
Received: 30 May 2022 / Accepted: 20 June 2023 / Published online: 19 July 2023 ©
The Author(s) 2023 This article is published with Open Access at www.bvl.de/lore

ABSTRACT

Decentral production control plays a crucial role
within the paradigm of Industry 4.0. Due to the fast
and flexible decisions on allocation and sequencing
required by this type of control, there is no baseline
production schedule in advance. This creates a
dilemma for efficient staff deployment – typically
worker deployment times must be planned at least a
few days ahead. To solve this dilemma, we present a
simulation-based genetic algorithm, which creates a
roster with flexible deployment intervals without a rigid
shift pattern based on the production system and job
load. In accordance with the zeitgeist and Industry 5.0,
we include flexible working time and desired working
hours of production workers. For evaluation of the
method, we consider worker attendance costs, job delay
costs and a cost penalty of work scheduled outside of
desired working hours. We forecast the decisions of
the decentralized production system by solving a job
shop scheduling problem (JSP) extended by manual
operations. Our algorithm iteratively uses reasonable
solutions of the JSP as basis for roster optimization.
With this integrated approach, it is possible to balance
job delay costs against worker attendance costs as well
as cost for deviation from desired working hours. To
ensure compliance with working time legislation, we
include appropriate repair operators in the genetic
algorithm. We demonstrate the efficiency of our
heuristic approach by comparison to rigid shift systems
and the best of a large number of randomly created
rosters.

KEYWORDS: Integrated workforce rostering and
job shop scheduling problem · workforce requirement
planning · decentral production control · Industry 4.0 ·
genetic algorithm with repair operators

Logistics Research (2023) 16:8
DOI_10.23773/2023_8

1 INTRODUCTION

1.1 Workforce Scheduling Dilemma
in Industry 4.0

The concept of Industry 4.0 brings many technical and
organizational changes. This does not stop at human
resource planning and scheduling or at the nature of
employee tasks either, as we have already discussed in
[1]. However, a large part of the research community
agrees that humans will continue to play a central
role in the smart factory [2, 3]. In this contribution,
we particularly focus on machine-dominated
manufacturing environments. We do not refer to a
mainly manually dominated project manufacturing
like complex assembly processes, as described, e.g.,
in [4]. Especially in machine-dominated production
environments, the nature of the tasks of the production
workers will change [2, 3]. Within cyber-physical
production systems (CPPS) humans will mainly
have coordinating, controlling and directing tasks [2,
3]. Within the upcoming trend Industry 5.0 [5], the
human-centric aspect becomes a new core issue. The
progressive automation and digitalization will make
simple tasks obsolete that are usually characterized by
continuous time-requirements. Consequently, steady
deployment continuity of manual tasks during the
production process will decrease.

This article is part of a focus collection on ‘‘Dynamics in Logistics
– Models and Algorithms for Optimisation, Planning and Control.”

Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

J. Schwemmer, C. Günsel, M. Kühn and T. Schmidt

Julia Schwemmer

Christian Günsel

Mathias Kühn

Thorsten Schmidt

Chair of Material Handling and Logistics Engineering,
TU Dresden, Germany,

julia.schwemmer@tu-dresden.de
telephone: +49 351 463 33492
fax: +49 351 463 35499
www.tu-dresden.de/ing/maschinenwesen/itla/tl

2

and predict the behavior of the decentral production
control for single roster proposals. We use discrete-
event simulation. Utilizing a specifically adapted
genetic algorithm as optimization model, we search
for efficient roster proposals to improve the overall
performance of the production system. Against the
background of variable working hours, we encode
solution proposals in chromosomes of variable length.
Thus, we enable differing numbers of working intervals
(deployment intervals) for the workers in the solution
finding process. We have specifically adapted the
genetic operators, which are messy crossover, simulated
binary crossover and Gaussian mutation. In addition,
we have two purpose-built operators which can change
the chromosome length.
To deal with the fact that our problem is highly

constrained due to working time legislation, we include
a repair method consisting of five main repair operators.
These are applied after the genetic operators and ensure
that the legal requirements are met.
To achieve overall optimization of the production

system, the objective function consists of three main
terms: cost of rostered worker attendance, deviation
from desired working hours from the worker’s
perspective and job delay. We evaluate the method by
a comparison with classical two-shift and three-shift
systems on the one hand and with the best of a large
number of randomly generated rosters on the other
hand.
As problem case, we use the class of job shop

scheduling problems (JSP) with the specification of
time-windows (release and due dates) as well as multi-
mode (varying parallel production schedule schemes).
With regard to the manual tasks, a real-world application
field is, for example, the production of medical implants
(examples of manual tasks: visual inspection, insertion
and removal of parts or performing non-standard
production steps). We chose the JSP because it models
machine-dominated production environments where
manual tasks may still appear. Alternative problem
cases, underlying workforce rostering, could be Line
Balancing Problems or Resource Constrained Project
Scheduling Problems (RCPSP) (see, e.g., [9]). However,
it seems to us that these alternatives do not balance
machine tasks and human tasks as well as the JSP.
We do not attempt a novel optimization technique for

the JSP. In order to take up the planning background
of Industry 4.0, we solve the JSP by modelling a
decentralized production control. The JSP solution is
intended as a reasonable forecast of the decisions made
by the decentralized production control.
As for the solution method of our integrated rostering

and scheduling problem, we are interested in a heuristic
approach – in our case a GA – given the NP-hardness
of the problem [10].
In Sect. 2, we give a rough overview of the state of

the art that we have already presented in more detail
in [11]. In Sect. 3, we precisely define our considered
problem. Section 4 deals with a proposed solution

The fourth industrial revolution will have impact
on the organizational level of workforce scheduling.
A basic element of Industry 4.0 is the decentralization
of production control [6]. Thus, decisions on sequence
and allocation of resources and orders will take
place at lowest shop floor level. This will enable a
high degree of flexibility and very rapid reactivity to
process disturbances in production control. Decisions
without long lead times will create a real-time control
(as it is commonly called). There will be no (detailed)
basic schedule for the production system. It will not
be known (at least not in detail), which operation will
be scheduled on which machine at what time. At this
point, the dilemma of workforce scheduling in Industry
4.0 arises. In contrast to the production schedule, the
staff roster has to be determined some days or weeks
in advance so the workers have the opportunity for
proper time management. In order to create an efficient
roster by conventional methods, the information of the
requirements from the production would have to be
already available. However, with decentralized control,
this information is not available due to the missing basic
production schedule. This impedes efficient resource
planning of the workforce.
In addition to technical and organizational changes

(see also “Work 4.0” [7]), there is a transformation in
the attitude of work. This tendency is sometimes also
referred to as NewWork [8]. Both trends influence each
other. Work-life balance is one key aspect increasingly
coming to the fore [7]. This means that the balance
between working time and free time gains higher
relevance to employees. The main focus is no longer on
career and salary. In contrast, compatibility of work and
family or hobbies increases in importance. Companies
must adapt to the changing wishes of their employees in
order to be able to recruit and retain skilled personnel.
Especially in highly specialized areas, a scarcity of
skilled workers cannot be ruled out in the future [2].

1.2 Scope and Solution Approach
In this work, we are not going to completely solve the
dilemma of intersection “scheduling vs. planning” in
decentrally controlled production systems. However,
we take a first step for the rostering of the workforce
(“planning”-side) to enable an effective “scheduling”-
side.
We take advantage of flexible working hours and

the rosters do not have to stick to fixed time grids of
rigid shift systems. Flexible working hours may not
only be beneficial from the employer’s perspective to
adjust capacity supply to a volatile demand but also
from the employee’s perspective to reach a better work-
life balance when working at desired working hours.
These requirements from both sides are not necessarily
compatible, but we consider both and try to reach a
compromise.
The core idea of our solution approach is a

simulation-based optimization model. Utilizing the
simulation model, we can evaluate proposed rosters

3
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

decentrally controlled production system is one main
issue in our research area, we have limited the literature
review to the application area of manufacturing and
quantitative contributions since 2011.
From the employees’ point of view, there is a trend

with strong influence on the research topic, too. For
several years, work-life balance has been gaining in
importance, especially based on flexible working
hours that can be influenced by the individual workers
themselves. (see, e.g., [7, 17]).

Related Problem Classes
To get a general overview on the state of the art of the
topic of staff scheduling and rostering, we recommend
the three literature reviews [18–20]. Usually, the
problem classes considered in these reviews only cover
the staffing optimization component without taking
into account the scheduling side of machine and job
optimization [11]. For example, looking specifically
at our described dilemma, the class of “Employee-
Timetabling” (see, e.g., [21–23]) is one of the first related
problem classes. However, this class commonly only
addresses human resource planning but not the machine
shop problem [11]. Considering the transformation in
the attitude of work as described at the end of Sect. 1.1,
there is hardly any literature: Firstly, there are hardly
any methods to roster workforce without rigid shift
grid on the basis of time flexible working models [11].
Secondly, there are even less publications that include
the aspect of employee-sided desired working [11].
So, on the one hand, there are publications dealing

with workforce rostering [11]. On the other hand, there
are publications dealing with the scheduling processes
of machine operations and job sequences [11]. These
are, for example, Job Shop Scheduling Problems
(JSP/JSSP), Flow Shop Scheduling Problem (FSP/
FSSP), Flexible JSP (FJSP/FJSSP) or Line Balancing
Problems [11]. Some of these problem classes have
extensions where also human operations are to be
scheduled (see, e.g., [24–29]) but they do not take into
account the topic of workforce rostering in general
or at least not at the same optimization level as the
machine scheduling problem [11]. A class of scheduling
problems constrained by machine capacity and by
human capacity is commonly called dual resource
constrained (DRC), where the term DRC is mainly
used in the context of job shop scheduling problems. In
DRC problems, the working hours are usually taken as
a given and the rostering process is mostly not a subject
of investigation [11]. Some of the DRC problems of the
recent years are written in the context of Industry 4.0
(see, e.g., [24, 30]) and some do not take up the topic of
Industry 4.0 (see, e.g., [25, 31]). Generally, in the field
of workforce rostering or DRC scheduling problems,
literature considering the background of a decentrally
controlled production is rare [11].
Taking further facets of our considered issue into

account, like the changed time requirements of the
manual tasks, there are only very few publications that

method which is based on the genetic algorithm
adapted for the problem stated. In Sect. 5, we present
some results of our optimization and simulation runs
to evaluate the proposed algorithm. The paper ends
with a short conclusion and planned extensions for the
algorithm in Sect. 6.

