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Abstract Logistics network design is a major strategic

issue in supply chain management of both forward and

reverse flow, which industrial players are forced but not

equipped to handle. To avoid sub-optimal solution derived

by separated design, we consider an integrated forward

reverse logistics network design, which is enriched by

using a complete delivery graph. We formulate the cyclic

seven-stage logistics network problem as a NP hard mixed

integer linear programming model. To find the near opti-

mal solution, we apply a memetic algorithm with a

neighborhood search mechanism and a novel chromosome

representation including two segments. The power of

extended random path-based direct encoding method is

shown by a comparison to commercial package in terms of

both quality of solution and computational time. We show

that the proposed algorithm is able to efficiently find a good

solution for the flexible integrated logistics network.

Keywords Memetic algorithm � Closed-loop supply

design � Random path � Flexible delivery

1 Introduction

Supply chain management (SCM) describes the discipline

of optimizing the delivery of goods, services and infor-

mation from supplier to customer. Logistics network

design is known as one of the comprehensive strategic

decision problems due to its impact on the efficiency and

responsiveness of the supply chain including reducing cost

and improving service quality. To this end, an optimal

choice regarding number, location, capacity and type of

plants, warehouses, and distribution centers as well as the

amount of shipped materials needs to be obtained.

Within the full material cycle, we distinguish between

the forward supply chain from the upstream supplier to the

downstream customer, and the reverse one for possible

recycling, reusage and disposal.

Due to economic benefits and environmental protection,

industrial players are under a lot of pressure to take back

the product after its use. Therefore, the reverse supply

chain is becoming more relevant in both theory and prac-

tice. Although some firms such as General Motors, Kodak,

and Xerox concentrate on reverse logistics and have

obtained significant success in this area [1, 2], most

logistics networks are not equipped to handle the reverse

flow. To avoid sub-optimality of a solution derived by the

separated design, we consider forward and reverse channel

as an integrated model and analyse closed-loop supply

chain as a system in total. To manage logistics system

efficiently in terms of cost and delivery time as well as

increase customer satisfaction, flexible and productive

network design models are of particular interest. Many

research works have been published in the fields of opti-

mizing of supply chain network (SCN) [3, 4], while flex-

ible delivery and multistage planning conditions are rarely

found in the literature.
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In this study, we investigate the integration of forward

and reverse logistics network design, cf. Fig. 1. In the

forward flow, new products are shipped from plants to

customers via distribution centers and retailers to satisfy

their demands. In the reverse flow, returned products are

collected in collection-inspection centers for sorting dis-

assembling for recovery, reuse or disposal, cf. [5, 6] for

related frameworks. To enhance the logistic network effi-

ciency and flexibility, we consider a full delivery graph in

the forward flow with normal delivery (products are

delivered from one echelon to another), direct delivery

(products are transported from distribution centers to cus-

tomers or via plants to retailers directly) and direct ship-

ment (products are transported from plants to customers

directly).

The objective of this paper is to develop and optimize a

seven-stage closed-loop supply chain network with respect

to number and capacity of plants, distribution centers

(Dcs), retailers, collection/inspection centers (Cos) and

disposal centers (Dis) as well as the product flow between

the facilities. The aim of this study is to minimize the total

cost including the transportation cost as well as operation

cost.

The remainder of this paper is structured as follows.

After systematically reviewing related literature in Sect. 2,

we present our cyclic logistics network problem as a mixed

integer linear programming (MILP) model in Sect. 3. As

the problem is NP hard and therefore difficult to solve

using classical methods such as branch-and-bound, Sect. 4

presents a random path, flexible delivery-based memetic

algorithm (MA) with a neighborhood search mechanisms

using a new chromosome representation. To assess the

quality of the approach, we compare respective results for

test cases to solutions obtained by LINGO in Sect. 5. The

final Sect. 6 concludes the paper and points out directions

of future research.

2 Literature review and problem definition

Focusing on an efficient solution methodology, we split our

literature review to the research areas network design with

forward, reverse and integrated flows, and to flexible

delivery paths.

2.1 Forward, reverse and integrated logistics

network

In previous studies, the design of forward and reverse

logistics network was typically separated. In the field of

forward logistics many models were developed as part of a

traditional logistics network design. The common MILP

model involves the choice of facilities to be open and the

distribution network design to satisfy the demand with

minimum cost.

