route (extracted for illustrative purposes from

[18]).
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Figure 1 shows a graphical representation of the freight

rates versus the weight shipped using the data from

Table 1. Notice that freight rates take the form of a step

function with a decreasing rate as shipping weights

increase. This reflects the economies of scale for larger

shipping weights.

Now, Fig. 2 graphically represents the weight shipped

(lb) with its corresponding total transportation cost ($) for

the rates given in Table 1 (weight is only shown up to

1,010 lb).

Observe from Fig. 2 that there exist some weights that

when multiplied by its corresponding freight rate will yield

the same total cost as that of the next weight break point.

These points are called indifference points and give rise to

the concept of ‘over-declare’. Over-declared shipments are

used by shippers to achieve a lower total transportation

cost. This is accomplished by artificially inflating the

weight to a higher weight break point resulting in a lower

total cost [17]. For example, if the weight shipped is

between 421 and 500 lb, then the shipment can be over-

declared to 500 lb. In this way, the company is charged a

fixed amount of $74. The effective rate for a given ship-

ment in this range is calculated as the fixed amount of $74

divided by the weight shipped.

By finding all the indifference points from the rates in

Table 1, a schedule of actual freight rates can be created.

This schedule alternates between ranges of a constant

charge per CWT followed by a fixed charge, which is the

result of over-declaring a LTL shipment to the next LTL

weight break or the TL shipment. In this way, the total

transportation cost function shown in Fig. 2 becomes

continuous. Although the function shown in Fig. 3 is

continuous, it is non-differentiable due to the indifference

points and can only be represented as a piecewise linear

Table 1 Example of nominal freight rates

Weight range (lb) Freight rate

Minimum charge $40.00

1–499 $17.60/CWT

500–999 $14.80/CWT

1,000–1,999 $13.80/CWT

2,000–4,999 $12.80/CWT

5,000–9,999 $12.40/CWT

10,000–19,999 $6.08/CWT

20,000–46,000a $1,110.00

a TL capacity

Fig. 1 Freight rate versus

weight shipped

Fig. 2 Total transportation cost structure as typically stated
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function. Hence, it becomes difficult to incorporate actual

freight rates into analytical models.

As addressed in Sect. 2, because of the difficulty that

arises when working with actual freight rates, especially for

large-scale problems, several researchers have proposed

the use of continuous functions to properly estimate actual

freight rates. These functions are also differentiable and

can be represented by a single mathematical expression. In

this article, we use two existing continuous functions to

estimate the transportation freight rates, which in turn are

used to determine the total transportation cost in the pro-

posed supplier selection and order quantity model. These

functions are introduced in Sect. 5.

4 Problem description and assumptions

In this research, a single-stage system is studied. The

system consists of a manufacturing facility that processes

items procured from a set of selected suppliers. Although

the manufacturer is assumed to have infinite production

capacity, suppliers have finite capacity and provide raw

materials (unprocessed items) at different purchasing cost

and quality. The problem is determining the order quantity

and the number of orders per (repeating) order cycle allo-

cated to each selected supplier, while minimizing the total

cost per time unit. The total cost includes purchasing,

holding and transportation costs. The inbound transporta-

tion cost of the manufacturer is modeled using LTL rates.

In addition to the basic EOQ assumptions [9], such as

constant demand rate, no shortages allowed, constant lead

times from suppliers, infinite production rate and constant

order quantities, it is assumed that the terms with the

suppliers are ‘‘FOB (free-on-board) origin with freight

charges collect’’, which means that the buyer (manufac-

turer) pays the freight charges and also owns the goods in

transit [8].

The following notation is used throughout this article:

Data

r Number of available suppliers

d Demand per time unit

w Weight of an item

h Inventory holding cost per item and time unit

ki Fixed ordering cost of ith supplier (in $/order)

pi Unit price of ith supplier (in $)

ci Capacity of ith supplier per time unit

qi Perfect rate of ith supplier

qa Minimum acceptable perfect rate of parts

li Lead time of ith supplier

Variables

Ji Number of orders of ith supplier per order cycle

Q Ordered quantity from selected suppliers (in units)

T Time between consecutive orders

Tc (repeating) Order cycle time

We assume that production processes from suppliers are

imperfect and, therefore, defective parts can be produced.

