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Abstract Traditional solution concepts for the vehicle

routing problem (VRP) are pushed to their limits, when

applied on dynamically changing vehicle routing scenar-

ios—which are more close to reality than the static

formulation. By contrast, the introduced distributed routing

concept is designed to match packages and vehicles and to

continuously make route decisions especially within a

dynamic environment. In this autonomous control concept,

each of these objects makes its own decisions. The

developed algorithm was entitled Distributed Logistics

Routing Protocol (DLRP). But in spite of the restricted

suitability of the traditional VRP concepts for dynamic

environments, they are still the benchmark for any VRP-

similar task. Therefore, we first present a description of the

developed DLRP. Then an adapted vehicle routing problem

is defined, which both sides, static and dynamic concepts,

can cope with. Finally, both concepts are compared using a

tabu search algorithm as a well working instance of tradi-

tional VRP-concepts. For a quantitative comparison, four

solutions are given for the same adapted problem: the

optimal solution as a lower bound, the DLRP solution, a

tabu search solution and a random-like solution as an upper

bound.

Keywords Vehicle routing problem (VRP) �
Autonomous control � Distributed logistics routing

protocol (DLRP) � Tabu search � Optimisation �
Routing algorithm � Transport logistic

1 Introduction

One opportunity to handle growing dynamics and com-

plexity of logistics systems is to shift from central planning

to decentral, autonomous control strategies. The concept of

autonomous control is the research area of the German

Collaborative Research Centre (CRC) 637 ‘Autonomous

Cooperating Logistic Processes—A Paradigm Shift and its

Limitations’. This CRC develops a new concept for

dynamic transport networks, which is designed to match

goods and vehicles and to continuously make route deci-

sions within a dynamic transport environment. Here, each

object makes its own decisions. It is called Distributed

Logistics Routing Protocol (DLRP).

In order to evaluate this new concept, we compare it to

the traditional solutions for the vehicle routing problem

(VRP), shown in this article.

To describe the different approach of autonomous con-

trol to transport problems, the developed DLRP is

described at first. In contrast to traditional algorithms for

the VRP problem, which do static optimisation, this

approach tries to control an ongoing dynamic transport

process.

Therefore the problem definitions of both sides are dif-

ferent in principal. One basic point is that the VRP is a

static problem, because all customers are known at the

beginning. In contrast, the problem for the DLRP is a

dynamic network formulation: the customers appear con-

tinuously and are not known from the beginning. In order

to make the results for both sides comparable, an adapted

VRP scenario is described which can be handled by the

DLRP and traditional VRP algorithms.

Several versions of this adapted VRP scenario were

solved by the DLRP on the one hand and by a tabu search

algorithm on the other hand. The tabu search algorithm was
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taken as a typical traditional VRP algorithm which can

manage big solution spaces (see [1, p. 275]).

To rate the results and to evaluate the new concept in a

more objective way, four solutions are given for the same

adapted problem. In addition to the DLRP and the tabu

search solution, lower and upper bounds for the overall

vehicle distance were calculated. The optimal vehicle ways

are given as best and some kind of random vehicle ways as

worst case values. Therefore the new concept is evaluated

relatively to a traditional algorithm and secondary to an

absolute scale.

2 Distributed Logistics Routing Protocol

Real life scenarios of transport processes require a kind of

continuous control of logistic objects. Objects like pack-

ages and vehicles appear and disappear continuously—the

scenario is a dynamic one. After a close consideration on

static routing problems like TSP, TRP, VRP, or PDP, to

name a few, the need of research on dynamic problems had

been stressed in literature recently (see [2–5] or [6] for

examples). In the majority of cases, dynamic means that

not all customer orders are known in advance, in contrast to

the traditional static scenario.

The second crucial property of real life scenarios is their

size. Our global viewpoint and vision is the control of

nearly all transports for example in Germany—to show our

long range perspective. Under these circumstances, it is not

possible to calculate any optimum—it is not even possible

to receive all relevant information for one point of time. All

approaches mentioned above follow a central strategy,

which has strong restrictions to the scenario size (the

number of orders in the mentioned scenarios vary between

100 and 1,000).