2 STATE OF THE ART

The human-centric aspect, to which our method
of workforce rostering refers, is currently gaining
importance and public interest. The new trend
“Industry 5.0” [5] highlights exactly this human-centric
perspective. A more general view of the topic of social
sustainability in production planning is presented in the
literature review of Trost et al. [12].
We have conducted a detailed literature review

with focus on quantitative solution methods for roster
optimization in [11], covering the following aspects:

– parallel optimization of roster and machine plus
workforce scheduling (i.e., job scheduling, staff
rostering and staff assignment – see also [9]),

– time-flexible working models,
– consideration of working hours preferred by

workers,
– decentralized production control with short,

sparse manual production tasks.
Since publication of [11], there have not yet been

any significant changes in the state of the art. So, we
would like to refer to our paper [11] for more detailed
information on the literature status. We give a short
summary of the state of the art in this publication:

Historical Development
Flexible working time arrangements are not a new
concept. Already at the turn of 2000, some concepts
based on time accounts were introduced in the literature
(see, e.g., [13]). These have primarily aimed at the
adjustment of capacities to market fluctuations and
thus realization of employer-side advantages. There was
usually no inclusion of employee-side desired working
hours. The workforce scheduling process was usually
a second level optimization, optimized after finishing
the machine sequencing and allocation (see, e.g.,
[14]). Therefore, it will not meet the described future
requirements of Sect. 1.1.
In 2011, Kagermann, Lukas and Wahlster [15]

presented the concept of the fourth industrial revolution
at the Hannover Fair the first time. From 2012 onwards,
the German government also encouraged it (see, e.g.,
[6]) and the number of publications dealing with
Industry 4.0 began to rise. Accordingly, corresponding
concepts based on decentralized production control
became more important. There are several research
projects that deal with the technical collaboration
of human and machine (e.g. see [16]). However, the
organizational aspects of flexible shifting workforce
in CPPS have hardly been considered [11]. As the

4

To give another example, the method of the research
project “KapaflexCy” [38] requests available workers
via a “shift doodle” app for additional shifts or shift
extensions at short notice but only after the demand
planning at machine level has been completed.
Furthermore, the rostering system is based on a fixed
rigid shift pattern.

3 PROBLEM STATEMENT

The aim of our research project is to find a compromise
between the predictability of workers’ working
hours with sufficient lead time and the flexibility of
decentralized control.
The goal of our research is to determine an optimal

workforce roster relative to a given job shop problem
instance. We strive for an overall optimization that
takes into account cost for worker attendance (labor
cost) as well as cost for an understaffed production
process. For the latter, we will use the target value of
job delay that is caused by periods when less workers
are available than required to finish the job in time.
Our third criterion for optimization is to minimize the
cost for the deviation of working time preferences of
workers from actual worker deployment in the roster.
Thus, we take into account the social tendency of the
changing attitude of work.
The concrete aim of this publication is only to

create cost-efficient worker deployment rosters, not
to determine schedules with sequence and allocation
decisions for the underlying job shop problem. Fixing
all dispatching decisions for the operative level of the
production system would clash with the decentral
production control, which makes dispatching decisions
when they are due and does not need a fixed baseline
schedule. In these terms, the deployment rosters only
determine attendance times. The exact assignment of
workers to tasks should finally take place in the short
term by the decentralized production control. The
operative level is still in the decision-making power of
the decentralized control.
However, in order to achieve an equivalent inclusion

of the rostering and the machine level (as described in
Sect. 1.1 and 2), it is essential to deal with the machine
shop as well. The production runs carried out must also
be included in the evaluation – even if they are not part
of the solution – but they can be viewed as a forecast
of the operative decisions made on the shop floor. For
the detailed relationship between the both components,
please see Sect. 3.1.

3.1 Relation of Workforce Roster to Job Shop
Scheduling Problem (JSP)

A workforce roster defines the attendance times
(deployment intervals) of each staff member. Only if a
worker is attendant in the production system, a manual
task (part of the JSP) can be processed. In this way,
the workforce roster (planning in advance) is covering

model problem instances with the sort of sparse and
short manual activities as described in Sect. 1.1 [11].
There are some contributions that do not assign their

proposed model to a commonly known problem class.
The phenomenon described above can also be observed
here: either the publications are attributed to a pure
personnel problem (see, e.g., [14]) or, if a machine
problem is included, the rostering component is not
taken into account (see, e.g., [32–35]).
There are some publications that include the problem

classes of job scheduling, staff rostering and staff
assignment in an integrated problem class (see, e.g.,
[9, 10, 36, 37]). However, the problem conditions of
these integrated problems differ from our requirements:
For example, [10] consider a lexicographic objective
function giving an order of the various objective
functions. This in turn does not imply an optimization
of the different problem classes (job + staff scheduling
and staff rostering) on an equal optimization level.
Mostly these integrated approaches do not include
flexible shift planning but shifts have to be of the same
length (see, e.g., [10, 36]). In general, we could not find
any integrated staff rostering and scheduling problem
that takes desired working time conditions from the
employee’s side into account.
To summarize, to the best of our knowledge, there

are only publications dealing with related or reduced
problems but there is no method handling exactly the
dilemma described in Sect. 1.1 or more specifically
within the scope of the research gap in the next
paragraph. Furthermore, we did not find benchmark
instances or problem model formulations for the precise
research question we are interested in.

Research Gap
To summarize, the research gap our paper aims at
(see also [11]) is characterized by a combination of
the following requirements, which are to the best or
our knowledge not sufficiently addressed by current
research:

– The production planning and control of
machines, worker assignment and jobs as well
as the roster generation for employees are
merged on the same level of importance. There
should be just one optimization level and no
subsequent, “second-level” optimization for one
of the components,

– Both workers and machines are considered
as separate but equally important and limited
resources,

– The planning of deployment times is completely
independent of shift grids,

– Working time preferences from production
employees are included, and

– The background of a decentrally controlled
production system with changed processing
time requirements of manual production tasks
is considered.

5
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

decentralized production control as given and model
it on the basis of priority rules – “first-in-first-out”
followed by “shortest processing time”.
In the following subsections, we give more details of

the extended JSP instance, the workforce roster, and the
roster optimization problem.

3.2 Models for Extended JSP and
Workforce Roster

In the following, we specify the problem in a semi-
formal way. The following equations are an excerpt of
the necessary mathematic modeling:

3.2.1 Model of the Extended JSP
As starting point, we use the class of Job Shop
Scheduling Problems (JSP) with specifications of
multi-mode and time windows (MJSPTW). There
are machines (or workstations) and
jobs . Each job has a set of operations

. There is a fixed sequence for the
operations (predecessor/successor). Each operation
has a set of modes . The modes

in represent alternatives of operation , of which
only one must be executed. A mode determines
the required machine and the duration of the
machine usage. Each machine can process only one
operation at a time.

Constraints for the JSP
A valid solution of the JSP is characterized by
the complete processing of all jobs, where for
each operation of a job , exactly one operation
mode has to be selected. These selected modes
are determined by a start and end time such that

. The start of
the mode selected for the next operation
of job must be after the end of the mode . In other
words, modes selected for operations of the same
job must not overlap. Each mode uses a concrete
machine as defined in the JSP instance. The same
machine may only be used by two different selected
modes if the modes do not overlap in terms of their
start and end.

Extended JSP
We extend this classic JSP by two aspects:
Firstly, the standard JSP is extended by assigning to

each job a planned release date and a required
due date , which will be used to define delay cost.
Secondly, for the workforce planning component

of our use case, we have to extend the MJSPTW with
manual activities (for a concrete example see
Sect. 5.1). We do not distinguish between different
qualifications of the workers; so, all workers are
interchangeable (homogeneous qualification). The idea
is, that each worker can perform every
manual activity . However, a worker can perform
only one manual activity at the same time. Thus,
if an operation has already started on a machine

the demand for the resource human of the production
system (tasks included in the JSP on an operative level
without lead time).
To determine costs for a workforce roster and the

instance of a job shop scheduling problem (JSP), the
operations of the JSP instance must include manual
activities which require the attendance of workers.
A “solution” to this extended JSP (which in the sense
of the problem description is not a solution of the
optimization problem but only a forecast of a possible
production run) consists in a concrete schedule in which
the start and end of each job, operation, and manual
activity is mapped onto the time axis. Any such forecast
will take the availability of workers based on the given
workforce roster into account and thus represent a valid
production run, which fulfills the constraints of a JSP
(see Sect. 3.2). In this way, the concrete timing of the
start and end of jobs determined by the forecast will
give rise to delay costs if a job ends after its due date.
The attendance costs result from both perspectives –

the roster (planned attendance time) and the forecasted
production run (unplanned attendance time but
scheduled in the forecast) – as our model allows to
work extra hours to complete already started production
tasks.
In contrast to the delay costs and attendance costs,

which depend on the JSP, the costs of deviation from
preferred hours can be calculated only on the basis of
the workforce roster itself.
The forecasted production run estimates how

the rostered working hours affect the processing of
manual tasks (e.g., are adequate worker available)
and thus the processing of jobs (e.g., waiting times of
jobs or blocking times of machines). On this basis, the
workforce roster can be prepared in advance.
We do not attempt a novel optimization technique

for the JSP. To achieve our aim of roster optimization,
however, we need to assume and implement some
solution of the JSP – as forecast of decentral production
control – which does not need to be optimal but just
reasonable.
The flexibility on the side of decentral production

control is to be modeled by using a multi-mode
problem, in which there are alternative processing
options for each production step. The processing
options can vary in processing times and required
resources (machine as well as human) and can differ for
every job operation. Since resources are being shared,
the scheduling of one job depends on the scheduling
of other jobs. Accordingly, at almost every decision
point in time, there are different parallel production
schemes possible. Selecting one of them is the task of
the decentral production control. Thus, the decentral
production control determines allocation of resources
and sequence of job operations, which will become the
forecast of the production run.
The scheduling logic of decentralized production

control is typically either agent-based or priority rule-
based. In this problem formulation, we consider the

6

A roster consists of a list of deployment intervals for
each worker . The roster for worker is defined as:

(1)

where is a deployment interval of worker :

(2)

where is the start1 of a deployment interval
and is the end of the deployment interval . The
roster for all workers is simply the set .

3.2.3 Model Connection of the Extended JSP and
the Workforce Roster Problem

The following constraint connects the extended JSP
with the workforce roster: For each point in time , a
manual activity may only start at , if there are
more workers deployed at than there are active manual
activities at .
In this formulation, the number of workers deployed
at is the number of workers for which there is a
deployment interval such that . The
start and end of a manual activity is fixed by the
solution of the extended JSP. Thus, it is well defined
at which times a manual activity is active, namely if

.
Thus, it is allowed to pass manual activities

between workers, since the constraint does not require
that individual workers are assigned to activities.
Note that this constraint enforces that workforce

rosters must have sufficiently many deployment
intervals of sufficient lengths to allow the required
assignment of start and end to all manual activities. It
thus guarantees that all manual activities are completed.
The forecasted solution of the extended JSP problem

under the stated conditions implicitly also fixes the start
and end time of each job that we refer to as and

, respectively. On the basis of , we can define
job delay costs by comparing it with .