Then, the perfect rate qi (with values between 0 and 1)

represents the proportion of acceptable parts from suppliers

that can be used by the manufacturing facility to produce

high quality products. Additionally, notice that the orders

allocated to suppliers are always of the same size (Q).

Having a single Q makes the time between consecutive

orders (T) constant, which simplifies the implementation of

the inventory policy and helps to coordinate the inventory

between consecutive stages when the current facility (e.g.,

manufacturer) represents only one stage of a multi-stage

supply chain network. If the facility under consideration is

independent, then it may be better to extend the model to

the case where different Qis are used for the suppliers.

Since the demand rate is constant, the following can be

stated: T = Q/d. In one order cycle, Tc, there will be
Pr

i¼1 Ji orders placed to the selected suppliers. This

implies that multiple orders to one supplier are allowed

within an order cycle. After all orders in one order cycle

have been placed, the cycle is repeated. For this reason, Tc

is defined as ‘repeating order cycle time’. To avoid con-

fusion, from now on this concept is simply referred to as

order cycle. Thus, the length of an order cycle becomes

Tc ¼ T �
Pr

i¼1 Ji ¼ ðQ=dÞ �
Pr

i¼1 Ji: Hence, the total

number of order cycles per time unit is given by

1=Tc ¼ 1=ðT �
Pr

i¼1 JiÞ ¼ d=ðQ �
Pr

i¼1 JiÞ:

5 Estimating freight rates with continuous functions

In this section, two continuous functions used to fit the

actual freight rates in this article are introduced. As men-

tioned in Sect. 2, Swenseth and Godfrey [17] proposed the

Fig. 3 Total transportation cost function as typically charged
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use of the proportional function to model LTL freight rates.

The function is as follows:

Fy ¼ Fx þ a Wx � Wy

� �
; ð1Þ

where Fy is the freight rate for shipping a given load ($/

CWT), Fx is the TL rate per CWT, Wx is the TL weight

(lb), Wy is the shipping weight (lb), and a represents the

rate at which the freight rate increases per 100 lb decrease

in shipping weight. Notice that the terms Fx and aWx are

constants and can be substituted by another constant (say,

A), and that Wy can also be expressed as Wy = Qw, where

Q is the order quantity and w is the weight of the item

under consideration. Hence, Eq. 1 can be rewritten as

Fy ¼ A � aQw: ð2Þ

Equation 2 is the proportional function proposed by

Langley [10]. It is easy to see that the freight rate decreases

at a rate aw for every unit increase in Q. The value of a can

be obtained in two ways [15]: (1) from Eq. 1 by

minimizing the mean squared error between actual and

estimated LTL freight rates for each route. In this case,

rates are generated over a realistic range of shipment

quantities (Q) and then a curve is fitted to the rate data; (2)

from Eq. 2 by fitting a simple linear regression model

between the freight rate and order quantity.

The second way to obtain a is typically used when the

transportation freight rates are known (e.g., nominal freight

rates are given for a specific route). DiFillipo [6] and

Natarajan [15] report the use of Langley’s proportional

function in actual implementations. In this article, we assume

that the freight rates from potential suppliers are known.

Therefore, we fit a simple linear regression model between

the freight rates and the corresponding weight range to find

the value of a (and simultaneously the value of the constant

A). In this way, we obtain the function that estimates the

freight rates for shipping a given load from a particular

supplier (in the form of Langley’s proportional function).

In addition to Langley’s function, a method to generate a

power function has been proposed by Tyworth and Ruiz-

Torres [20]. The general form of this estimate as a function

of the weight shipped is as follows:

Fy ¼ a Qwð Þb; ð3Þ

where a and b are the corresponding coefficients. These

coefficients can be found using nonlinear regression

analysis. However, notice that Eq. 3 can also be

expressed as follows:

lnðFyÞ ¼ ln½aðQwÞb� ¼ lnðaÞ þ blnðQwÞ: ð4Þ

In this way, the coefficients can also be found by

performing a simple linear regression analysis.

To generate the rate functions, effective rates need to be

computed, as explained in Sect. 3. Figure 4 shows the

continuous functions generated using Eqs. 2 and 3 to fit the

freight rates for the data in Table 1.