Against this background, an autonomous control concept

for transport nets was developed. The concept was initially

inspired by internet routing protocols, which are able to find

routes through a permanently changing and unknown net. In

addition, these concepts are able to deal with very large nets

without a central perspective. The basic concept for one

data package wanting to get to its destination is the

RouteRequest/RouteReply mechanism. This package sends

a RouteRequest to all its neighbour vertices, which for

themselves sent it ahead to their neighbours. If one vertex

notices that it is the destination for this RouteRequest, it

sends back a RouteReply to the asking package (for a more

detailed description, see, e.g. [7]).

One part of the DLRP is based on this concept. On the

basis of Fig. 1 the fundamental procedure of the developed

protocol can be illustrated: When a package makes a route

decision, it first disannounces its old route (see Fig. 1:

RouteDisAnnouncement) and announces its actual planned

routes to the vertices involved (see Fig. 1: RouteAn-

nouncement). An individual vertex thus has information

about when how many packages with what destinations

will be at its position. Additional information such as

restrictions concerning the transport of the packages (e.g.

cooling freight) is stored likewise.

If a vehicle needs a route, it sends a RouteRequest to the

net—the RouteRequest/RouteReply mechanisms are the

same as described above. After receiving several Rou-

teReplies, which are route suggestions with appropriate

additional information, a vehicle decides on a route—for

example the route with the maximum expected utilisation.

This Route is then announced to the involved vertices (see

Fig. 1: RouteAnnouncement). This leads to a continuous

cooperative structure. The objects in a transport net do not

plan their route at the same time. Packages emerge con-

tinuously or reach their destination, vehicles replan their

routes and so on. At each time there is enough information

for any route decision.

The whole DLRP concept offers outstanding advantages

for real life applications such as: self-adaptation, manual
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send several
RouteAnnouncements
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send one
RouteRequest

receive several
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Route Decision

[RouteDisAnnouncement]

send
RouteAnnouncement

Vertex

pass information about 
vehicle and package 

routes

collect and update 
information about vehicle 

and package routes

Package

send one
RouteRequest

receive several
RouteReplys

Route Decision

[RouteDisAnnouncements]

send several
RouteAnnouncements

Vehicle

send one
RouteRequest

receive several
RouteReplys

Route Decision

[RouteDisAnnouncement]

send
RouteAnnouncement

Fig. 1 Scheme of the distributed logistics routing protocol, DLRP (from [8])
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intervention, estimation of future net conditions, implicit

uncertain knowledge, arbitrary decision processes and

arbitrary kind and quantity of information (see [8]). For the

solution of the described adapted vehicle routing problems

(see next section), the concept was simplified to exclusively

optimise the overall vehicle distance. But for all that, the

algorithm is still very complex and has many points, directly

affecting performance; e.g. which packages are loaded into a

vehicle at the vertex: all with the same direction, all with

their destination vertex on the vehicle route or other pack-

ages. Hence, a detailed description is not possible here. For a

more detailed description refer to [8–10].

3 Adapted vehicle routing problem

Unfortunately, it is hardly possible to compare the different

approaches for dynamic scenarios. On the one hand, each

approach deals with different scenarios [1]: regards the

case of vehicle capacity of 1, which leads to some kind of

TRP [2] has no net but coordinates, [3] does not allow a

replanning of a truck with an order, [4] does not allow a

transhipment of packages and [5] takes stochastic infor-

mation into account (which is an improvement here). Due

to this large diversity of dynamic problem formulations, we

decided to compare our new approach to the most basic

VRP instances in this field. An additional advantage of this

approach is that we were able to compare our approach to

traditional algorithms and to an absolute scale with the

optimal solution—which normally cannot be calculated for

the dynamic scenarios.

The approach to the transportation problem taken for the

DLRP is basically different to the approach for the tradi-

tional VRP. The developed protocol is not an optimisation

algorithm for a static scenario, but an autonomous control

algorithm, designed for a continuous changing process. In

order to compare both concepts, it is necessary to execute

them on one scenario which both sides can cope with.