3.2.4 Preferred Working Hours
The labor flexibility on the worker side is to be
implemented as follows: Workers can indicate
preferred working hours that are not bound to any
fixed shift pattern, but are simply the times at which
they would like to work. These working hour requests
are taken into account when creating the rosters but
they are not obligatory. This means that the rosters
do not necessarily cover the workers’ wishes exactly.
Rostered working hours outside the desired working
time window add costs to the target function value (e.g.,

1 Note that the start time and end time are integers, which
refer to simulation time units used by our discrete-event simulation
of job execution in a production system. In order to calculate
hour-based costs, one has to interpret simulation time units in
real time (e.g., 1 simulation time unit = 10 min, see Sect. 5.1)

and then a worker is required due to a manual activity
, the operation must be suspended until a worker

is available. We will formulate this requirement as a
constraint when connecting the extended JSP model
with the roster model in Subsect. 3.2.3.
We model the problem in such a way that manual

activities do not occur alone, but a machine
operation is always used as a basis. The machine

remains occupied during the complete operation
until the operation is finished. The idea is that a

manual activity always needs an operating machine
(or some workstation). Manual activities can be
shorter but not longer than their machine operation .
By assigning rather short manual activities to a rather
small subset of machine operations, we can model a
situation as described in Sect. 1.1. Due to the extension
of machine operations with manual activities, machine
operations are no longer the smallest unit in the
scheduling process – contrary to a standard JSP.

Constraint for the Extended JSP
A solution of the extended JSP assigns a start

and end to all manual activities
that belong to the selected operation modes such

that .

3.2.2 Model of the Workforce Roster
The concrete aim of the algorithm described in this
publication is to create cost-efficient worker deployment
rosters. We explicitly do not talk about schedules as
solutions, since we only want to determine attendance
times. The exact assignment of workers to tasks
should finally take place in the short term through
decentralized control and is not within the scope of
our problem.
For further considerations, we would like to define

and distinguish the following terms:
– Deployment interval: A period of time with a

defined starting and end point. In this interval,
a worker is present and ready to work in the
company. The list of all deployment intervals
thus forms the working hours of an employee.
Technical and personal disruptions times
(contingency allowance) may occur during the
interval, but designated breaks are not included.

– Break: A break separates deployment intervals
(e.g., lunch break). Breaks have a certain
minimum duration, but are not as long as rest
periods. In practice, breaks are commonly
between 0.5 – 2 hours long.

– Rest period: A several hours long recovery time
between shifts in which the employee has time
for his/her personal needs (e.g., sleep time) and
interests (e.g., family and hobbies).
Shift: A shift consists of one or several
deployment intervals and, if required, breaks.
Two shifts are separated by a rest period, where
the rest period is not part of the shift time.

7
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

deployment intervals per day to <24. A mandatory
rest period of 11 hours per day will further reduce this
number. However, we do not assume a fixed number
of deployment intervals, either per day or overall,
within the time horizon. This means that there is no
fixed number of decision variables, even for a given
problem instance.

Objective Function
We measure all components of the objective function
as cost (e.g., represented in €) to create better
comparability between them. The total costs
are to be minimized. The objective function consists of
three parts: The costs for worker attendance
(labor cost), costs for working hours deviating from the
desired working hours and the costs for job
delay .

(3)

A roster with minimal costs thus provides a
compromise solution between the worker’s wishes,
the requirements from the production system, and the
costs from the worker deployments. In a real production
scenario, fixing working hours in advance using such
a minimal-cost roster creates planning reliability for
workers while still optimizing for low labor cost and
delay cost.

Cost of Worker Attendance
The cost of attendance (labor cost) is calculated as
follows:

(4)

Here, is the partial duration of deployment
interval that falls in the day time (e.g., 6:00 a.m. to
11:00 p.m.) and is the partial duration of

in transfer to the real world, it can be interpreted as a
bonus payment for the worker).
We will denote the desired deployment intervals for

each worker by

3.2.5 Overview of Time Dependent Variables
According to the constraints, a worker can only perform
a manual activity if the start of the activity
is during his/her rostered working hours . So, a
worker can start to work on a task during the rostered
working hours . However, we allow that if the
worker is not able to finish the already started activity

within the rostered working hours and there
is no free worker to hand over the task to, the worker
will exceed his/her planned working hours and finish
the task. Therefore, the rostered working hours
and the effective working hours realized in the
simulation can differ. So, there might be workers
effectively deployed outside the times fixed for them
in the roster.
For this reason, we have to distinguish two to three

versions of time dependent variables (see Table 1): plan,
effective and, if applicable, wish. For example, each
worker has preferred working hours but he/she
has no preferred release date for job .

3.3 Decision Variables and Objective Function
of the Optimization Problem

Decision Variables
The decision variables are the rostered attendance
times of the workers

. Due to the flexible

setting of the working hours and the flexible time
horizon, there is no explicit restriction to the number
of deployment intervals , but other constraints
(e.g., breaks and rest periods of legal restrictions) must
be kept and they indirectly influence the number of
feasible deployment intervals. For example, a minimum
break length of one hour will limit the number of

Table 1: The notation for the different versions of time dependent variables

Plan Effective / simulated Wish (from the worker’s
perspective)

Set of all worker
deployment intervals

Single worker deployment
interval

Job release date –

Job due date –

8

to protect workers. This makes the problem more
complex (highly constrained) because the search
space becomes more fragmented. We derive the main
constraints from the German Working Time Act (e.g.,
maximal work load per day or minimal break length).
The applied upper and lower bounds are in Table 2. The
instantiation of constraints in the later test series will
be on the specifications of this German law. However,
these parameters can be set according to individual
needs (e.g., country-specific or company-specific
requirements).
Once a worker has worked a certain amount of time

(e.g., see), a break should be taken. There
are also specified minimum times for breaks. In the
German Working Time Act this depends on the daily
working time. For example, this is at least half an
hour for more than one day’s work between 6 and 9
hours and a 45-minute break for longer working hours.
To simplify matters, we set a minimum break value

of 1h, as this means that all specifications are
met using a single value. Smaller breaks (e.g., personal
disruptions times as contingency allowance) should not
be shown in an official work schedule of the worker
(take in mind the level of workforce planning of HR).
Smaller breaks fall into the personal distribution time
of the contingency allowance (see definition in Sec. 1).
We added to avoid scattering of working

time across many short deployment intervals and
breaks but this is not a legislative rule. The aim here
is to avoid creating overly fragmented intervals of
work that are impractical in real-world applications or
generally in human resource planning. For example,
a half-hour interval of working time is created,
separated from breaks or even standing alone for that

that falls in the night time (e.g., 11:00 p.m. to 6:00 a.m.).
Both are measured in hours.

stands for the labour costs per hour of worker
. Note that, in the current stage of development,

all are equal since workers do not have different
qualifications.

is the night work surcharge, e.g., 25% = 0.25.

Cost of Desired Working Hours

ܿ௨௡ௗ௘௦௜௥௘ௗൌ෍|ௐ|
௪ୀଵ����������ሺܦ௪௣௟௔௡, ௪ܽכ௪௪௜௦௛ሻܦ ௪௜௦௛ܾכ (5)

where is the overall amount
of time in the intervals from that is outside all
intervals from . This amount of time, which lies
outside of the desired working hours, is measured in
hours. is a percentage bonus surcharge factor
applied to it.

Cost of Job Delay
If jobs are not completed by the due date , a
penalty is paid, which is determined by a cost rate per
hour (e.g., contract penalty).

(6)

Constraints due to Work-Hour Legislation
In a staff rostering problem such as ours, numerous
restrictions need to be taken into account that exist

Table 2: Applied thresholds for the arrangement of working hours

used configuration

Minimal break duration (within a shift) 1h **

Minimal duration of a rest period between shifts 11h

Minimal duration of a deployment interval 1h *

Maximal duration of a deployment interval 6 h

Maximal number of working hours per day 8 h

Maximal number of working hours per shift 8 h *

Maximal length of a shift
(start of first deployment interval until end of last
deployment interval in the shift)

13 h *

* not directly given in the German Working Time Act

** simplified

9
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

4 SIMULATION-BASED OPTIMIZATION
VIA GENETIC ALGORITHM

To solve the problem described in the previous section,
we use a simulation-based optimization model. With
regard to the large size of industrial rostering problems
as well as the size of decision variable search space
through a time-flexible rostering scheme, a simulation-
based approach as opposed to an approach using
mathematical programming seems appropriate for us.
As stated in [10], both problem classes (staff rostering
and job shop scheduling) are each NP-hard optimization
problems and an integrated form of both will not reduce
the problem complexity. With increasing computational
power, also increasing complex problems can be solved
mathematically exactly (within an acceptable period
of time), e.g., via a mixed integer linear programming
model (for further information on this discussion,
please see, e.g., [39, 40]). Based on currently available
computational power and considering our problem
complexity, we decided to use a heuristic method in
this case.
A general schema for our optimization model is

shown in Fig. 1.
As optimizer, we have adapted a genetic algorithm

(GA). A GA is a stochastic optimization method,
working as a heuristic that searches for a global solution
by the imitation of an evolutionary process (for more
information see, e.g., [41]).
Our GA uses a discrete-event simulation model for

the evaluation of the objective function. For software
implementation, we use the programming language
Python (version 3.7) as well as the package DEAP
(version 1.3.1) [42] for the GA and the package SimPy
(version 4.0.1) [43] for the simulation.
Fig. 2 shows an outline of our genetic algorithm,

which implements the general schema of Fig. 1.

day. The employer will undoubtedly agree with the
employee’s view that this is not an acceptable work
schedule in which the value-added times are sufficiently
proportionate to the employee’s organizational efforts
(traveling to the company, preparing protective clothing
or special tools if necessary). In addition, the day of the
employee is interrupted in an inappropriate way. Due to
the employer’s duty of care towards his employees, the
minimal duration for a working interval is set.
The maximum time load of work within a shift

is also not directly given in the German Working Time
Act. However, it also appears to us as an important
parameter and we set it to 8 h. We have transferred this
restriction from the legal condition of the maximum
working time of 8 h within one day. The difference
between the maximum daily working time and the
maximum shift working time is that the first one refers
to the 24-hours clock-grid, but the latter can take place
across days (e.g., classic night-shift times from 10:00
p.m. to 6:00 a.m.).
In addition, the maximum shift length

(containing deployment intervals and breaks of one
specific shift) is a parameter that is not directly given
either. However, the modeling point of view shows its
necessity. We calculate it from the length of a day (24
h) minus minimal rest period (11 h): 13 h. That means,
after a completely exhausted shift length (distinguished
from the working time within a shift) and the minimum
rest period, the worker can start his working time at
same time on the next day. However, the planned shift
length can be shorter and/or the planned rest period can
be longer, so the shift-grid is not based on the day-grid.
Shift times may switch over the daily grid.
On this step of development of our approach,

there is not yet any special focus on consideration of
psychological and work science aspects; and there is
no consideration of exactly which tasks are performed
(e.g., parts replacement, visual inspections).