6 Inventory replenishment and supplier selection

model

6.1 Estimating transportation costs for the proposed

model

Let Fyi
; i = 1,…,r, be the freight rate function for shipping

a given load from supplier i ($/CWT). Thus, the trans-

portation freight rate from supplier ‘i’ using Langley’s

proportional function (Eq. 2) is

Fyi
¼ Ai � aiQw; ð5Þ

and the transportation cost for a shipment quantity Q from

supplier ‘i’ using Eq. 5 is

Ai þ aiQwð ÞQw

100
: ð6Þ

Since freight rates are given in $/CWT, the order quantity

to be shipped is multiplied by the weight of the item (w) and

divided by 100 to express the weight shipped in CWT. The

transportation cost per time unit is obtained by multiplying

expression (6) by the total number of orders allocated to all

suppliers in one order cycle
Pr

i¼1 Ji

� �
and by the total

number of order cycles per time unit d
�
ðQ �

Pr
i¼1 JiÞ

� �
;

Xr

i¼1

Ai þ aiQwð ÞJiQw

100
� d

Q
� 1
Pr

i¼1 Ji

� �

¼ dw

100

Xr

i¼1

Ai þ aiQwð Þ JiPr
i¼1 Ji

� �

: ð7Þ

Similarly, the transportation freight rate from supplier

‘i’ using the power function (Eq. 3) is

Fyi
¼ ai Qwð Þbi ; ð8Þ

and the total transportation cost for shipping an order

quantity (Q) from supplier ‘i’ using Eq. 8 is

Fig. 4 Langley’s and power function estimates
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ai Qwð Þbi

n oQw

100
: ð9Þ

Finally, its corresponding transportation cost per time

unit is expressed as follows:

dw

100

Xr

i¼1

aiðQwÞbi

� � JiPr
i¼1 Ji

� �

: ð10Þ

6.2 In-transit inventory

Since FOB origin, freight collect, is assumed, the manu-

facturer not only pays for freight charges but is also

responsible for goods in transit. Therefore, the in-transit

inventory should also be reflected in the total inventory per

time unit held by the manufacturer. The in-transit inventory

cost per time unit for each supplier is

li

Y
� dJiPr

i¼1 Ji
� h; ð11Þ

where Y is the number of days per time unit. The first term

(li/Y) represents the fraction of time that an order of size Q

spends in transit. The second term represents the fraction of

the total demand procured from supplier i, and h is the

holding cost rate (herein assumed to be the same as the

regular holding inventory cost). The final expression for

in-transit inventory per time unit considering all suppliers is

dh

Y
�
Pr

i¼1 liJiPr
i¼1 Ji

; ð12Þ

where
Pr

i¼1 liJi

�Pr
i¼1 Ji indicates an average lead time.

Note that the in-transit inventory cost does not depend on

the order quantity Q. While this cost does not directly

affect the size of the order, it does affect the number of

orders allocated to suppliers (Ji’s).

6.3 Proposed model with continuous functions

The total cost per time unit considering continuous functions

to estimate the transportation freight rates is the following:

ZFQ ¼ d

Q
�
Pr

i¼1 JikiPr
i¼1 Ji

þ d �
Pr

i¼1 JipiPr
i¼1 Ji

þ hQ

2
þ dh

Y
�
Pr

i¼1 JiliPr
i¼1 Ji

þ dw

100
�
Pr

i¼1 Ji � FyiPr
i¼1 Ji

: ð13Þ

Recall that we consider three types of costs: purchasing

(or ordering), holding and transportation. The purchasing

cost has two components: (1) fixed ordering cost (first

term), which is obtained by dividing the total ordering cost

per order cycle,
Pr

i¼1 Jiki; by the length of the order cycle,

Tc ¼ ðQ=dÞ �
Pr

i¼1 Ji; and (2) variable ordering cost

(second term), where
Pr

i¼1 Jipi

�Pr
i¼1 Ji indicates an

average price of a purchased unit. We also have two

components of the holding cost: (1) holding cost at the

manufacturing facility (third term); since the order quantity

(Q) is the same for all suppliers, the holding cost per time

unit is simply expressed as the unit holding cost times the

average inventory on hand, Q/2; and (2) in-transit

inventory (fourth term), as per expression (12) in

Sect. 6.2. Finally, the fifth term accounts for the

transportation cost. In this case, Eq. 5 replaces Fyi
when

Langley’s (linear) function is used to estimate the actual

freight rate from supplier i. Likewise, Eq. 8 replaces Fyi

when the power function is employed to estimate the

freight rate from supplier i. This is equivalent to replacing

the fifth term in Eq. 13 with expressions 7 or 10.