Yeh [7] developed a MILP model for a supplier-pro-

duction-distribution network. He revised existing mathe-

matical models presented by other researchers and

developed an efficient hybrid heuristic, which was enriched

by applying three different local search techniques. The

efficiency of the proposed methodology was demonstrated

via computational results. Syarif et al. [8] proposed a MILP

formulation for a fixed charge and multistage transporta-

tion problem for a single commodity supply chain model.

They considered a spanning tree-based GA using Prüfer

number representation to solve this problem. Some com-

parison between results obtained by this method and

LINDO showed the efficiency of proposed method. A two-

echelon facility location problem was studied by Tragan-

talerngsak et al. [9]. In this work, each facility in the sec-

ond echelon was limited in capacity and could only be

supplied by one facility in the first echelon. Also, each

customer is serviced by only one facility of the second

echelon. The authors presented a mathematical model for

the problem and developed a Lagrangian relaxation-based

branch-and-bound algorithm to solve it. A different two-

stage distribution-planning problem was addressed by Gen

et al. [10] to minimize the total cost including transporta-

tion and opening costs. They presented a priority-based

genetic algorithm (pb-GA) with a new decoding and

encoding method. Also they introduced a new crossover

operator called Weight Mapping Crossover and analyzed

the effect of the latter on the computational performance.

They showed the efficiency of proposed method with

regards to solution quality and computing time in com-

parison to two different GA approaches.

Due to legislative changes regarding end-of-life (EOL)

[11] issues as well as economic factors [12], considering

the forward logistic network and omitting any reverse flow

is impractical. A general review of the current develop-

ments in reverse logistics was reported by Pokharel andFig. 1 Framework of the flexible IFRLN
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Mutha [13]. They identified three factors, which differ for

reverse logistics and a traditional supply chain: (1) Most

logistics networks are not equipped to handle returned

product movement; (2) Reverse distribution costs may be

higher than moving the original product from the plant to

customer; (3) Returned products may not be transported,

stored, or handled in the same manner as in the regular

channel [14]. In a study by Jayaraman et al. [15], an ana-

lytical model to minimize reverse distribution costs was

developed. This MILP model limited supply of customer

demand from a single distribution center. In addition, there

was a tight bound on the number of collection and refur-

bishing sites. Apart from the formulation of a reverse dis-

tribution problem, the authors also presented a new

heuristic solution method. The algorithm has three com-

ponents: random selection of potential collection and

refurbishing sites, heuristic concentration and heuristic

expansion. Min et al. [16] designed a MINLP model to

minimize the overall reverse logistics costs including spa-

tial and temporal consolidation of returned products. The

authors presented a mathematical model for the problem

and solved it using GA. There are other studies on reverse

logistics, which are limited to specific applications, such as

carper recycling by Louwers et al. [17] and Realff et al.

[18], battery recycling by Schultmann et al. [19] as well as

Kannan et al. [20], tire recycling by Figueiredo and May-

erele [21], paper recycling by Pati et al. [22], plastic

recycling by Huysman et al. [23], bottle recycling by Shen

et al. [24], sand recycling by Listes and Dekker [25].

Notable work with a remanufacturing focus was presented

by Krikke et al. [26] on copiers and Srivastava [27] on

appliances and personal computers. Currently, no general

model for reverse logistics exits.

In recent years, some researches started to integrate

forward and reverse networks to close products cycles. The

aim is to avoid sub-optimality of a solution due to sepa-

rated design [28]. Lee and Dong [29] proposed a MILP

model, which is capable to manage the forward and reverse

flows at the same time for end-of-lease computer products.

They presented the first attempt of solving the integrated

design problem using a Tabu search-based MA. Lu and

Bostel [30] designed a two-level location problem as a

MILP model with three types of facility (producers,

remanufacturing centers and intermediate centers). This

model considers forward and reverse flows and their

interactions simultaneously. The focus of this research was

on remanufacturing to reduce costs of production and raw

materials. The model was solved using Lagrangian

heuristics, which requires lower and upper bound of the

objective function. Pishvaee et al. [31] focused on a MILP

model to integrate reverse logistics activities into the for-

ward supply chain. To deal with uncertainty, they pre-

sented a scenario-based stochastic optimization model to

minimize the total cost including fixed opening costs,

transportation cost, processing costs and penalties for non-

utilized capacities. Pishvaee et al. [32] proposed a linear

multi-objective programming model to improve the total

cost as well as responsiveness of the integrated forward/

reverse logistics network. To find the set of non-dominated

solutions, the authors proposed a solution algorithm based

on a new dynamic search strategy using three different

local searches. Within the model, they allowed for a hybrid

distribution-collection facility. The authors compared their

pareto-optimal solutions to recent GA results.