To draw such an adapted vehicle routing problem for

both sides, let us first have a look at major differences

between the traditional vehicle routing problem formula-

tion and the scenarios for the DLRP:

• the VRP instances have only coordinates so every

possible path is allowed—the DLRP scenario has few

edges and no fully connected net

• the DLRP is designed for a dynamic scenario, orders

may appear at every vertex and at every time—the VRP

orders are known from the beginning

• the VRP enforces closed routes—because of its dynamic

control nature, the DLRP has ongoing, unclosed routes

• the objective function for the most VRP instances is the

sum of all vehicle distances—within the DLRP, all

objects have their own objective function, e.g. shortest

way for packages and the best utilisation for vehicles

It is not reasonable for a DLRP implementation to deal

with full nets. In full nets, the RouteRequest/RouteReply-

mechanism leads to a factorial growing number RouteRe-

quest objects—a combinatorial explosion. Because it is

easy for most traditional VRP-algorithms to build them for

not-full-nets, we decided to restrict the net to feasible edges

for the adapted problem.

We decided to take a real world network. In Fig. 2 you

can see the chosen topology, which is the basic autobahn-

net of Germany. The topology contains 18 vertices, the

biggest cities in Germany, and 35 undirected edges. The

scenario edge lengths match the real ones.

All traditional VRP optimisation algorithms have a static

nature. They can only handle dynamic environments, if they

are embedded in a replanning algorithm. On the other side,

the DLRP can cope with these static cases, even though it was

created especially for the control of dynamic environments.

For a good performance, the DLRP has to be adopted for this

special static case. Hence the adapted VRP was created as a

static problem, all orders are known from the beginning.

In the DLRP, the routes of the vehicles are never-end-

ing. Because of this character, it is almost impossible to

find the point where a vehicle has finished its work within a

bounded scenario. On the other hand, it is not too difficult

for the traditional VRP-algorithms, to transfer the objective

function from closed to non-closed vehicle routes. So the

adapted VRP treats the distance of non-closed vehicle

routes as objective to minimise.

The fourth point is not a conflict, but needs to be

mentioned. The original [12] as well as the most discussed

VRP-formulations (e.g. [13]) take the sum of driven

vehicle distances as objective to minimise—other objective

functions are also discussed, see e.g. [1, p. 276]. But for the

traditional objective, we can easily show that the overall

vehicle distance (
P

dj), package distances (pi) and vehicle

utilisation (uj) are connected:

Fig. 2 Topology for the adapted VRP (from [11])
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P
all packages i pi

P
all vehicles j uj � djP

dj

¼ vehicle capacity

package size
�

X

all vehicles j

dj ð1Þ

This equation requires uniform vehicles and uniform

packages concerning capacity and size. So the DLRP will

indirectly minimise the requested objective function even

though it primarily minimises the package distances and

maximises the vehicle utilisation.

The new adapted VRP scenarios were built like distri-

bution scenarios in this first application. All vehicles start

at a central vertex, the city of Kassel, and all orders start

form there. In order to keep the optimum value comput-

able, the size of the scenarios is not too large. The number

of vehicles can be 3, 6 or 9, while the number of packages

can vary between 17, 34, 51 or 68. In addition we created a

large scenario with 68 packages and 12 vehicles, which

was the largest optimal solvable scenario. The amount of

packages was matched to the topology. All 17 vertices,

except Kassel, were supposed to be costumers. The pack-

age destinations for the larger scenario sets are uniformly

distributed, whereas each vertex has one package at least.

Therefore the 34, the 51 and the 68-scenarios have 10

subsets with different package destinations. The vehicle

capacity was chosen in that way, that every vehicle is

needed, if no vehicle comes back to Kassel. All different

scenarios are shown in Table 1.

For an overview, three indicator values can be given:

• the shortest way from Kassel via all 17 vertices is

2,235 km long

• the shortest way without any loop is 2,245 km long

• the sum of the direct shortest ways for each of the 17

packages is 4,965 km

For a more detailed description of the scenarios con-

cerning the topology distances and the distribution of the

package destinations, feel free to contact the authors or

refer to [14]. Tables and scenario data can be found on

‘‘http://dlrp.biba.uni-bremen.de’’.

4 Computational results

4.1 Random like solution

In order to give something like an upper bound for rea-

sonable solutions to the scenarios, a random-like heuristic

was implemented.