Two types of constraints are considered in the model:

capacity and quality. The capacity constraints are as follows:

d � JjPr
i¼1 Ji

� cj; for j ¼ 1; . . .; r; ð14Þ

where the left-hand side represents the proportion of

demand per time unit that is assigned to the ith supplier,

which is limited by its offered capacity per time unit (right-

hand side). The quality constraint is
Pr

i¼1 JiqiPr
i¼1 Ji

� qa; ð15Þ

where the left-hand side represents the average perfect rate

offered by suppliers. This average needs to meet the mini-

mum acceptable perfect rate (qa) imposed by the manu-

facturer. This manufacturer’s perfect rate represents an

average quality level that needs to be maintained. Notice

that, if this perfect rate were a lower bound for all sup-

pliers, the suppliers with a lower perfect rate would have to

be rejected and the constraint would be unnecessary.

By including capacity and quality constraints, and

rearranging terms of Eq. 13, the complete formulation for

the supplier selection and order quantity allocation problem

considering transportation costs is the following:

ðP1Þ minimize ZFQ ¼ d
M

1
Q �

Pr

i¼1

Jiki þ
Pr

i¼1

Jipi

�

þ w
100

�
Pr

i¼1

JiFyi
þh

Y �
Pr

i¼1

Jili

	

þ hQ
2
;

subject to dJi � ciM; i ¼ 1; . . .; r;
Pr

i¼1

Jiqi �qaM;

Pr

i¼1

Ji ¼ M;

Q�0;
Ji �0; integer; i ¼ 1; . . .; r;
M�1; integer:

Notice that the total number of orders allocated to all

selected suppliers in one order cycle,
Pr

i¼1 Ji; has been

defined as M. The reason is that if the optimal value of M

that minimizes the total cost per time unit results in an
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excessively large order cycle time, then the manufacturer

may restrict M to a reasonably small value to reduce the

entire order cycle. Short cycle times facilitate interaction

with suppliers and simplify the inventory replenishment

process.

7 Illustrative example

In this section, a numerical example is presented to analyze

the impact of transportation costs on supplier selection and

order quantity allocation decisions. To highlight the

advantages of using Langley’s (linear) and the power

functions to estimate the actual transportation freight rates,

it is important to compare the solutions obtained from these

estimates to the absolute optimal solution obtained by

Mendoza and Ventura [13]. Important properties and con-

clusions are derived from this analysis.

7.1 Input data

The example problem consists of one manufacturer and

three potential suppliers. The manufacturer needs to decide

its inventory policy with respect to a component part

needed in the assembly process. The weight of the com-

ponent part is w = 16 lb and its demand has been esti-

mated at d = 1,000 units/month with a corresponding

holding cost of h = $10/units per month. The manufacturer

has specified its minimum acceptable perfect rate as

qa = 0.95. Table 2 shows additional data for the three

potential suppliers.

The suppliers are located in different geographical areas,

and therefore, the corresponding freight rates are different.

The capacity of the trucks is Wx = 40,000 lb. Tables 3, 4

and 5, respectively, show the nominal [1] and actual freight

rates for suppliers 1, 2 and 3. The actual and effective

freight rates were calculated as explained in Sect. 3.

Additionally, their corresponding TL rates are: $18.8125/

CWT ($7,525/TL), $33/CWT ($13,200/TL) and $12.575/

CWT ($5,030/TL).

The functions generated by fitting Eqs. 5 and 8 to the

effective rates of each supplier are summarized in Table 6

along with their corresponding coefficient of determination

(R2). The coefficient of determination is widely used to

determine how well a regression function fits the data [22].

In this particular case, R2 is a measure of how well the

estimates shown in Table 6 fit the actual freight rates. The

analysis was performed using [14]. As shown in Table 6,

all R2 values are greater than 0.93. Thus, all three power

functions provide very good estimates of the actual freight

rates.