2.2 Flexible delivery path

To increase market share, companies try to increase cus-

tomer satisfaction via fast delivery, which requires supply

chain responsiveness [32, 33]. To deal with the issues of

cost efficiency and network responsiveness simultaneously,

researchers have proposed models to optimize the supply

chain network, respectively [4, 32]. However, results are

typically limited to shipments between consecutive stages

or just indirect shipment mechanisms [4, 32, 34]. Lin et al.

[35], formulated a MILP model by including direct ship-

ment and direct delivery as well as inventory control for a

three stages forward logistics network. To solve the prob-

lem, they proposed a hybrid evolutionary algorithm com-

posed of Wanger within algorithm, GA, and fuzzy logic

controller. Pishvaee and Rabbani [36] studied the respon-

siveness of a three-stage forward logistics network when

(1) direct shipment between plant to customer is allowed

and (2) direct shipment is forbidden. They proposed two

mixed integer programming models for these conditions

and proved that both of these problems can be modeled by

a bipartite graph. To tackle these NP hard problems, a

novel heuristic solution method was considered based on a

new chromosome representation derived from graph the-

ory. Based on the above review, extending the following

restrictions can be considered a potential field of research:

• Flexibility in delivery paths as a measure to shorten the

delivery time is typically ignored for simple and

completely ignored for integrated forward/reverse

logistics networks.

• The total number of echelons in most of the developed

IFRLN models is not more than five echelons.

• It is still a critical need to develop an efficient solution

to cope with NP hard problems as well as a general

model to be applicable to a wide range of industries.

Within the literature, various facility location models based

on mixed integer programming (MIP) were considered to

determine maximal profit, optimal number and capacity of

facilities as well as the optimal flow between them.

Although typically larger models are required to represent
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real supply chains, researchers developed many heuristics

[7, 15, 34, 37] and metaheuristics such as genetic algorithm

[4, 6, 20, 38–42], simulated annealing [43–45], tabu search

[29, 46], memetic algorithm [32, 47] and scatter search

[34] to solve these NP hard problems. However, there is

still a critical need in this area to increase the efficiency of

solution approaches, especially, when the complexity of

the model increases (Melo et al. [48]).

The problem addressed in this work includes integrated

design of forward and reverse logistics as well as flexibility

in delivery paths for a seven-stage closed-loop supply chain

network. The proposed model as a complete and general

network covers the previously described cases in the litera-

ture with less complexity. Additionally, the full delivery

graph allows us to solve the conflicting goals profit and

responsiveness, which otherwise may lead to greater cost

[32]. From the computational point of view, we incorporate

the graph structure in the chromosome representation,

thereby avoiding different model and solution methodolo-

gies as, e.g., considered by Pishvaee and Rabbani [36].

3 Description for integrated forward/reverse
logistics network

To support the presentation of the proposed mathematical

model, we consider the general model area of our problem.

To this end, we consider G ¼ ðN;EÞ to be a digraph where

N denotes the set of all nodes and E the set of all edges in

the closed-loop network. The cost for node i 2 N are

denoted by ci, and the unit transportation cost on edge

ði; jÞ 2 E are given by cij. The respective decision variables

yi 2 f0; 1g and xij 2 N0 represent whether a stage i 2 N is

used and which quantity is transported between node i and

j. To determine the optimal distribution network and

capacity of each node, we minimize the transportation and

operation cost of the proposed network, which reveals the

following mixed integer minimization problem:

min
xij;yi

X

ði;jÞ2E
cijxij þ

X

i2N
ciyi

s:t:
X

ði;jÞ2E
aixij 6 biyi

xij � 0; yi 2 f0; 1g

ð1Þ

Next, we specialize this model to reflect the IFRLN

properties.

3.1 Mathematical formulation and assumptions

The previously described IFRLN setting represents an inte-

grated supply chain with seven echelons consisting of sup-

pliers S, plants P, distribution centers Dc, retailers R and

customersC in forward flow, as well as collection/inspection

centers Co and disposal centers Di in reverse flow, cf. Fig. 2

for a schematic sketch.We like to point out that in accordance

to Fig. 1, we consider a hybrid manufacturing-recovery-re-

cycling facility as well as a hybrid collection-inspection

facility. Establishing several facilities at the same location

can decrease the price in comparison with separating design.