In the first step, all packages are assigned randomly to

the vehicles. A uniform distribution is used for this step

with the restriction that every vehicle has to carry at least

one package. The second step is to find an optimal way for

one vehicle and its load of packages. To save computing

time, only loop-free routes are considered. This restriction

makes the route non optimal in some cases, but it is

assumed that the optimal solution is not too far (see above,

the difference between the shortest way with and without

loops is 10 km or 0.4%).

This algorithm was calculated 10,000 times for each

subset. The resulting mean values are shown in the next

table (Table 2).

The described algorithm has some analogies with the

real world transport market: the different forwarder com-

panies receive their orders randomly and each company

tries to optimise its vehicle routes on its own. An overall

optimum cannot be expected from a procedure like this.

Note that the average utilization which was reached by the

DLRP in the largest scenario 68-12, about 70%, would be a

very good value for real world forwarder companies. The

vision of the DLRP is to implement this protocol inde-

pendently from different companies. In this vision, an

overall optimisation can happen without taking any deci-

sion possibilities from the single forwarders [8].

4.2 Optimal solution

On the other side, a lower bound for the overall vehicle

distance should be given. To calculate optimal solutions for

the given instances, the specified problem was formulated

as a mixed-integer program (MIP, see below). The objec-

tive of the program is based on the formulation of Dantzig

and Ramser [12] and minimizes the distance driven by all

vehicles. In order to cope with the characteristics describedTable 1 Chosen scenarios and corresponding vehicle capacities

3 6 9 12

8 pck/veh 3 pck/veh 2 pck/veh -

16 pck/veh 6 pck/veh 4 pck/veh -

25 pck/veh 10 pck/veh 6 pck/veh -

33 pck/veh 13 pck/veh 8 pck/veh 6 pck/veh

10 subsets

10 subsets

n
u

m
b

er
 o

f 
p

ac
ka

g
es

number of vehicles

17

34

51

68

1 subset

10 subsets

Table 2 Vehicle distances calculated by the random-like algorithm

Number of packages Number of vehicles

3 6 9 12

17 3,927 5,118 5,474

34 5,051 7,594 9,072

51 5,583 8,940 11,225

68 5,943 9,897 12,756 14,876
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in chapter 3, we adapt the formulation of the VRP. The

proposed formulation was implemented in GAMS and

could be solved with CPLEX 11. Because of the quite

small size of the instances, the MIP could be solved within

acceptable time—the scenario 68-12 seems to be the

largest one which can be reasonably solved optimal.

Table 3 shows the optimal values for the overall vehicle

distances. Note that in this solution, routes with loops are

allowed and each vehicle has to be used.

4.2.1 MIP-formulation

4.2.1.1 Nomenclature

Sets

I vertices of the network

ID depots of the considered network (ID , I); in our case

only one depot exists

Ii
S vertices that are directly connected to vertex i (Ii

S 7 I)