Table 2 Data for suppliers

Supplier I Price

(pi) ($)

Fixed

ordering

cost (ki) ($)

Perfect

rate (qi)

Capacity (ci)

(units/month)

Leadtime

(li) (days)

1 20 160 0.93 700 1

2 24 140 0.95 800 3

3 30 130 0.98 750 2

Table 3 Nominal and actual freight rates for supplier 1

Nominal freight rate Actual freight rate

Weight

range (lb)

Freight rate Weight

range (lb)

Freight rate

1–499 $107.75/CWT 1–428 $107.75/CWT

500–999 $92.26/CWT 429–499 $461.3

1,000–1,999 $71.14/CWT 500–771 $92.26/CWT

2,000–4,999 $64.14/CWT 772–999 $711.4

5,000–9,999 $52.21/CWT 1,000–1,803 $71.14/CWT

10,000–19,999 $40.11/CWT 1,804–1,999 $1,282.8

20,000–29,999 $27.48/CWT 2,000–4,070 $64.14/CWT

30,000–40,000 $7,525 4,071–4,999 $2,610.5

5,000–7,682 $52.21/CWT

7,683–9,999 $4,011

10,000–13,702 $40.11/CWT

13,703–19,999 $5,496

20,000–27,383 $27.48/CWT

27,384–40,000 $7,525

Table 4 Nominal and actual freight rates for supplier 2

Nominal freight rate Actual freight rate

Weight

range (lb)

Freight rate Weight

range (lb)

Freight rate

1–499 $136.26/CWT 1–403 $136.26/CWT

500–999 $109.87/CWT 404–499 $549.35

1,000–1,999 $91.61/CWT 500–833 $109.87/CWT

2,000–4,999 $79.45/CWT 834–999 $916.1

5,000–9,999 $69.91/CWT 1,000–1,734 $91.61/CWT

10,000–19,999 $54.61/CWT 1,735–1,999 $1,589

20,000–29,999 $48.12/CWT 2,000–4,399 $79.45/CWT

30,000–40,000 $13,200 4,400–4,999 $3,495.5

5,000–7,811 $69.91/CWT

7,812–9,999 $5,461

10,000–17,623 $54.61/CWT

17,624–19,999 $9,624

20,000–27,431 $48.12/CWT

27,432–40,000 $13,200
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7.2 Analysis of results

The following results are labeled for the purpose of sim-

plifying the analysis:

1. Solution to the problem without transporta-

tion ? actual transportation cost (WTA): results are

obtained in three steps. First, problem (P1) is solved

ignoring the transportation and in-transit inventory

terms. Here, the idea is to find the total cost per

time unit ðZ�
SÞ; the order allocation (Ji’s) and the

order quantity allocated to selected suppliers (Q*).

Second, the transportation and in-transit inventory

costs are computed separately, as explained. The

actual freight rates for the three suppliers are

obtained from Tables 3, 4, 5 considering the ship-

ping weight Q� � w. Then, the transportation cost per

time unit is given by

dw

100
�
Pr

i¼1 JiF
A
iPr

i¼1 Ji
; ð16Þ

where FA
i indicates the actual freight rates obtained

from tables ($/CWT). The in-transit transportation cost

per time unit is calculated as follows:

dh

Y
�
Pr

i¼1 JiliPr
i¼1 Ji

: ð17Þ

Third, the resulting costs from Eqs. 16 and 17 are

added to the cost found in step one, Z�
S :

2. Langley’s function (LF): results are obtained by

solving problem (P1) using the Langley’s freight rate

functions (Fy1
, Fy2

, and Fy3
) provided in the second

column of Table 6. These results consider estimated

transportation and inventory costs simultaneously.

3. LF with actual transportation costs (LFA): these

results are calculated in two steps. First, using the

order quantity obtained in LF, the corresponding actual

freight rates for the selected suppliers are determined

from Tables 3, 4, 5. Second, the total transportation

cost is recalculated using these actual freight rates in

Eq. 16.

4. Power function (PF): results are obtained by solving

problem (P1). The freight rate (power) functions (Fy1
,

Fy2
, and Fy3

) are provided in the fourth column of

Table 6. These results consider estimated transporta-

tion and inventory costs simultaneously.

5. PF with actual transportation costs (PFA): these

results are found in two steps. First, using the order

quantity from PF, the corresponding actual freight

rates for the selected suppliers are determined from

Tables 3, 4, 5. Second, the total transportation cost is

recalculated using these actual freight rates in Eq. 16.

6. Absolute optimal solution (AO): results are obtained by

solving the mathematical model proposed by Mendoza

and Ventura [13], see Appendix 1. Their model

provides the absolute optimal by representing trans-

portation costs as a continuous piecewise linear

function (of the weight shipped) using binary

variables.

LFA and PFA are calculated to compare the actual costs

with the cost of the absolute optimal (AO) solution.