To adapt problem (1), we impose the following

assumptions:

• The set of nodes is given by N ¼ S [ P [ Dc[
R [ C [ Co [ Di.

• There are no edges between facilities of the same stage,

the delivery graph is complete and the return graph is

simple, i.e., E ¼ ðS� PÞ [ ðP� DcÞ [ ðP� RÞ [ ðP�
CÞ [ ðDc� RÞ [ ðDc� CÞ [ðR� CÞ [ ðC � CoÞ [
ðCo� DiÞ [ ðCo� PÞ.

• The demands of each customer are deterministic and

must be satisfied.

• The number of facilities per stage and respective

capacities are limited.

• All cost parameters (fixed and variables) are known in

advance.

• The transportation rates are perfect and there are no

storages. Moreover, the return rate preturnj as well as the

recovery and disposal rates p
disposal
j and ð1� p

disposal
j Þ

are fixed. All returned products from each customer

must be collected.

• The inspection cost per item for the returned products

are included in the collection cost.

• The un-recyclable returned products will be sent to the

disposal center. The remaining products are returned to

the same plant.

• The required recycled materials are assumed to be of

the same quality as the raw materials bought from

suppliers and any plant chooses the raw material from

the collection/inspection center over suppliers.

• Customers have no special preference. It means, price

is the same in all facilities.

The objective of this model is to minimize the total cost of

the proposed supply chain, which is composed of fixed

costs for facilities and variable costs for transportation. In

terms of the above notation, the cost function, the sign and

the integer conditions remain identical. The constraints in

Fig. 2 Underlying structure of MILP
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(1) are specialized and we have that the capacities in each

node induce the inequalities

X

ði;jÞ2E
xij �

bi 8i 2 S

biyi 8i 2 N n fS [ Cg:

�
ð2Þ

Additionally, by assumption only a fraction preturn is

returned by customers and a fraction pdisposal of the returned

products has to be disposed off. Apart from these excep-

tions, the supply chain network is subject to the law of the

flow conservation, i.e., in-flow and out-flow in each node

must be identical for these nodes. These conditions reveal

X

ðj;kÞ2E
xjk ¼

P
ði;jÞ2E

xij 8j 2 N n fC [ Cog

preturnj

P
ði;jÞ2E

xij 8j 2 C

p
disposal
j

P
ði;jÞ2Co�Di

xij 8j 2 Co

ð1� p
disposal
j Þ

P
ði;jÞ2Co�P

xij 8j 2 Co

8
>>>>>>>>>><

>>>>>>>>>>:

ð3Þ

Last, the demands of customers must be satisfied.
X

ði;jÞ2E
xij ¼ bj 8j 2 C ð4Þ

4 Solution approach

Because of our IFRLN model is a capacitated allocation and

multi-choice problem, it is known as a NP hard problem

[6, 38, 39, 49]. Hence, although the problem can be refor-

mulated into an integer linear programming, we cannot

compute a suitable solution for large-scaled problems within

a short time. There are three main options to tackle NP hard

problems: probabilistic algorithms, approximation algo-

rithms and metaheuristic algorithms. To reduce the search

space and increase the solution quality, we consider the class

of metaheuristic algorithm to solve this model. According to

[50], memetic algorithms are appropriate for the proposed

model. The basic feature of MA is a multi-directional and

global search by generating a population of solutions as well

as local search to improve intensification of the search.

According to the reviewed literature, twomajor issues affect

the performance of memetic algorithm [41], i.e., the chro-

mosome representation and the memetic operators.

4.1 Chromosome representation

A chromosome must have the necessary gene information

for solving the problem. Selecting a proper chromosome

representation highly affects the performance of meta-

heuristic algorithm. Therefore, the first step of applying MA

to a specific problem is to decide how to design a chromo-

some. The tree-based representation is known to be one way

for representing network problems. Different methods have

been developed to encode trees. One of them is matrix-en-

coding, was is developed by Michalewicz [51]. In this

method, the solution is presented by a jKj � jJjmatrix where

|K| and |J| are the number of sources and depots, respectively.