S segments of vehicle routes

V vehicles

Parameters

ci;i0 distance between vertex i and i0

di demand of packages at vertex i

pi provided packages at vertex i; in our case packages

are only provided at the depot i [ ID with pi =
P

i[Idi

�rv transportation capacity of vehicle v

r required transportation capacity of one package

M a very large number

Variables

uv;i;i0;s amount of transported packages from vertex i to i0

by vehicle v in s

xv;i;i0;s binary variable denoting that vehicle v drives in s

from vertex i to i0

zv,i,s binary variable denoting that vertex i is the end of

the route of vehicle v in s

4.2.1.2 Model assumptions The applied formulation of

the vehicle routing problem has characteristics of the

capacitated vehicle routing problem (CVRP) and the split

order vehicle routing problem (SDVRP). Within the

considered network only one depot exists and the verti-

ces are connected by undirected edges. Thus the

associated distance between two directly connected ver-

tices is the same in either way. The demand of each

vertex is a priori known. In this context the demand of a

certain vertex can be split and met by either one or

multiple deliveries. According to the CVRP the capacity

of the vehicles is limited. For our analysis we assume

the same capacity �rv for every vehicle v. All vehicles

start their route at the depot and have to be used. In our

modeling approach the route of a vehicle is described by

a number of consecutive segments. In this way a seg-

ment represents either a movement of a vehicle from

vertex i to i0 or the end of the route. Note that the total

number of permitted segments of a route is a critical

constraint of the problem. For our analysis we have

chosen the number of segments as high as the number of

vertices within the network. Every vehicle is allowed to

visit each vertex several times during its route. This

characteristic of the model permits a vehicle on the one

hand to serve a remote vertex from a given vertex and to

return afterwards to the vertex before it continues its

route through the network and on the other hand to pick

up packages several times from the depot. Furthermore

each vertex can be used to store packages. This means a

vertex can receive more packages than requested and

that these packages can be picked up and delivered to

other vertices. At the end of their route the vehicles

remain at the vertex of their final delivery and do not

have to return to the depot.

4.2.1.3 Mathematical model Problem constraints: The

first segment of the route of each vehicle starts at the depot.
X

i02IS
i

xv;i;i0;s ¼ 1 i 2 ID; v 2 V; s ¼ 0
� �

ð2Þ

The route of each vehicle can be terminated only once at

any vertex of the network.
X

s2S

X

i2I

zv;i;s ¼ 1 v 2 Vð Þ ð3Þ

In every segment the route of a vehicle can be either

continued or terminated.
X

i2I

X

i02IS
i

xv;i;i0;s þ
X

i2I

zv;i;s � 1 s 2 S; v 2 Vð Þ ð4Þ

The route of a certain vehicle is described by a set of

consecutive segments. This means a vehicle has either to

leave its current vertex in the successive segment or to

terminate its route. The introduction of segments ensures

that a vehicle can visit a certain vertex several times and no

Table 3 Optimal vehicle distances

Number of packages Number of vehicles

3 6 9 12

17 2,245 2,565 3,095

34 2,245 2,868 3,310

51 2,245 2,608 3,362

68 2,245 2,683 3,400 4,097
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independent sub cycles occur. Note that the depot can be

visited more than once as well.
X

i2I:
h2IS

i

xv;i;h;s �
X

i02IS
h

xv;h;i0;s0 � zv;h;s0 ¼ 0

h 2 I; s; s0 2 S : s0 ¼ s þ 1; v 2 Vð Þ ð5Þ

The load of each vehicle has to be less than or equal to

the maximum transportation capacity.

uv;i;i0;sr � �rv i 2 I; i0 2 IS
i ; s 2 S; v 2 V

� �
ð6Þ

Within the network the packages are transported by the

vehicles between directly connected vertices. In this

context every vertex can receive, store and ship

packages. Furthermore each vertex has a deterministic

demand of packages. In our case only the depot i [ ID has a

stock of packages pi in the beginning.

pi þ
X

v2V

Xs

r¼0

X

h2I:
i2IS

h

uv;h;i;r ¼ di þ
X

v2V

Xs

r¼0

X

i02IS
i

uv;i;i0;r

i 2 I; s 2 Sð Þ ð7Þ

Packages can only be shipped between two directly

connected vertices i and i0 if a vehicle v serves this segment

s on its route. Equation 8 simplifies the problem in a way

that avoids a formulation as a mixed integer non-linear

program.

uv;i;i0;s � xv;i;i0;sM i 2 I; i0 2 IS
i ; s 2 S; v 2 V

� �
ð8Þ

Objective function: The objective of the formulation is to

minimize the distance driven by all vehicles.

Min:
P

v2V

P

s2S

P

i2I

P

i02IS
i

xv;i;i0;sci;i0 ð9Þ

4.3 Tabu search solution

As a representative of established solution techniques (see

[1, 15]) for vehicle routing problems, a tabu search algo-

rithm was applied to the scenarios.

This algorithm is similar to the random-like solution

technique. One solution set for the tabu search is one

assignment set. This set assigns all packages to the vehi-

cles. After the assignment, an optimal route or each vehicle

is calculated (again with loop-free routes only like the

random-like algorithm).

For the neighbourhood generation, the k -interchange

generation mechanism by Osmand [16] was implemented.

The k was set to 1 and insured that no vehicle is empty. The

maximum age of elements within the tabulist was set to 6

and the search was aborted after 18 moves. Note that tabu

search is very close to the optimal solution in the small

scenarios and moves away with greater scenarios (Table 4).