Table 7 shows the solution of the illustrative example for

cases 1–6. Notice that the order quantity of WTA is smaller

than those obtained for LFA, PFA and AO. The reason is

that by incorporating transportation and inventory costs

simultaneously, as in LFA, PFA and AO, the manufacturer

can take advantage of economies of scale in shipping. After

adding the transportation and in-transit inventory costs to

Table 5 Nominal and actual freight rates for supplier 3

Nominal freight rate Actual freight rate

Weight range (lb) Freight rate Weight range (lb) Freight rate

1–499 $81.96/CWT 1–428 $81.96/CWT

500–999 $74.94/CWT 429–499 $374.7

1,000–1,999 $61.14/CWT 500–771 $74.94/CWT

2,000–4,999 $49.65/CWT 772–999 $611.4

5,000–9,999 $39.73/CWT 1,000–1,803 $61.14/CWT

10,000–19,999 $33.44/CWT 1,804–1,999 $993

20,000–29,999 $18.36/CWT 2,000–4,070 $49.65/CWT

30,000–40,000 $5,030 4,071–4,999 $1,986.5

5,000–7,682 $39.73/CWT

7,683–9,999 $3,344

10,000–13,702 $33.44/CWT

13,703–19,999 $3,672

20,000–27,383 $18.36/CWT

27,384–40,000 $5,030

Table 6 Summary of freight rate continuous function estimates

Supplier 1 Langley’s Fn ($/CWT) R2 value Power Fn ($/CWT) R2 value

1 Fy1
¼ 61:7 � 0:00127 Qwð Þ 0.763 Fy1

¼ 1586:21 Qwð Þ�0:4028
0.947

2 Fy2
¼ 80:3 � 0:00129 Qwð Þ 0.746 Fy2

¼ 789:97 Qwð Þ�0:2831
0.935

3 Fy3
¼ 48:2 � 0:00109 Qwð Þ 0.758 Fy3

¼ 2247:57 Qwð Þ�0:4757
0.938
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WTA, the worst total cost per time unit is achieved (13.4%

greater than that of AO). Moreover, the solutions in LFA,

PFA and AO obtain a different allocation of orders to

suppliers compared to that of WTA. These solutions

eliminate supplier 2 altogether, mainly due to its high

average actual freight rates. Observe also that the order

allocations for LFA, PFA and AO are the same. Hence, by

solving problem (P1) with the freight rate continuous

functions, one can obtain the optimal number of orders

allocated to each selected supplier.

Now, for the same input data used in this section,

Table 8 shows the computational results of the optimal

solution obtained by solving the mathematical model pro-

posed by Mendoza and Ventura [13] for the case in which

different Qis are allowed for each selected supplier. This

solution includes the values of each Qi and the objective

function. Notice that the improvement in the objective

function, compared to the solution in which similar Qs are

considered for each selected supplier, is insignificant (less

than 1%).

In terms of the complexity in solving the proposed

model versus the AO model proposed by Mendoza and

Ventura [13] for the numerical problem with similar Qs

discussed so far, Table 9 indicates some advantages for

using the proposed model (with approximations). Observe

that the number of linearizing constraints decreases sub-

stantially from Mendoza and Ventura’s model to the pro-

posed model. Additionally, the difference in runtime

between the two models is over 25 s. Clearly, in large-scale

real-world applications, the number of linearizing con-

straints, binary variables and runtime will increase sub-

stantially when using the AO model. Hence, the proposed

model is much easier to implement and use in practice.

Figure 5 shows the steps required to implement each

model.

Observe that the proposed model can entirely be

implemented using commercial software available in

spreadsheets such as Microsoft EXCEL; whereas the model

proposed by Mendoza and Ventura [13], because of the

added complexity in terms of number of linearizing con-

straints and binary variables, requires specialized optimi-

zation software, such as LINGO [12] or GAMS [7], which

is more expensive.

To study the performance of Langley’s (linear) and

power functions, an analysis of transportation costs for

different values of M was carried out. Table 10 shows the

transportation costs of WTA, LFA, PFA and AO for values

of M from 2 to 25.

The impact of not considering inventory and transpor-

tation costs simultaneously results in an average deviation

of 87% from the optimal solution (AO). Essentially, this

translates to higher shipping costs. Modeling of freight

rates using Langley’s (linear) function results in transpor-

tation costs that are 43% higher than those of AO. In

contrast, estimating the transportation costs with the power

function results in a 14% deviation from AO. Although the

simple straight line function outperforms WTA, this

approximation may not be suitable in practice. However,

the power function works very well.