Although this solution approach has a simple representation,

applying this method requires the development of a special

crossover and mutation operator for obtaining a feasible

solution as well as huge amount of memory. Another tree-

based representation is the Prüfer number. The use of the

Prüfer number representation for solving various network

problems was introduced by Gen and Cheng [52]. It requires

an array of the length jKj þ jJj � 2 with |K| sources and |J|

depots. Since this method may compute infeasible solutions

[39], a repair mechanism has been developed. In this regard,

Jo et al. [39] presented the procedure for repairing infeasible

chromosomes. Later, Gen et al. [53] introduced determinant

encoding using priority which does not need any repair

mechanism to guarantee feasibility of solutions. In this

approach, solutions are encoded as arrays of size jKj þ jJj, in
which the position of each cell represents the sources and

depots and the value in cells represent the priorities.

From the literature [41], we have found that both Prüfer

and determinant encoding are efficient for the encoding of

the spanning tree problem. However, as the determinant

encoding overcomes the bottlenecks of Prüfer encoding

[54], we utilize determinant encoding in our study. In the

following encoding and decoding are discussed.

4.1.1 Random path-based direct encoding method

The delivery and recovery path can be conventionally

determined by applying the random path direct encoding

method introduced by Lin et al. [55]. Using this method

computation time can be greatly cut down. One gene in a

chromosome is characterized by two factors: locus, the

position of the gene within the structure of chromosome,

and allele, the value the gene takes. In this method, each

gene is initialised with a random value from its domain and

it contains M groups where M is the total number of cus-

tomers. Each group represents a delivery path in forward

flow as well as recovery path in reverse flow. Due to

existence of three different delivery paths in the proposed

problem, we extend the random path-based direct encoding

method by adding a second segment into the chromosome.

4.1.2 Extended random path-based direct encoding

Although applying the new delivery paths improves the

flexibility and efficiency of the supply chain network, it

makes the problem more complex. In Fig. 3 the
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representation of the extended random path-based direct

encoding method in two segments is shown. The first seg-

ment is encoded by using randompath-based direct encoding

method which shows the delivery path for each customer.

The second segment of a chromosome contains two parts: the

first part with J locus including the guide information

regarding plant assignments in the network, and the second

part of lengthK containing the information of the distribution

centers. As shown in Fig. 3, the length of chromosome is

ð7 �MÞ þ J þ K where M, J and K are the total number of

customers, plants and distribution centers, respectively.

Each sequence of seven subsequent genes forms a group.

Each group encodes four potential delivery paths through

plant, distribution center and retailer to customer as well as a

recovery path from customer through collection/inspection

to disposal center or plant. The first three alleles of a group

represent the reverse flow of the network, while the next four

alleles of that group show the forward flow from supplier to

customers. As an illustration, a randomly assigned ID to

these facilities in the reverse and forward flow is shown in

Fig. 3. Each locus in the second part is assigned an integer in

the set f0; 2g for plants due to existence of three delivery

options for each plant in the network. Regarding distribution

center, an integer from f0; 1g is chosen to represent the two
respective delivery options. The second segment is involved

by determining the sort of delivery path for the selected plant

as well as distribution center in first segment.

It should be noted that applying this encoding approach

might generate infeasible solutions, which violate the

facility capacity constraint; hence, a repairing procedure is

needed. If the total demand of a depot from a source

exceeds its capacity, the depot will be assigned to another

source with sufficient product supply so that the trans-

portation cost between that source and the depot is the

lowest. The procedure of encoding by extended random

path-based direct encoding is shown in Algorithm 1 below.

Algorithm 1 The pseudocode procedure of initializa-
tion by extended random path-based direct encoding

Input: Number of customers M
Number of collection/inspection centers N
Number of disposal centers O
Number of plants J
Number of retailers L
Number of distribution centers K
Number of suppliers I

Step 1: � (first segment)
1: for i = 0 : M − 1 do
2: chk[7 ∗ i + 1] ← random(1, N)
3: chk[7 ∗ i + 2] ← random(1, O)
4: chk[7 ∗ i + 3] ← random(1, J)
5: chk[7 ∗ i + 4] ← random(1, L)
6: chk[7 ∗ i + 5] ← random(1, K)
7: chk[7 ∗ i + 6] ← chk[7 ∗ i + 3]
8: chk[7 ∗ i + 7] ← random(1, I)
9: end for

Step 2: � (second segment, plant delivery path)
10: for i = 0 : J − 1 do
11: chk[7 ∗ M + i] ← random(0, 2)
12: end for

Step 3: � (second segment, Dc delivery path)
13: for i = 0 : K − 1 do
14: chk[7 ∗ M + J + i] ← random(0, 1)
15: end for

Output: Chromosome chk[·]

Remark 1 According to the assumption presented in

Sect. 3, returned products have to be directed to the

Fig. 3 Representation of

extended random path-based

direct encoding method
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original plant. To follow this limitation, the third and sixth

position of first segment of the chromosome representation

for any customer should be identical.