Discrete-event
simulation

Discrete-event
simulation

Optimization
strategy

Optimization
strategy

Stop criteria
reached

Decision variables:
roster proposals

Objective function value:
costs Best rosterInitialization

Fig. 1: General schema of our simulation-based optimization model

10

– Return best individual: The algorithm keeps
track of the individual with the best fitness
value ever encountered in any generation.
This individual is returned and represents the
optimized roster.

Before we describe the steps of the algorithm in
detail, we need to define the structure of chromosomes
that encode the individuals and roster.

4.1 Solution Encoding and Fitness Function:
Chromosomes of Individuals

As specified in our problem statement, it is not the
task to find the solution with the shortest production
time, but with the lowest cost. The optimization is done
by the decision variables that form the deployment
intervals of the worker roster. The list of all deployment
intervals of all workers makes up the vector of and for
the chromosome representation. There are two main
arguments of not working with a fixed length of this
decision vector. On the one hand, there is the flexibility
of how many working intervals each day are rostered.
There can be none, one, or more than one deployment
interval in a worker’s day. On the other hand, there is
the flexibility of how long the required time horizon
of the best solution is. The length of the required
roster depends strongly on the contents of the roster.
Therefore, there is no fixed time horizon in advance.
In summary, it is neither fixed how many deployment
intervals there are per day nor how many days it will
take to finish all jobs and therefore there is no fixed
number of decision variables.
Note that it is important that the chromosomes are

specific for each worker and do not just encode the

Components of Algorithm 1 – GA Optimization
Model

– Generate start population: Our genetic
algorithm starts by creating a start population of
individuals each representing a roster solution.
In the start population each individual has two
random deployment intervals per worker and
per day of the planning horizon. See Sect. 4.1
for details.

– Evaluate fitness of each individual (Algorithm
1a): The algorithm simulates the fixed extended
JSP problem for each individual (roster) and
generates a solution forecast. It calculates each
individual’s fitness value on the basis of the
cost value for the respective solution forecast as
defined in Sect. 3.3. See Sect. 4.3 for a detailed
account.

– Apply tournament selection: The algorithm
selects the best individuals to base the next
generation on, see Sect. 4.4.

– Apply crossover and mutation (genetic
operators): In this step the next generation is
created by applying crossover and mutation
operators to the individuals selected in the
previous step. We give a detailed explanation
in Sect. 4.5.

– Apply repair mechanism: This step ensures
that all individuals of the next generation created
in the step before comply with working time
legislation, e.g., the length of breaks. Our repair
algorithm attempts to change the individual as
little as possible in order to keep good solutions.
See Sect. 4.6 for a detailed description of both
auxiliary and main repair operators.

Algorithm 1: GA optimization model

1: initialization: generate start population

2: while stop criteria are false do

3: evaluate fitness of each individual

4: apply tournament selection

5: apply crossover

6: apply mutation

7: apply repair mechanism

8: end while

9: return best individual (roster)

Algorithm 1b: Repair mechanism

7.1: apply ARO 1 + ARO 2
7.2: apply MRO 1 + ARO 2
7.3: apply MRO 2 + ARO 2
7.4: apply MRO 3 + ARO 2
7.5: apply MRO 4 + ARO 2
7.6: apply MRO 5 + ARO 2

ARO… auxiliary repair operator
MRO… main repair operator

Algorithm 1a: Discrete-event simulation

3.1: solve extended JSP for each individual (roster)

3.2: calculate objective function (cost) for each individual

Fig. 2: Pseudocode of our developed algorithm (the repair mechanism is explained in Sect. 4.6)

11
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

ends and not all jobs have already finished, all workers
with their complete cost rates and an additional penalty
are scheduled from the end of the roster until the jobs
have been completed. During the development of the
framework, we have observed that this is generally
sufficient to prevent too short rosters.
Accordingly, the fitness function of the individuals

is not only the objective function but combines the
objective function value with a penalty for a too short
roster .

Additionally, the fitness function includes an extra
penalty for unplanned working hours (when
workers finish an already started task beyond the end
of their rostered working hours). This means that the
rostered deployment interval was too short. We would
like to avoid this case as far as possible but we handle
this as a soft constraint.
In the following, we will refer to the value of the

fitness function as :

with (7)

4.2 Start Population and Stop Criteria
The generation of the start population of the GA is
random-based. This requires a rough estimate of how
long the time horizon (1 day, 1 week, 1 month etc.) of
consideration is. Of course, the exact length for the best
solution (best roster to be searched), does not need to
be known. Instead, the length is adjusted during the
optimization process. However, a roughly known time
horizon significantly simplifies the search for the GA.
We recommend to specify a period that is slightly too
long to avoid the penalty of too short rosters.

number of workers deployed at certain times. Although
our discrete-event simulation only uses the number of
available workers (see Sect. 4.3), we need to make sure
that the working time legislation (breaks, length of
shifts, etc.) is complied with for each individual worker.
For the solution coding within the GA, the roster of

all workers with all deployment intervals are in one
chromosome (see Fig. 3). Accordingly, the chromosome
consists of several sections: one for each worker. The
deployment intervals for a worker are always sorted
ascendingly by the start values within the respective
worker section. All values are integers due to the
problem formulation (discrete-event simulation). In this
work, we use the terms individual and chromosome as
synonyms.
The structure of the chromosomes and their variable

length have a strong impact on the further process of the
genetic algorithm. In the following, if we are referring
to the variable chromosome length, we will mean the
number of deployment intervals within a chromosome
and not the time horizon.
Because of the unknown time horizon, it is very likely

that the suggested solutions of the GA are too long or
too short, considered in time. If the roster is longer
than required, unnecessary costs arise as workers are
scheduled without any tasks to do. However, this case
is very easy to fix. During the evaluation process, the
proposed roster is cut by the time step at which all
jobs are finished. We shorten the roster only during
the evaluation but not during further inheritance in
the GA. Within the inheritance, it is easier to handle
the time horizon if the rosters are longer than needed.
In the other case, the roster ends too early. Then, the
processing of orders cannot be completed because of a
lack of workers. In this case, we use a penalty function
to train the GA to avoid too short rosters. If the roster

Fig. 3: Chromosome representation

worker 1: ,௦భ,భ௣௟௔௡ݐ ௘భ,భ௣௟௔௡ݐ , ,௦భ,మ௣௟௔௡ݐ ௘భ,మ௣௟௔௡ݐ … , ,௦భݐ ವభ௣௟௔௡ , ,௘భݐ ವభ௣௟௔௡
worker 2: ,௦మ,భ௣௟௔௡ݐ ௘మ,భ௣௟௔௡ݐ , … , ,௦మݐ ವమ௣௟௔௡ , ,௘మݐ ವమ௣௟௔௡
…

worker ݅: ,௦೔,భ௣௟௔௡ݐ ௘೔,భ௣௟௔௡ݐ , … , ,௦೔ݐ ವ೔௣௟௔௡ , ,௘೔ݐ ವ೔௣௟௔௡
…

worker � ௦ݐ ೈ ,భ௣௟௔௡ , ௘ೈݐ ,భ௣௟௔௡ , … , ௦ݐ ೈ , ವ ೈ௣௟௔௡ , ௘ೈݐ , ವ ೈ௣௟௔௡
Chromosome representation:ݐ௦భ,భ௣௟௔௡, ௘భ,భ௣௟௔௡ݐ ,௦భ,మ௣௟௔௡ݐ ௘భ,మ௣௟௔௡ݐ … ,௦భݐ ವభ௣௟௔௡ , ,௘భݐ ವభ௣௟௔௡ … ,௦೔,భ௣௟௔௡ݐ ௘೔,భ௣௟௔௡ݐ … ,௦೔ݐ ವ೔௣௟௔௡ , ,௘೔ݐ ವ೔௣௟௔௡ … ௦ݐ ೈ ,భ௣௟௔௡ , ௘ೈݐ ,భ௣௟௔௡ … ௦ೈݐ , ವ ೈ௣௟௔௡ , ௘ೈݐ , ವ ೈ௣௟௔௡

Section for worker 1 Section for worker ݅ Section for worker |�|

Single worker representations:

12

resource with the capacity of the number of workers
that is encoded in the roster is sufficient. Workers

are interchangeable and they can switch freely between
manual actions.
The resources are requested and released by the

following processes:
Operation Processes: For each operation of the

extended JSP instance, there is an operation process
as follows:

– For each job , the process for the first operation
of starts at , i.e., at the planned release
(start) of the job. Thus, operation processes may
run in parallel.

– An operation process, once started, will
immediately request all machine resources of
all modes of its operation – the above mentioned
virtually queuing up – and then wait until at least
one request is granted. This will happen as soon
as the request is first in the machine resource
queue (FIFO) when the machine resource is
released by another operation process. Once at
least one of the requested machine resources has
been granted, the algorithm – simulating the
decentralized control – selects the corresponding
mode to the granted resource – namely the one
with shortest processing time (SPT). All other
requests of the alternative modes are canceled
before the next time step of the DES is taken.

– After a mode has been selected, the operation
process counts as many discrete time steps
as the duration of the mode specifies – this
simulates the running of the operation.

– If the selected operation mode contains a
manual activity, the operation process will
request a worker (one capacity unit from the
workforce resource) as soon as the simulation
event manager reaches the starting point of
that manual activity. In case there is no worker
available, the process waits and suspends the
operation including the machine until a worker
will become available. Once a worker is granted,
the process continues counting time steps until
the manual activity is over. It then releases the
worker and counts the remaining steps for the
machine operation of the selected mode (if any).

– Finally, the process releases the machine
resource. If there are remaining operations
within the job , it starts the operation process
for the next operation of job . It terminates
when there are no operations left.

The operation processes thus fix the start and end
times of operations and manual activities.
Roster Process: The workforce resource has the

capacity . Our algorithm needs to adapt this capacity
during simulation such that it represents the number
workers actually deployed, not just the constant overall
staff size |W|. Using the information about deployment
intervals encoded in the chromosome, our algorithm
computes for each point in time the number of workers

The start individuals are randomly generated for the
estimated period. For every worker, a fixed number of
deployment intervals is generated, which is calculated
from the length of the estimated time horizon and a
parameter to be set for the initial number of intervals
per day. We set an initial number of two working
deployment intervals per day (e.g., one deployment
interval before the lunch break and one afterwards) for
our experiments. The start and duration of each interval
are created randomly.
As an example, for an instance with a workload of 5

days, we initially generate 10 deployment intervals per
worker. That means, with 5 workers, we will generate
50 deployment intervals. In a last step, we apply the
repair algorithm to guarantee feasible deployments.
As stop criteria, we implemented two options. On the

one hand, there is a maximum number of generations.
On the other hand, the GA monitors the change in the
value of the objective function. If there is no more
improvement over a configurable number of evaluated
generations, then the process stops.