Table 7 Solutions for the

illustrative example (same Q for

selected supplier)

a These cases consider

estimated transportation costs

Order allocation Order quantity Cycle’s length Total cost % Deviation

J1 J2 J3 Q Tc (month) ($/month) (from AO)

WTA 3 20 2 168 4.2 38,346.10 13.4

LFa 3 0 2 277 1.4 34,544.44 2.14

LFA 3 0 2 277 1.4 34,917.50 3.40

PFa 3 0 2 551 2.8 33,322.39 -1.47

PFA 3 0 2 551 2.8 34,283.30 1.40

AO 3 0 2 625 3.1 33,819.10 –

Table 8 Solution for the illustrative example (different Qis for the

selected suppliers)

Order allocation Order quantities Total cost

J1 J2 J3 Q1 Q2 Q3 ($/month)

AO (Qi’s) 3 0 4 625 0 313 33,679.95

Table 9 Comparison between Mendoza and Ventura’s model and the

proposed model

Type of constraints AOa [13] Proposed model

(LFA, PFA)b

Capacity 3 3

Quality 1 1

Number of orders allocated (M) 1 1

Linearizing constraints 57 0

Binary variables 42 0

Integer variables 3 3

Total 107 8

a Runtime = 26 s
b Runtime \1 s
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Fig. 5 Implementation steps

for both the Mendoza and

Ventura’s model and the

proposed model

Table 10 Comparative analysis

of transportation costs
M WTA Dev from

AO (%)

LFA Dev from

AO (%)

PFA Dev from

AO (%)

AO

2 $9,103.20 55 $8,491.91 44 $6,739.13 15 $5,884.00

3 $10,306.13 51 $9,783.22 43 $7,654.38 12 $6,835.20

4 $10,907.60 85 $8,491.91 44 $6,739.13 15 $5,884.00

5 $9,335.04 56 $8,532.50 42 $6,791.88 13 $5,990.72

6 $11,509.07 96 $9,163.24 56 $7,241.78 23 $5,884.00

7 $11,680.91 96 $8,521.56 43 $6,776.94 14 $5,960.23

8 $10,601.40 68 $9,000.29 43 $7,118.40 13 $6,307.40

9 $10,835.91 82 $8,515.26 43 $6,768.60 14 $5,943.29

10 $11,023.52 84 $8,532.50 42 $6,791.88 13 $5,990.72

11 $11,177.02 79 $8,877.66 42 $7,038.59 13 $6,240.44

12 $11,304.93 89 $8,526.18 43 $6,783.18 14 $5,972.93

13 $11,413.17 85 $8,820.20 43 $6,993.25 13 $6,185.60

14 $11,505.94 93 $8,521.56 43 $6,776.94 14 $5,960.23

15 $11,586.35 93 $8,532.50 42 $6,791.88 13 $5,990.72

16 $11,656.70 89 $8,770.08 42 $6,961.83 13 $6,162.40

17 $11,718.78 96 $8,528.06 43 $6,785.74 14 $5,978.16

18 $11,773.96 92 $8,740.23 43 $6,937.45 13 $6,131.47

19 $11,823.33 98 $8,524.49 43 $6,780.88 14 $5,968.25

20 $11,867.76 98 $8,532.50 42 $6,791.88 13 $5,990.72

21 $11,907.96 95 $8,713.63 42 $6,921.50 13 $6,121.52

22 $11,944.51 100 $8,529.08 43 $6,787.14 13 $5,981.02

23 $11,977.88 96 $8,695.05 43 $6,905.87 13 $6,100.87

24 $12,008.47 101 $8,526.18 43 $6,783.18 14 $5,972.93

25 $12,036.61 101 $8,532.50 42 $6,791.88 13 $5,990.72

Average % deviation 87 43 14
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When solving problem (P1), we assume all shipments

from suppliers are LTL. Then, the proposed continuous

functions are used to estimate the actual freight rates. If

after solving problem (P1), the shipping weight is such that

it can be over-declared as a full TL, this means that the

continuous functions used to estimate the actual freight

rates might be overestimating the transportation cost per

time unit. This situation can be corrected by recalculating

the transportation cost per time unit with the [lower] freight

rate of a full TL. This results in a lower total transportation

cost and the order quantity remains unchanged.