Remark 2 Since, the third and sixth position of first

segment are identical, 6 has been considered as the number

of each unit, instead of 7, to apply the chromosome

representation.

4.1.3 Extended random path-based direct decoding

Decoding is the mapping from chromosomes to candidate

solution to the problem. As an example, Fig. 4 represents

an instance of a delivery and recovery path in our model.

In each gene unit, four delivery paths can be designed by

applying normal delivery, direct shipment and direct

delivery. All of them are from a neighborhood. For

instance, we can obtain the neighborhood given in Algo-

rithm 1 from the sample of gene unit shown in Fig. 4 that

shows the delivery path to customer 2. Considering the

second chromosome (customer 2) in Fig. 4 as an example,

we start by supplier 2 and continue via plant 4, distribution

center 1 and retailer 3 in forward flow as well as collection/

inspection center 3, disposal center 1 and plant 4 in the

reverse flow. Due to construction, four different delivery

paths are possible, cf. Figure 4. The delivery and recovery

path 1 occurs if normal delivery is chosen for all stages. By

skipping distribution centers, path number 2 is selected.

Similarly, path number 3 is chosen if retailers are skipped.

Last, if direct shipment is selected, the delivery path

number 4 will be implemented.

An important difference between the traditional random

path-based direct decoding method and the method adopted

in this paper is that we include the delivery path informa-

tion of the second segment. The detailed decoding proce-

dure is shown in Fig. 5. Each locus in this segment is

assigned to an integer in the range of f0; 1; 2g for plants

and f0; 1g for distribution centers. Here, we encode normal

delivery for plants and distribution centers by Pj ¼ 0 and

Dck ¼ 0 respectively, where j and k denote the ID of the

plant and of the distribution center. Moreover, Pj ¼ 0 and

Dck ¼ 1 as well as Pj ¼ 1 represent direct delivery and

Pj ¼ 2 direct shipment. The paths displayed in Figure 5

correspond to respective choices, i.e., we have

Path1 () Pj ¼ 0; Dck ¼ 0

Path2 () Pj ¼ 1; Dck 2 f0; 1g
Path3 () Pj ¼ 0; Dck ¼ 1

Path4 () Pj ¼ 2; Dck 2 f0; 1g:

It should be noted that because the amount of returned

products shipped to each one should be known for

decoding the forward flow, decoding of the forward flow is

impossible until the reverse flow is decoded.

Fig. 4 Delivery path for a

sample of gene unit

Fig. 5 Presentation of the second segment of the extended random path-based direct encoding
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4.2 Evaluation

Fitter individuals have higher chances of survival. The

evaluation assigns a fitness value to each individual,

thereby inducing a measure. In our study, we apply the cost

function as the fitness value. This fitness value is computed

for the decoded chromosome to analyze the accuracy and

efficiency of the proposed MA.

4.3 Crossover and Local Search

Crossover is known as the most important recombination

of both parents’ feature to explore new solution within the

search space. There are many variants of crossover oper-

ations developed in the literature, cf. [10]. Based on the

characteristics of the chromosome, we chose the two-cut

point crossover, which applies the steps shown in Algo-

rithm 2.

Algorithm 2 Pseudocode of the two point
crossover for the proposed model

Input: Two parents
1: Generate two random positions
2: Swap data beyond the two points between parents

Output: Two offsprings

After crossover, the population is merged and sorted

according to its fitness value. In the next step, a local

search technique is applied, i.e., if the fitness value of

a new solution is better than the old one, the latter is

replaced. The detailed procedure is shown in Algo-

rithm 3. The chromosome showing the best fitness is

selected.