4.3 Fitness-Evaluation of Each Individual:
The Discrete-Event Simulation Model

While the extended JSP instance remains fixed
throughout the GA, workforce rosters are represented
by the evolving individuals. For each fitness evaluation
of a workforce roster, the algorithm performs a full
simulation of the extended JSP with respect to that
roster. The roster is an input variable for the simulation;
together with the jobs to be processed, the dispatching
decisions are made on the basis of a given decentralized
control. The decentralized control is not a parameter to
be optimized in our problem case. As described in Sect.
3, it simply consists of priority rules: The main rule is
“first-in-first-out” (FIFO), followed by the rule “shortest
processing time” (SPT). With different job processing
options on different machines (different modes), the
job is allowed to virtually queue up at the same time
on all possible machines. Only the mode that can be
scheduled first is really processed, the other options
are cancelled. For the resulting forecasted schedule,
the algorithm calculates the costs defined in Sect. 3.3.
Our discrete-event simulation defines events as start

and end of processes as well as requesting, granting and
releasing of resources:
Machine Resource: For each machine

there is a machine resource capable
of carrying out one operation at a time. Each machine
resource has a first-in-first-out (FIFO) queue for
handling requests.
Workforce Resource: There is a single workforce

resource with capacity , i.e., capable of carrying out
as many manual actions in parallel as there are workers.
The workforce resource has a priority queue; the rule
for requests in the queue with equal priority is FIFO.
Note that we model individual machines because each

operation requires a specific machine. For the workers,
due to the homogenous workforce qualification, a single

13
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

4.5.1. However, we also use mutation operators that
specifically target the chromosome length (number of
decision variables). We define them in Subsect 4.5.2.
Directly after each genetic operation a repair

algorithm (see Sect. 4.6) is applied, even before the
target function evaluation. This repair algorithm
changes an individual (i.e., roster candidate) such that
it complies with the required constraints of working
time laws.

4.5.1 Crossover for Recombination of Individuals
Firstly, a general probability is set that a mating process
will take place. If there is a mating process, there will
be two options of crossover operators. The algorithm
executes exactly one of these two operators by applying
their assigned probabilities, which add up to 1.
The first option is an adapted messy crossover:
A messy crossover [45] is typically a one-point

crossover of the type “cut and splice” that does not
require parent individuals of the same length. For
each parent individual, a cut is made through the
chromosome independently of the other parent. For the
first child, the first half of the first parent is concatenated
with the second half of the second parent. The second
child is created the other way around. Correspondingly,
the child individuals can vary in their lengths compared
to each other and to the parents.
For our implementation, we modified the standard

messy crossover scheme with respect to the individual
chromosome sections of the workers. The individual
worker sections are mated with the corresponding
sections in the other parent. Accordingly, the messy
crossover does not cross the chromosome as a whole but
individually recombines the new solutions pairwise of
chromosome sections of the respective worker.
The second option is an adapted simulated binary

crossover:
In contrast to the messy crossover, a simulated

binary crossover is not a “cut and splice”-operator,
but merges the values of the parent chromosomes
(for further information see, e.g., [46]). Using
these different strategies gives us more potentially
genetic development. However, for the simulated
binary crossover, it is important that the two parent
chromosomes be of equal length, i.e., have the same
number of deployment intervals in corresponding
worker sections, which is not the condition with our
GA. Therefore, and with regard to the worker section
within the chromosomes, we also modify this operator:
To handle the chromosome lengths, we modify the
parent chromosomes so their corresponding worker
sections have the same length – at least temporarily.
We apply the following procedure section by section
for each worker: Firstly, the algorithm determines the
difference in length for each worker section. Secondly,
it removes the required number of randomly selected
deployment intervals from the section with the longer
length. As a result, the pairs of chromosome sections
of each worker are of the same length. In the next step,

that should be deployed. During simulation, a single
roster process requests and releases capacity from the
workforce resource. It does this exactly at the times
when the number of workers in the roster changes, such
that these “ghost requests” allocate exactly the number
of workers that are not deployed and should thus not be
available to become allocated by operation processes.

– E.g., if the roster specifies that at the times , ,
, there are , respectively, of the

workers deployed, the roster process will request
workers at , release worker at and request
more workers at .

– The roster process works with high priority
against the workforce resource, so that it
always supersedes requests made by operation
processes.

– To deal with workforce rosters that deploy
too few workers and cannot finish all manual
operations, a further rule is required: When
the very last deployment interval in the roster
ends, the roster process does not request all
workers, thereby leaving none deployed, but
instead releases all workers forever so that
they are all available for operation processes.
Thus, the simulation is guaranteed to terminate
(all manual activities will be completed). This
situation will be accounted for by a penalty
in the fitness function, reducing the fitness of
workforce rosters that are too short to finish all
jobs.

Note that once an operation process has been
granted a worker (one capacity unit from the workforce
resource), even the roster process cannot take it away.
This corresponds to the feature that workers will finish
their tasks (if there is no other worker to hand over the
task) even though they might work overtime, which
accounts for the differences between and

4.4 Tournament Selection
As selection operator, we use tournament selection. By
applying this selection mechanism, we can control the
selection pressure [44].
Our GA selects the best individual out of a group

(tournament) of, e.g., five randomly chosen individuals
of the population. We repeat the selection process as
many times as there are individuals in the population,
thus keeping the population size constant across
generations. The selected individuals are further
processed by crossover and mutation to form the next
generation. The size of the group – the tournament size
– is configurable in our framework; for our experiments,
we have had good results with size 5, see Sect. 5.

4.5 Genetic Operators: Crossover and Mutation
Our GA uses crossover (mating) as well as mutation
operators that can handle the variable length of the
chromosomes and the several worker sections. Due to
these specialties, the mating operators must be designed
accordingly which we describe in detail in Subsect.

14

by inserting additional deployment intervals as well
as splitting existing deployment intervals by inserting
a break. We also expect that these mutation operators
will make it easier for the GA to overcome the highly
fragmented search space boundaries between search
space segments (exploration).

The second and third mutation operator work the same
way but complementary. Each of them has a parameter
of probability to be generally applied at an individual
and a parameter of the probability of inserting a
deployment interval or a break, respectively, at a specific
point. Both operators work within the boundaries of a
worker section within the chromosomes.
The mutation operator “inserting deployment

intervals” scans each time period in the chromosomes
where no working hours are scheduled, i.e., each gap
between deployment intervals. If the gap is long
enough, then depending on the insertion probability, a
new deployment interval may be inserted. A gap is long
enough if it is at least of the duration of two minimal
breaks plus a minimal deployment interval (see Fig. 4).
The operator does not take into account whether the gap
represents a (short) break or a (longer) resting period.
The inserted deployment interval is of the minimal
allowed length and is inserted at the middle of the gap.
Thus, the new deployment interval keeps a distance to
existing deployment intervals of at least the minimal
break duration.
The mutation operator “inserting breaks” works

the other way round. It scans the deployment intervals
within the chromosome. If an interval is long enough,
then depending on the insertion probability, a break
may be inserted into the interval. An interval is long
enough if it is at least of the duration of two minimal
deployment intervals and a minimal break (see Fig. 4).
The inserted break is of the minimal allowed break
length and is inserted in the middle of the original
deployment interval. Thus, it splits the original interval
into two new deployment intervals of at least minimum
length.

standard simulated binary crossover is performed
for the chromosome sections. Finally, within the
created children, we re-insert the previously removed
deployment intervals by random decision (50% chance
each). Deployment intervals not picked by this random
choice will be discarded. Note that the place of re-
insertion of the intervals is of no consequence, as our
repair algorithm will sort each worker section anyway
according to the starting point of the deployment
intervals.

4.5.2 Mutation
Analogously to the crossover operators, the application
of mutation operators can also be controlled with a
parameter for the probability of performing a mutation
at all. There are three different operators, but these
work independently of each other.
The first mutation operator is a Gaussian mutation

operator [41] that changes the values according to a
normal distribution. For a small standard deviation,
it focuses on an exploitation character and with a
large standard deviation it focuses on an exploration
character. We will focus on the exploitation. In our case,
this operator receives four parameters: A probability to
be applied for the selected individual for mutation, an
independent probability for each chromosome value to
be mutated, the mean and the standard deviation. This
operator can be used as defined in the literature or in
the framework DEAP and needs only a slight adaption
to our chromosome formulation, i.e., it changes single
values that can be a start time and/or a duration of
a deployment interval. Since we are working with a
discrete-event simulation, the generated values are
rounded to integers.
The second mutation operator “insert deployment

intervals” and the third mutation operator “insert
breaks” target the length of the chromosomes, i.e., the
number of decision variables and are not part of the
existing framework DEAP. During the development
of the methodology and especially in connection with
the repair algorithm (see Sect. 4.6), we observed that
the chromosome length tends to become shorter and
shorter over the generations. We decided to counteract
this by the possibility of mutation – more precisely,

Fig. 4: Schematic illustration of the mutation operators “inserting deployment intervals”
and “inserting breaks”

��������� 	�
��
���� ��������� ��������� ������

������

�����

15
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

beginning and after each main operator to maintain a
correct chromosome formulation.
Each constraint is enforced individually for each

worker section in the chromosome. All repair operators
are applied within a worker section and independently
from other worker sections.

Auxiliary Repair Operator 1: Round & Sort
This operator is the first step of maintaining a correct
chromosome formulation and is only applied at the
beginning of the repair algorithm. It guarantees the
pre-condition for the remaining repair operators that
all deployment intervals contain only integers and are
sorted. For example, if one of the genetic operators
produces a non-integer (in violation to our problem
formulation), this operator corrects it to an integer.
Additionally, the operator sorts the starting points of
the deployment intervals within a worker section in
ascending order. For example, the crossover operators
can cause non-sorted deployment intervals. In
particular, a random creation of the initial individuals
needs the sorting process.
Example: The two deployment intervals ([2, 6.9],

[0.3, 5]) are replaced by ([0, 5], [2, 7]). This is not yet a
correct chromosome representation as defined before.
The description of the next auxiliary repair operator
shows the missing modification.

Auxiliary Repair Operator 2: Merge
This second auxiliary operator keeps the representation
of working time hours per worker unique and maintains
a correct chromosome formulation. It is applied after
the first auxiliary repair operator and after each main
repair operator. It adjusts overlapping and “touching”
deployment intervals within one worker section. With
overlapping intervals, the end time of the first intervals
is later than beginning of the next interval. With
touching intervals, the end time of the first interval is
the start point of the second interval. In both cases, the
operator merges them into a single interval with start
time of the first interval and end time of the second
interval. A correct problem formulation does not
contain any overlapping or “touching” intervals. The
genetic operators and random generation of individuals,
as well as the five main repair operators themselves
can cause such situations of overlapping or “touching”
intervals.
Example: The two deployment intervals ([0, 5], [2, 7])

are replaced by the single deployment interval
([0, 7]).