4.4 DLRP solution

The DLRP solution was calculated with the DLRP roughly

described above. To increase the performance, the protocol

was adapted to this special static situation. Additionally the

decision functions for the different objects were simplified

and harmonized: packages only choose their routes by the

route length, vehicles only by the estimated utilisation. This

means that the packages do not adjust to the vehicle routes,

in contrast to the dynamic version. Only vehicles choose

their route dependent on the package route situation.

The results are shown in Table 5. Routes with loops are

allowed here and each vehicle does not need to carry a

package, but do so.

5 Conclusions

For a better overview, all results are shown as line charts in

the following Figs. 3, 4, 5 and 6. Compared to the optimum

and the random-like solution, the tabu search heuristic

leads to near optimal results with small scenarios and gets

worse with larger scenarios. This is a normal behaviour for

tabu search algorithms and is due to the exponential

growing solution space.

In contrast, the DLRP solutions are not very good with

small scenarios, but get better with larger scenarios. The

large scenarios 68-6, 68-9 and 68-12 show that the DLRP

gets better than the tabu search concept with a growing

network size.

Because the DLRP is originally a control method, its

main advantages point to dynamic and close to reality

scenarios: self-adaptation to changing situations, possible

Table 4 Vehicle distances calculated by the tabu search algorithm

Number of packages Number of vehicles

3 6 9 12

17 2,410 2,610 3,095

34 3,335 3,689 3,775

51 3,988 4,637 5,026

68 4,409 5,782 6,580 7,058

Table 5 Vehicle distances calculated by the DLRP

Number of packages Number of vehicles

3 6 9 12

17 4,530 2,875 4,400

34 5,184 5,928 7,022

51 4,918 4,807 6,310

68 4,558 5,586 6,331 6,550
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manual interventions at runtime, implementation of

uncertain knowledge and complex and context driven

decision functions [8]. The described results show that the

DLRP has a high potential. Apart from the described

advantages the DLRP can be coequal to classical VRP

concepts in real world scenarios. DLRP results from large

and dynamic scenarios with 2,500 packages emphasise this

assumption. These results are shown in Fig. 7.

5.1 New evaluation chart

For larger scenarios, the classification and evaluation of

algorithms for the VRP or the adapted VRP gets more and

more difficult. For these scenarios, it is not possible to

calculate optimal solutions, so a lower bound is missing.

Additionally, it is not possible to compare two different

scenarios, because the optimal way lengths can be very

different. On the basis of Eq. (1), we suggest an alternative

comparison approach. The vehicle utilisation and the

package distances are, with some restrictions, directly

connected to the overall vehicle distance. The vehicles

utilisation has a natural best value and upper bound: it

cannot be greater than one. The package distances have a

natural best value and lower bound, which is easy to cal-

culate: their individual shortest way to their destination.

Therefore we can define a relative package distance: driven

package distance by shortest possible distance. The lower

bound of this relative package distance is one.

Now we can illustrate these two values in one plane,

exemplarily shown in Fig. 7. The upper right corner rep-

resents one theoretical extreme: each package has one

vehicle of capacity 1 and drives its shortest way. The

horizontal line at utilisation = 0.5 is another extreme:

when one vehicle with capacity for all packages brings out

all packages, the utilisation goes to 0.5 and the relative

package distance increases infinitely.

In this suggested evaluation chart, on can see that an

optimal solution must be somewhere in the upper right

corner: a relative package distance of nearly 1 and a high

utilisation of 80–90% (see optimum of scenario 68-12).

In Fig. 7, some of the larger scenario results are shown.

With this kind of chart, it is possible to compare the large

dynamic scenario results as well. Even though there are no
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Fig. 3 Results for 17 packages
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Fig. 5 Results for 51 packages
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optimal or tabu search values for these scenarios, one can

say that the DLRP works well with these large dynamic

environments. Additionally, one can see that it is possible

to change the DLRP parameters in a way that either the

vehicle utilisation or the relative package distance is

preferred.

Another practical advantage of this evaluation chart is

that the suggested values can be treated as a state function.

It is possible to measure the vehicle utilisation and the

relative package distance continuously. Consequently it is

possible to control these values.
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