Algorithm 3 Pseudocode of the local search for
the proposed model

Input: One parent A
Number of customers M
Number of collection/inspection centers N
Number of disposal centers O

Number of plants J
Number of retailers L

Number of distribution centers K
Number of suppliers I

1: Randomly select position a in chromosome of A
2: b ← mod(a, 7)

3: X ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I if b = 0
N if b = 1
O if b = 2
J if b ∈ {3, 6}
L if b = 4
K if b = 5

4: n ← round(random(30/100 ∗ X, 70/100 ∗ X))
5: for i = 1 : n do
6: Ai ← A
7: c ← random(1, X)
8: Ai(a) ← c
9: Evaluate fitness function for Ai

10: end for
11: Select best chromosome among n new instances

Output: One offspring

4.4 Selection method

We apply the well-known roulette wheel selection for

generating the next generation of chromosomes. The

strategy of roulette wheel is a probabilistic selection based

on fitness.
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4.5 Procedure of proposed memetic algorithm

Combing the aforementioned components, we obtain the

procedure displayed in Algorithm 4 for solving our prob-

lem IFRLN.

Algorithm 4 Pseudocode of the proposed memetic
algorithm

Input: Number of population n
Number of crossover population m

1: for k = 1 : n do
2: Encode chk[·] by Algorithm 1
3: Evaluate chk[·] according to fitness function
4: end for
5: Set i ← 0
6: while termination condition not satisfied do
7: for k = n + 1 : n + m do
8: Select two parents via roulette wheel
9: Generate chk[·] by Crossover Algorithm 2

10: end for
11: Merge ch[·] =

⋃
k=1:n+m chk[·]

12: Evaluate and sort ch[·] by fitness value
13: Select first n elements of ch[·]
14: Obtain ch[·] via Algorithm 3 with ch1[·]
15: if fitness value of ch[·] is better than of ch1[·]

then
16: ch1[·] ← ch[·]
17: end if
18: i ← i + 1
19: end while

Output: Chromosome of optimal solution ch1[·]

Note that as we apply only one crossover and search step

before selecting the next generation, our method belongs to

the class of steady state MA.

5 Test problems and computational results

To assess the accuracy and efficiency of the developed

MA, we generated various test problems of different sizes

to compare the results obtained by our MA from Algorithm

4 and a branch-and-bound algorithm from LINGO15. Since

the logistics network framework in this study differs from

previous studies, the size of test problems considered in

this work is selected randomly as shown in Table 1. The

first six test problems relatively small and the number of

decisions variables are 128, 209, 234, 468, 1006 and 1780,

respectively, and the remaining problems are large sized.

Other parameters are generated randomly using uniform

distributions shown in Table 2. Each test problem has been

solved 20 times to test the robustness of the method.

Our implementation was written in MATLAB R2015b

and run on the PC with Intelr CoreTM i5 2.40 GHz with 12

GB RAM. For our testing, we considered population size

n ¼ 60 and crossover rate cr ¼ 0:5. As a stopping criterion

for Algorithm 4, we imposed a maximum iteration number

of 100 as well as a maximum number of iteration without

improvement 8, 10, 12, 20, 25 and 30 for our small size

problems, respectively. For the large size problems, we

increased the latter bound by 5 for each test problem. Also,

we set the number of local search iterations to be equal to

the number of retailers L for each test problem.

To evaluate the performance of proposed MA, firstly,

we employed LINGO15 to solve the optimization problem

and obtained the results displayed in Table 3. Although

LINGO provides results for small size problems quickly,

Table 3 indicates that LINGO is unsuitable for solving the

large size problems and it is run out of memory.

According to Table 4, the proposed MA provides good

solutions for our small size problems, which allows us to

trust the method also for large size problems. To compare

Table 1 Settings of test

problems
Problem Supplier Plants Distribution

centers

Retailers Customers Col/Ins

centers

Disposal

centers

1 2 2 5 8 2 2 1

2 2 3 8 9 3 3 2

3 2 4 6 10 2 2 1

4 2 4 10 16 4 4 2

5 3 6 15 24 6 6 2

6 4 8 20 32 8 8 4

7 6 12 30 48 12 12 6

8 8 16 40 64 16 16 8

9 12 24 40 96 24 24 12

10 16 32 40 128 32 32 16

11 24 48 60 192 48 48 24

12 32 64 80 256 64 64 32
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the optimal solutions obtained by LINGO with the results

of our MA Algorithm 4, the percentage error is calculated

using formula (5).