Main Repair Operator 1: Minimal Interval
Duration
This operator fixes violations of the constraint of
minimal duration of a deployment interval (see Fig. 5).
It does not consider the other constraints. Deployment
intervals that are below a configurable threshold

will be extended (see Fig. 5 case 1). The
extension take place at the end of the interval, so the

4.6 Repair Mechanism
Due to the many restrictions from working time
legislation, our problem of finding an optimal roster is
a highly constrained problem with a very fragmented
search space of the decision variables. In fragmented
solution spaces, the optimization strategy faces the
difficulty of generating new solution proposals, which
overcome the segment boundaries and lie in other
solution space segments than the known solutions (e.g.
the evaluated parent generations of the GA) (for further
information see, e.g., [47]). In addition, in our case
the constraints of a decision variable are not fixed but
depend on the values of the other decision variables, at
least within a worker section. Furthermore, there is no
fixed number of decision variables at all.
Accordingly, in the procedure of stochastic

evolution, the probability is high that crossover and
mutation operators violate constraints and thus the
GA creates invalid child individuals. A key aspect in
the development of our solution algorithm is therefore
the question of how to deal with the constraints and/
or the constraint violations. In the literature, one can
find different existing constraint-handling techniques
for GA. These are, among others, especially penalty
functions and repair mechanisms [48]. We do not want
to have unacceptable solutions for the roster creation
at the end of the optimization process, but want to be
sure that the roster is definitively valid for all relevant
labor time regulations (“hard constraints”). When using
penalty functions, death penalty is a way to be sure
of evolving generations with valid solutions. In this
strategy, all invalid solutions receive such a high penalty
that they are completely uninteresting for the further
optimization process [48]. Given the large number of
constraints, we assume that stochastic evolution does
not produce a large number of valid individuals and the
loss of too many individuals strongly affects the search
mechanism of the GA within the solution space. Instead
of rejecting invalid solutions by high penalty costs, we
are going to repair them. This way we can be sure to
always get valid solutions (=rosters) in the sense of the
working time regulations. With our repair algorithm,
we want to change the individuals as little as possible
and we are only focusing on the constraints of working
time restrictions. Due to the high number of solution
proposals and function evaluations in connection with
the high number of constraint violations we designed
the repair algorithm to be fast and easy applicable. The
developed repair algorithm consists of five main repair
operators (MRO) with a fix application sequence and
two auxiliary repair operators (ARO) (see Fig. 2). The
mechanism ensures that all constraints are satisfied
step by step. By applying the main repair operators
one by one, there is one by one more constraint met.
The main operators are designed in such a way that
the established condition of constraint satisfaction of
the previous operator is not violated. Each main repair
operator needs to be applied only once per individual.
The auxiliary repair operators are applied at the

16

Concretely, the operator works like this: If a break is
too short, the start of the next deployment interval is
moved to a later point in time (see Fig. 7 case 1). Then,
if necessary, we have to remember our condition that
we will not harm the already established constraints.
If the following deployment interval gets too short, the
operator will delete it completely (see Fig. 7 case 2).
In our application, we set the lower bound

.

Fig. 7: Schematic illustration of MRO 3
(minimal break duration)

Main Repair Operator 4: Maximal Number of
Working Hours per Shift , Maximal Span of
Shift and Minimal Rest Period Duration

This operator combines the observance of three
constraints that have strong interdependencies between
each other. These are the maximal amount of work
within a shift, the length of a shift and the minimal rest
period that divides two shifts (see definitions in Sect. 3).
Therefore, it is the most complex repair operator which
is modeled in a recursive way and uses two explicitly
modeled global states in its algorithm.
Repair operator 4 goes through the list of intervals

of an individual and deletes or shortens intervals
according to the following criteria. We explain the
process on the base of our configured values (see Table
2):
1. The first deployment interval of the schedule of

a worker starts a shift and the operator enters the
state “in-shift”. This means that the next at most
13 h (max. shift length) of the time
line are interpreted as a shift. The shift might end
earlier if the operator encounters a period without
deployment intervals of at least 11h (minimal rest
period).

2. In the state “in-shift” the algorithm keeps track
of the amount of work (the sum of the duration of
deployment intervals) within the shift and handles
the upcoming deployment intervals one by one. It
distinguishes three cases:
2.1. The current deployment interval is

completely within the considered shift,
i.e. within the range of : If the
deployment interval (potentially together with
previous intervals of the same shift) exceeds
the maximum amount of work (see Fig.

end will be shifted towards the future. In this way, an
interval can be merged with the following interval (see
Fig. 5 case 2). This is the only main repair operator that
extends the working hours of the workers.
In our application, we set the lower bound

.

Fig. 5: Schematic illustration of MRO 1
(minimal interval duration)

Main Repair Operator 2: Maximal Interval
Duration
This operator manipulates the duration of the
deployment intervals in view of a configurable upper
limit of duration, after which the worker has to take
a mandatory break. After the maximum time for a
deployment interval , a break is inserted that
lasts for the configurable minimum duration of breaks

. This means that, if necessary, deployment
intervals are split up (see Fig. 6 case 1). In order to avoid
the destruction of the previously established minimum
working times of the intervals by main repair operator
1, resulting intervals with a length below the minimum
length are completely deleted (see Fig. 6 case 2).
In our application, we set the upper bound

to comply with the German Working
Time Act.

Fig. 6: Schematic illustration of MRO 2
(maximal interval duration)

Main Repair Operator 3: Minimal Break
Duration
Once the worker has worked a certain amount of time
(e.g., see MRO 2), a break should be taken. At this
point, we make a simplification for the algorithm. All
designated breaks shall be of the specified minimum
duration. That means we do not check whether we can
piece together the necessary break time from several
breaks (as would be OK with working time regulations),
but make sure that each break is already long enough
on its own for this shift.

17
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

recursively with the current deployment
interval (thereby processing the interval again
but under a different state).

3.3. The current deployment interval overlaps
the end of the rest period of duration :
Here, the operator splits the interval at the
edge of . Thus, the operator creates (like
in step 2.3) a situation that allows for recursive
resolution. The operator now handles both new
deployment intervals recursively under the
current state (“in-rest-period”) on the basis
of steps 3.1 and 3.2.

Main Repair Operator 5: Maximal Working Time
per Day
This operator ensures that the maximum allowed
daily working time is not exceeded. After the
configured threshold of working hours in a day, all
further working hours on that day are cancelled (see
Fig. 9 case 1). In other words, after summing up the
working time with starting from the beginning of
the day, a cut is made after the reached amount of
the configured hours (in our case, e.g., 8 h). All later
deployment intervals of that day are deleted. If the
threshold is reached within a deployment interval, the
interval will be shortened. If the threshold is reached
within an interval whose end lies in the next day, the
interval will be shorted until the new day starts but at
least by a minimal break length. Generally, if a split
or shortened deployment interval gets too short, the
operator will delete this interval of too short duration
(see Fig. 9 case 2).
In our application, we set the upper bound .

According to this concept, the realization of a weekly
or longer limit is also conceivable.

Summary of the Main Concept of the Repair
Operators
The auxiliary operators keep the correct format of the
chromosomes. The main operators control the working
time restrictions and modify the working hours, if
necessary. They have a fixed application sequence.

8 case 1), it is truncated accordingly and the
operator switches its state to “in-rest-period”
(see step 3). Otherwise, the algorithm stays in
the state “in-shift” and proceeds with the next
deployment interval.

2.2.The current deployment interval is
completely outside the considered shift,
i.e. outside of the range of :
This means that the end of the previous
deployment interval has ended the shift and
the next mandatory 11h () rest period has
already started then (see Fig. 8 case 3). The
operator switches its state to “in-rest-period”
(see step 3) and handles the unaltered current
interval recursively under this new state. (The
interval might lie within the rest period and has
to be discarded completely or it might be so far
in the future that it will constitute a new shift
– the operator handles these cases recursively.)

2.3. The current deployment interval overlaps
with the end of the considered shift, i.e. is
partly inside and outside of the range of

: In this case (see Fig. 8 case 3)
the algorithm splits the deployment intervals
in two at the edge of (“touching”
deployment intervals are allowed during the
application of this operator). Thus, the operator
creates a situation in which step 2.1 and 2.2 can
be applied. It handles both new deployment
intervals recursively under the current state
(“in-shift”) as described in step 2.1. and 2.2.

3. In the state “in-rest-period”, the operator will
clear for an 11h () rest period starting with
the end of the deployment intervals that ended the
previous shift. It again distinguishes three cases:
3.1. The current deployment interval is

completely within the range of : This
interval is simply discarded (see Fig. 8 case 2).

3.2. The current deployment interval is
completely outside the range of : This
interval starts a new shift. The operator
changes its state to “in-shift” and proceeds

Fig. 8: Schematic illustration of MRO 4 (restrictions regarding shift workload ,
shift span and rest period duration)

time

in-shift

ssushift

case 1

in-rest period in-shift

ss ushift

in-rest periods

ushiftspan lrest

lrest ushiftspan

case 2 case 3

before

after

18

means that all jobs start at the same time .
means that if every job were done in

its shortest possible time directly at its release date,
there would be no parallel jobs.

. (9)

For example, the due date factor means
that the due date is so tight that the job can be finished
in time only when the shortest operation mode is
selected every time and there are no waiting processes.
The extension with manual tasks is a random-based

process. It is controlled by the parameter that
is the probability that a machine operation is assigned a
manual task. The exact start of the manual task within
the machine operation and the duration is randomly
generated, but is limited by the length of the machine
operation. For example, the probability
means that half of the machine operations receive
a manual task. However, it does not mean that the
workload of all manual task together is half the
workload of all machine operations (due to the shorter
duration of the manual tasks).
We choose the number of workers in a way that with

a common 2- and 3-shift system the instances can be
solved neither with much delay nor with a large staff
surplus.
As a final point of understanding the instances, the

temporal interpretation must be clarified: Since we are
creating rosters for workforce management, we will
interpret the dimensionless time units of the instances
to contain the workload for approximately one week
(ca. 5-7 days).
For our experiments, we use the instances Behnke

& Geiger 60 [49], Brandimarte Mk15 [50], Dauzere
15a [51] and Fattahi 20 [52] with the modification
parameters shown in Table 3.

Applying one by one, we can be sure that there will
be one more constraint met. Only the first repair
operator will increase the working hours by extending
deployment intervals. All other operators have a
shortening effect on the working times by shrinking
deployment intervals. Thus, operators 2-5 will keep the
constraints automatically intact except for constraint
of operator 1. In order to keep constraint of operator 1,
intervals of too short duration will be discarded at the
end of the application of every repair operator.

5 RESULTS

In this section, we describe the used problem instances,
followed by the results of the experiments.