8 Conclusions

In this article, the impact of transportation costs in both

supplier selection and inventory replenishment decisions

has been addressed. Under the assumptions that ship-

ments from suppliers are LTL and order quantities from

the selected suppliers are of the same size, two existing

continuous functions have been used to estimate the

actual freight rates of supplier shipments. The use of

these functions is recommended when the number of

potential suppliers is large or when no specialized opti-

mization software, such as LINGO or GAMS, is avail-

able to solve the problem optimally. These functions do

not require specification of rate break points or any

embedded analysis to determine when to over-declare a

given shipment. Further, fitting continuous functions and

solving problem (P1) can easily be done using Microsoft

EXCEL. Therefore, the use of continuous functions,

especially the power function, to estimate the actual

transportation costs makes the model proposed in this

article very practical.

Finally, it has been shown that incorporating transpor-

tation costs into inventory replenishment decisions, not

only affects the order quantity shipped from selected sup-

pliers, but also the actual selection of suppliers. This may

actually affect the configuration of supply chains.
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Appendix 1: Mendoza and Ventura’s model [13]

The mathematical model for supplier selection and order

quantity allocation using actual transportation freight rates

from Mendoza and Ventura [13] is presented in this

appendix. With the exception of ki,k, bi,k, gi,k, which are

introduced and explained below, the notation is the same as

that used in the present article:

ðAOÞminimize ZA ¼ d

M

1

Q

Xr

i¼1

Jiki þ
Xr

i¼1

Jipi þ
1

Q

Xr

i¼1

Ji

"

�TCiðQwÞ þ h

Y
�
Xr

i¼1

Jili

#

þ hQ

2

subject to Jid � ciM; i ¼ 1; . . .; r; ð18Þ
Xr

i¼1

Jiqi � qaM; ð19Þ

Xr

i¼1

Ji ¼ M; ð20Þ

Q � w ¼
Xuiþ1

k¼1

bi;k � ki;k; i ¼ 1; . . .; r; ð21Þ

TCiðQwÞ ¼
Xuiþ1

k¼1

gi;k � ki;k; i ¼ 1; . . .; r; ð22Þ

ki;k � Zi;k; i ¼ 1; . . .; r; k ¼ 1; ð23Þ

ki;k � Zi;k�1 þ Zi;k; i ¼ 1; . . .; r; k ¼ 2; . . .; ui;

ð24Þ
ki;k � Zi;k�1; i ¼ 1; . . .; r; k ¼ ui þ 1; ð25Þ

Xuiþ1

k¼1

ki;k ¼ 1; i ¼ 1; . . .; r; ð26Þ

Xuiþ1

k¼1

Zi;k ¼ 1; i ¼ 1; . . .; r; ð27Þ

Zi;k 2 f0; 1g; i ¼ 1; . . .; r; k ¼ 1; . . .; ui; ð28Þ

ki;k � 0; i ¼ 1; . . .; r; k ¼ 1; . . .; ui þ 1; ð29Þ

Q� 0; ð30Þ
Ji � 0; integer; i ¼ 1; . . .; r; ð31Þ
M � 1; integer: ð32Þ

The total weight shipped from supplier ‘i’ (in one order)

is defined in Eq. 21, where bi,k (i=1,…,r; k =1,…,ui?1)

represents a break point (lb) that can be obtained from the

actual LTL rate structure, and ui is the total number of

break points in the actual LTL rate structure. Furthermore,

bi,1 = 0 and bi;uiþ1 equals the capacity of a TL. The total

transportation cost charged to supplier i for the weight

(Qw) shipped is defined in Eq. 22, where gi,k (i = 1,…,r;

k =1,…,ui?1) is the total transportation cost obtained by

evaluating the corresponding break point bi,k into the actual

LTL rate structure. As per the definition of bi;uiþ1; gi;uiþ1 is

the cost of a full TL. Moreover, each binary variable, Zi,k,

represents one linear segment of the freight rate function

(see Fig. 3). By constraint 27, only one Zi,k per supplier can

get a value of ‘1’. Then, the specific segment chosen
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contains the weight shipped (Qw) and its corresponding

total transportation cost TCi(Qw) is expressed as the linear

combination of ki,k and ki,k?1 (0 B ki,k B 1, i = 1,…,r;

k = 1,…,ui ? 1). This clearly explains the presence of

constraints 23–27.
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