Error percent ¼ MAanswer � LINGOanswer

LINGOanswer

� 100 ð5Þ

Based on Table 5, we observe that the error percentages

for the small size problems are zero, which indicate the

high accuracy of proposed MA. Although the operation

time is higher compared to LINGO, our implementation

allows us to derive results for the large size problems.

Hence, the proposed MA demonstrated that it is capable to

prepare sufficiently accurate solution with the efficient

computation time for our integrated forward/reverse

logistics problem with flexible delivery.

6 Conclusion

In this paper, we focused on a comprehensive mixed

integer linear programming formulation for a seven-stage

closed-loop network design problem. We applied the

extended direct delivery path representation-based meme-

tic algorithm, which was developed for a full delivery

graph and a combined forward/reverse logistics design to

decrease delivery time and avoid sub-optimal solutions,

respectively. The aim of this work is to minimize total cost,

which we addressed as allocation problem to find the

optimal number and capacity for any facility as well as the

optimal transportation flow between facilities. Since the

basic problem is NP hard, the combination with flexibility

in delivery path makes the search space of the problem

much larger and more complex and NP hard as well.

Because existing methods are unable to solve this problem,

we proposed a MA approach to compute a near optimal

solution for large size problems. In this study, we intro-

duced a new chromosome representation for MA to

Table 2 Parameters values used in the test problems

Parameters Range

bj; j 2 S Uniform (200, 1100)

bj; j 2 P Uniform (100, 1000)

bj; j 2 Dc Uniform (50, 900)

bj; j 2 R Uniform (50, 850)

bj; j 2 D Uniform (100, 500)

bj; j 2 Co Uniform (20, 100)

bj; j 2 Di Uniform (20, 100)

preturnj 10%

p
disposal
j

50%

cij Uniform (1,3)

cj; j 2 P Uniform (100, 2500)

cj; j 2 Dc Uniform (100, 2100)

cj; j 2 R Uniform (100, 400)

cj; j 2 Co Uniform (100, 500)

cj; j 2 Di Uniform (50, 400)

Table 3 Results obtained by LINGO

Problem Problem size Solution

1 2 � 2 � 5 � 8 � 2 � 2 � 1 2905

2 2 � 3 � 8 � 9 � 3 � 3 � 2 2335

3 2 � 4 � 6 � 10 � 2 � 2 � 1 2345

4 2 � 4 � 10 � 16 � 4 � 4 � 2 1160

5 3 � 6 � 15 � 24 � 6 � 6 � 2 4100

6 4 � 8 � 20 � 32 � 8 � 8 � 4 11365

7 6 � 12 � 30 � 48 � 12 � 12 � 6 –

8 8 � 16 � 40 � 64 � 16 � 16 � 8 –

9 12 � 24 � 40 � 96 � 24 � 24 � 12 –

10 16 � 32 � 40 � 128 � 32 � 32 � 16 –

11 24 � 48 � 60 � 192 � 48 � 48 � 24 –

12 32 � 64 � 80 � 256 � 64 � 64 � 32 –

Table 4 Results for Algorithm

4 with n ¼ 60 and m ¼ 30 over

20 runs

Test problem Min-cost Max cost Ave cost Min time (s) Max time (s) Ave-time (s)

1 2905 2905 2905 2.3 4.3 3.05

2 2335 2735 2402 4.3 10 6.7

3 2345 2885 2381 6.7 13 9.3

4 1160 1560 1225.5 18 47 32.5

5 4100 4920 4576 19 57 38.45

6 11,365 12415 11821 175 410 275.75

7 17,268 21205 19324 260 430 310.6

8 24,933 30446 26995 570 630 600.25

9 33,555 40043 36571.4 1780 2010 1903

10 51,343 60251 52692.95 3740 4060 3935

11 11,986 15600 13132.2 4100 5600 4700

12 13,400 15804 14227.7 6200 7500 6680
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enhance its search ability for the proposed flexible model.

We verified correctness of the proposed method using

numerical experiments and LINGO15. Additionally, we

showed that the method is capable to solve larger size

problems which cannot be solved by LINGO.

Apart from costs aspect considered here, other aims such

as responsiveness and robustness can be considered in

designing integrated forward/reverse logistics network that

needs updating the algorithm to be capable to solve multi-

objective models. Moreover, to be close to the real-world

application, multi-product multi-capacity and multi-period

networks with uncertainty as well as considering inventory

can be employed. Last, the effect of different parameters on

the behavior of the proposed metaheuristic algorithm can

be analyzed in depth.
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