5.1 Problem Instances
To the best of our knowledge, there are no benchmark
instances that fit our problem statement. We do not
want to use completely new and unknown instances,
but we will extend existing benchmarks. As basis,
we choose well-known flexible job shop scheduling
instances, which we extend for time windows and
manual tasks. Release date and due date
(the time window) are generated by two parameters, a
concurrency factor and a due date factor

, respectively. Both parameters calculate the
respective time based on the shortest possible execution
time of every job , i.e., the shortest possible path
across the various operations:

, (8)

where the release date of the first job . For
example, the concurrency factor

Fig. 9: Schematic illustration of MRO 5 (maximal working time per day)

time

24 h within 1 day

lbreak

ssuday

linterval linterval

24 h within 1 day

ssuday

linterval

ss

19
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

expresses the initial production plan of not beginning
all jobs at once. The dark grey bars visualize the
shortest possible execution time of the respective job,
i.e., the case when for each operation the shortest mode

Detailed Example: Brandimarte Mk15
Fig. 10 shows the 30 jobs of the Brandimarte MK15 in a
Gantt-style diagram. The offset of the start times of the
jobs results from the configured job concurrency and

Table 3: Modification parameters of the used benchmark instances

Behnke & Geiger 60

Time unit interpretation

0.2
2
0.5
4
5 [min]

Brandimarte Mk 15

Time unit interpretation

0.1
2.5
0.6
6
10 [min]

Dauzere 15a

Time unit interpretation

0
3
0.4
3
3 [min]

Fattahi 20

Time unit interpretation

0.05
3
0.8
5
4 [min]

Fig. 10: Release date due date and shortest possible execution time of job
for test instance Brandimarte Mk15

20

number of workers is set in a way that the 2- and 3-shift
system can solve the instances neither with much delay
nor with a large staff surplus (see Sect. 5.1).
The randomly generated solutions are not completely

blindly generated. We generate them in the same way
we generated the start population (see Sect. 4.5) and
guarantee their feasibility by applying the repair rules.
The number of the randomly generated solutions is
equal to the number of individuals (candidate rosters)
of the proposed GA framework, so there will be the
same number of objective function evaluations in both
test runs.
In the two- and three-shift systems, the workers are

equally distributed over the shifts. If the number of
workers is not divisible by the number of shifts, they
are assigned to the morning shift and to the evening
shift, if necessary. The shift times are as follows: 6:00
a.m. to 2:00 p.m. (morning shift), 2:00 p.m. to 10:00
p.m. (evening shift) and 10:00 p.m. to 6:00 a.m. (night
shift). Accordingly, there is only one objective function
evaluation for each test setup, as the roster is already
fixed.
The desired working times are the same for all

experiments and are generated per worker for each day
as an 9 h-interval (1 hour lunchbreak included), which
is normally distributed with mean at 8:00 a.m. and with
a standard deviation of 2 h.

would be chosen. The light grey bars visualize the
designated slack time until the due dates of the jobs. If
a job finishes before its due date, there will not be any
delay costs.
Fig. 11 shows the same problem instance in more

detail and without the due date information. Each of
the 30 vertically arranged jobs consists of averagely
three operation modes which are represented by the
horizontal lines. The horizontal segmentation of a job
in operations is visualized by the gaps in the horizontal
lines – the longest mode of an operation determines the
length of the line and the gaps appear for the modes
with shorter duration. The dark line segments visualize
manual activities of which each operation mode can
have at most one.

5.2 Evaluation
Since there are no existing benchmark results
available from other publications, we will compare the
performance of the developed algorithm to randomly
generated solutions as well as to the two- and three-
shift systems widely used in practice. All experiment
runs are based on the same number of available workers
in each respective instance. In this way, all compared
rostering methods have the same upper bound of
working hours capacity but differ in the arrangement of
working hours (i.e., the roster). Keep in mind, that the

Fig. 11: Illustration of the share of manual activities (in black) as well as alternative modes of the jobs
for test instance Brandimarte Mk15

21
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

utilization decreases until the end of the second shift.
In the three-shift-system, there is a consistent supply of
workers so that the backlog does not accumulate as in
the two-shift system. However, on the one hand, it is not
possible to respond to peaks of capacity demand due to
rigid capacity supply. On the other hand, there are long
waiting times without tasks for the workers that create
periods of low worker capacity utilization. Accordingly,
the rigid shift systems have clear disadvantages, which
do not exist for our algorithm that supports flexible
working hours and is adaptable to hourly volatile
capacity demands. A detailed evaluation of the values
shows that our proposed algorithm generally schedules
less attendance time and the deployment intervals are
better adapted to hourly volatile demands.
Moreover, the rigid shift systems have both the most

expensive costs in the objective function part of desired
working hours of workers. Neither in the 2-shift nor in
the 3-shift system, the rostering process is based on
the inclusion of desired working times. The overlap
between desired working times and actual working
times is only by chance. The same applies to the
randomly generated solutions. However, these perform
significantly better in comparison; possibly, because
they can also guess outside fixed shift system time
grids. Our algorithm is on a similar level of costs for
rostered non-desired working hours as the randomly
generated solutions.

Table 4 shows the applied parameter set for the
evaluation process. In this experiment we used only
one configuration. We have determined this parameter
combination by a grid search in preliminary tests.
This combination has shown good results in most
experiments, although for single instances other
parameter compositions can give better results.
Fig. 12 shows the results of the comparison for

the four selected instances. The randomly generated
start population of the proposed algorithm is not
yet necessarily better than the two- and three-shift
operation and it takes some generations to achieve a
better cost value. However, our developed algorithm
achieves the best results in our test instances, provided
the number of generations is high enough. The random
solution generation (analogous to the start population
generation) beats the rigid shift systems after a certain
number of trials in three of the four cases.
Table 5 shows the objective function evaluation

broken down into the three main cost aspects and the
penalty due to workers that have worked longer than
rostered.
The delay costs tend to be highest in the 2-shift

system. A detailed analysis reveals that in the two-shift
system, there is a backlog of manual task (and thus of
jobs) at night. At the beginning of the morning shift
the workers process the waiting task of the night and
thus the worker capacity utilization is high. Then the

Table 4: Applied parameter set for the evaluation process

Parameter set of GA Parameter set of cost function
Size of population

Number of generations
Stop after generation without min. improvement
With minimal improvement [€]

Tournament size

Mating Probability
Probability of messy crossover
Probability of simulated binary crossover
Eta of simulated binary crossover

Mutation Probability
Probability of Gaussian mutation
Sigma of Gaussian mutation [minutes]
Probability of mutation “inserting break”
Probability of mutation “inserting interval”

100

200
100
1

5

0.8
0.5
0.5
2

0.1
0.05
120
0.05
0.05

Labor cost [€/h]
Night hours [clock hours]
Night work surcharge [%]

Surcharge non-preferred working hours [%]

Job delay cost [€/h]

Penalties
Unplanned work penalty [%]
After-schedule work penalty [%]

25
[23, 6]
25

25

100

200
300

22

Fig. 12: Cost evaluation (fitness function including objective function and penalties) of developed algorithm
in comparison to two- and three-shift system and randomly generated solutions for the test instances

Table 5: Cost values of the best solution found

[€]
(rounded)

[€]
(rounded)

[€]
(rounded)

[€]
(rounded)

[€]
(rounded)

[€]
(rounded)

2-shift
system

Behnke & Geiger 60 8664 8651 3590 444 4617 13
Brandimarte Mk 15 7945 7541 6202 656 683 404
Dauzere 15a 4232 4127 3688 439 0 105
Fattahi 20 6675 5913 5436 477 0 762

3-shift
system

Behnke & Geiger 60 4341 4333 3629 446 258 8
Brandimarte Mk 15 6328 6328 5533 795 0 0
Dauzere 15a 4257 4257 3663 594 0 0
Fattahi 20 5816 5779 5116 663 0 37

By
random

Behnke & Geiger 60 5954 5773 2799 357 2617 181
Brandimarte Mk 15 5646 4986 4236 433 317 660
Dauzere 15a 3221 2813 2483 330 0 408
Fattahi 20 4119 3365 2992 373 0 754

Proposed
algorithm

Behnke & Geiger 60 2818 2801 2419 374 8 17
Brandimarte Mk 15 4907 4653 4093 560 0 254
Dauzere 15a 3057 2694 2410 284 0 363
Fattahi 20 2784 2526 2198 328 0 258

23
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

for each of the four considered instances, so that on one
CPU we can evaluate 20,000 individuals in a matter of
minutes. There is of course potential for parallelization.
Up to now, we have used parallelization only for grid
search for GA parameter combinations. Accordingly,
a scaling of the method to larger instances (more jobs
/ workers / machines) seems to be possible. However,
to evaluate the method scientifically, correspondingly
large benchmark instances will be needed.

Detailed Example: Brandimarte Mk15
Fig. 13 displays information about the simulation run
with the best individual, i.e., the best roster, found by
the GA. The top chart shows the actual modes chosen
for each job during the simulation and the time of their
start and finish. The second chart visualizes the roster
itself. It shows only the number of workers deployed at
each time point. Note that the more detailed information
which worker is deployed at which time can be read
off the individual, see below. The third chart shows
the actual time when workers were busy working. The

We have set the initial time horizon for every
experiment run as long as necessary so that in the best
evaluation runs there are no costs for too short rosters

. Accordingly, the penalty costs in
Table 5 are the same as the penalty costs for unplanned
working hours .
A disadvantage of our algorithm in comparison

to rigid shift systems is a higher expensiveness of
workforce roster creation. The algorithm takes many
target function evaluations (e.g., for a population size
of 100 individuals evolving over 200 generations:
20,000 cost functions evaluations2). However, each cost
function evaluation, which includes the simulation of
the production system, takes only a fraction of a second

2 Usually, in our framework, an objective function evaluation
corresponds to a simulation run. However, in the optimization
process of the GA, identical individuals can arise, for which we
re-use the already known cost values without another simulation
run. Thus, typically, the number of simulations is somewhat
smaller than the number of created individuals.

Fig. 13: Best solution proposal of our algorithm for test instance Brandimarte Mk15 (first four days)

24

we use well-known job shop instances which we have
extended to the expected conditions since Industry
4.0. As our experiments show, the proposed algorithm
achieves significantly better objective function values
in comparison to ordinary two-shift and three-shift
systems.
We have evaluated problems with up to 60 machines,

100 jobs with 5 operations each, and 10 workers. In all
our experiments we observed a convergence towards
a (at least locally) optimal fitness value after approx.
80-180 generations, see Fig. 12. We did not encounter
any non-linear behavior in run-time, which is plausible,
given our implementation of JSP simulation and the
GA. These results indicate that our heuristic approach
indeed renders our optimization problem tractable.
A key feature of our algorithm is that it supports

the transition from rigid shift time grids towards
flexible working hours. Accordingly, the supply of
worker capacity (rostered attendance time) can be
adjusted exactly to the capacity demands. Thus, a high
working time efficiency is reached (not least against
the background of sporadically occurring manual
tasks in Industry 4.0). Moreover, the use of slack time
with regard to delay costs helps to improve the other
cost aspects (e.g., avoiding night work surcharge and
employees working at undesired hours). Additionally,
the developed algorithm meets the zeitgeist with regard
to work-life balance as it takes into account preferred
working hours of workers during the optimization
process.
We continue working on our framework. The

main new features currently under development
are the support for heterogeneous skill levels of the
workers as well as for stochastic process duration and
robustness for process disturbances. These topics are
also of high importance as can be seen from Sect. 1.1.
In the future, we would also like to solve large-scale
problems in order to be able to create adequate solutions
for large industrial production systems. Another open
topic is synchronization of existing rosters in case of
last-minute changes (e.g., sick leave) that can occur
frequently in workforce management.
Other useful extensions could be the assurance

of minimum working hours for the workers or the
detailed consideration of psychological and work
science aspects. Legal aspects also need to be clarified
and adapted to specific countries before using the
methodology in companies.

ACKNOWLEDGEMENTS

We would especially like to thank the German Research
Foundation / Deutsche Forschungsgemeinschaft
(DFG), which is funding our project with the title “A
simulation-based and flexi-time applying prediction
model for scheduling personnel deployment times
in the production planning process of cyber-physical
systems” (project-id: 439188616).

fourth chart shows the unsatisfied or open demand
for workers, i.e., the number of manual tasks that are
suspended for lack of available workers. The fifth chart
provides more detailed information about the rostered
deployment intervals for each worker as Gantt-Chart.
The bottom chart shows the desired working hours of
each worker per day.
The solution generated by our algorithm (Fig. 13)

shows that there may well be a backlog of manual task
(and thus of jobs) during several hours (e.g., ca. day 1
at 6:00 p.m. until day 2 at 2:00 a.m. or day 3 at 8:00
p.m. until day 4 at 7:00 p.m.). In this example, three
of four accumulated unsatisfied demand peaks are
during the night. The scheduling of night work may be
uninteresting for the algorithm for two reasons: The
night work surcharge and penalty for undesired working
hours (the desired working hours usually are during the
day). It is cost efficient that the specified time window
from job release to due date (and the resulting slack
time) is used to improve the other two cost aspects. The
algorithm seems to be able to use this effect.
The second (the number of workers deployed in the

roster) and third (the number of busy workers in the
simulation) chart of Fig. 13 have a high coverage rate
that report a high capacity utilization of the worker.
In simple words: If workers have been rostered, they
are usually needed for processing manual tasks in the
simulation.

6 CONCLUSIONS

The changed conditions related to Industry 4.0 as well
as Industry 5.0 and Work 4.0 as well as the increased
importance of work-life balance create a need for new
methods for workforce rostering. For example, the
integration of desired working hours of production
employees is increasingly coming to the fore. Moreover,
detailed baseline production schedules will become
obsolete by the use of decentralized production control
and can no longer be used as basis for conventional
rostering methods.
With the changed conditions in mind, we proposed

a new algorithm for workforce rostering in decentrally
controlled production systems taking into account the
desired working hours of the workers. The schedules
generated are no longer based on rigid shift systems, but
take advantage of flexible working hours. The core idea of
the proposed solution is a simulation-based optimization
method that uses a discrete-event simulation of the
execution of jobs in a given production system and a
specifically tailored genetic algorithm to generate cost
efficient rosters. Workforce planning problems are highly
constrained due to legal requirements. We counter this
fact by using specially developed repair operators that
modify infeasible solutions to feasible ones. Moreover,
our genetic algorithm works with a variable chromosome
length since the number of decision variables may
vary depending on the solution. For the evaluation,

25
Workforce Rostering for Decentrally Controlled Production Systems:
A Simulation-based Optimization Framework using a Genetic Algorithm

14. Attia E-A, Duquenne P, Le-Lann J-M (2014)
Considering skills evolutions in multi-skilled
workforce allocation with flexible working hours.
Int J Prod Res 52:4548–4573. https://doi.org/10.10
80/00207543.2013.877613

15. Kagermann H, Lukas W-D, Wahlster W (2011)
Industrie 4.0: Mit dem Internet der Dinge auf
dem Weg zur 4. industriellen Revolution. VDI-
Nachrichten

16. Fraunhofer-Institut für Arbeitswirtschaft
und Organisation Stuttgart MyCPS. www.
mycpstoolbox.de. Accessed 28 Aug 2021

17. Flüter-Hoffmann C, Hammermann A,
Stettes O (2019) Zeitreich – Erfolg mit
flexiblen Arbeitszeitmodellen: Leitfaden für
Personalverantwortliche und Geschäftsleitungen.
Initiative Neue Qualität der Arbeit, Geschäftsstelle
c/o Bundesanstalt für Arbeitsschutz und
Arbeitsmedizin, Berlin

18. Ernst AT, Jiang H, Krishnamoorthy M, Sier D
(2004) Staff scheduling and rostering: A review
of applications, methods and models. Eur J Oper
Res 153:3–27. https://doi.org/10.1016/S0377-
2217(03)00095-X

19. Van den Bergh J, Beliën J, De Bruecker P, et
al (2013) Personnel scheduling: A literature
review. Eur J Oper Res 226:367–385. https://doi.
org/10.1016/j.ejor.2012.11.029

20. Özder EH, Özcan E, Eren T (2020) A Systematic
Literature Review for Personnel Scheduling
Problems. Int J Inf Technol Decis Mak 19:1695–
1735. https://doi.org/10.1142/S0219622020300050

21. Nurmi K, Kyngäs N (2021) A Successful Three-
Phase Metaheuristic for the Shift Minimization
Personal Task Scheduling Problem. Adv Oper Res
2021:1–12. https://doi.org/10.1155/2021/8876990

22. Kletzander L, Musliu N (2020) Solving the
general employee scheduling problem. Comput
Oper Res 113:104794: https://doi.org/10.1016/j.
cor.2019.104794

23. Krishnamoorthy M, Ernst AT, Baatar D (2012)
Algorithms for large scale Shift Minimisation
Personnel Task Scheduling Problems. Eur J
Oper Res 219:34–48. https://doi.org/10.1016/j.
ejor.2011.11.034

24. Sammarco M, Fruggiero F, Neumann WP,
Lambiase A (2014) Agent-based modelling of
movement rules in DRC systems for volume
flexibility: human factors and technical
performance. Int J Prod Res 52:633–650. https://
doi.org/10.1080/00207543.2013.807952

25. Andrade-Pineda JL, Canca D, Gonzalez-R PL,
Calle M (2020) Scheduling a dual-resource
flexible job shop with makespan and due date-
related criteria. Ann Oper Res 291:5–35. https://
doi.org/10.1007/s10479-019-03196-0

REFERENCES

1. Schwemmer J, Schmidt T, Völker M (2020) A
New Simulation-Based Approach to Schedule
Personnel Deployment Times in Decentrally
Controlled Production Systems. In: SIMUL 2020.
Porto, Portugal, pp 19–23

2. Ittermann P, Niehaus J, Hirsch-Kreinsen H (2015)
Arbeiten in der Industrie 4.0: Trendbestimmungen
und arbeitspolitische Handlungsfelder. Study
Hans-Böckler-Stift 308:90

3. Ganschar O, Gerlach S, Hämmerle M, et al (2013)
Produktionsarbeit der Zukunft – Industrie 4.0:
Studie. Fraunhofer-Verl, Stuttgart

4. Kühn M, Völker M, Schmidt T (2020) An
Algorithm for Efficient Generation of Customized
Priority Rules for Production Control in Project
Manufacturing with Stochastic Job Processing
Times. Algorithms 13:337. https://doi.org/10.3390/
a13120337

5. European Commission. Directorate General for
Research and Innovation. (2021) Industry 5.0:
towards a sustainable, human centric and resilient
European industry. Publications Office, LU

6. German Federal Ministry of Education and
Research (2017) Industrie 4.0 | Innovationen für
die Produktion von morgen. 11055 Berlin

7. German Federal Institute for Occupational Safety
and Health (2019) Flexible Arbeitszeitmodelle –
Überblick und Umsetzung. 44149 Dortmund

8. Bergmann F (2019) New work, new culture: work
we want and a culture that strengthens us. Zero
Books, Winchester, UK ; Washington, USA

9. Paul M, Knust S (2015) A classification scheme
for integrated staff rostering and scheduling
problems. RAIRO – Oper Res 49:393–412. https://
doi.org/10.1051/ro/2014052

10. Artigues C, Gendreau M, Rousseau L-M,
Vergnaud A (2009) Solving an integrated
employee timetabling and job-shop scheduling
problem via hybrid branch-and-bound. Comput
Oper Res 36:2330–2340. https://doi.org/10.1016/j.
cor.2008.08.013

11. Schwemmer J, Kühn M, Völker M, Schmidt T
(2022) Scheduling Workforce in Decentrally
Controlled Production Systems: A Literature
Review. In: Freitag M, Kinra A, Kotzab H,
Megow N (eds) Dynamics in Logistics. Springer
International Publishing, Cham, pp 396–408

12. Trost M, Claus T, Herrmann F (2022) Social
Sustainability in Production Planning: A
Systematic Literature Review. Sustainability
14:8198. https://doi.org/10.3390/su14138198

13. Grabot B, Letouzey A (2000) Short-term
manpower management in manufacturing
systems: new requirements and DSS prototyping.
Comput Ind 43:11–29

26

38. Bauer W (2015) Selbstorganisierte Kapazitäts-
flexibilität in Cyber-Physical-Systems: Abschluss-
bericht. Fraunhofer Verl, Stuttgart

39. Herrmann F (2016) Using Optimization Models
for Scheduling in Enterprise Resource Planning
Systems. Systems 4:15. https://doi.org/10.3390/
systems4010015

40. Baker KR (2013) Computational results for
the flowshop tardiness problem. Comput Ind
Eng 64:812–816. https://doi.org/10.1016/j.
cie.2012.12.018

41. Kramer O (2017) Genetic algorithm essentials.
Springer, Cham

42. Fortin F-A, Rainville F-MD, Gardner M-A, et al
(2012) DEAP: Evolutionary Algorithms Made
Easy. J Mach Learn Res 13:2171–2175

43. SimPy (Version 4.0.1). https://simpy.readthedocs.
io/

44. Miller BL, Goldberg DE (1995) Genetic
Algorithms, Tournament Selection, and the
Effects of Noise. Complex Syst 9:193–212

45. Goldberg DE, Korb B, Deb K (1989) Messy
Genetic Algorithms: Motivation, Analysis, and
First Results. Coplex Syst 3:493–530

46. Deb K, Agrawal RB (1995) Simulated Binary
Crossover for Continuous Search Space. Complex
Syst 9:

47. Bonyadi MR, Michalewicz Z (2015) Locating
Potentially Disjoint Feasible Regions of a Search
Space with a Particle Swarm Optimizer. In:
Datta R, Deb K (eds) Evolutionary Constrained
Optimization. Springer India, New Delhi, pp
205–230

48. Coello Coello CA (2002) Theoretical and
numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the
state of the art. Comput Methods Appl Mech Eng
191:1245–1287. https://doi.org/10.1016/S0045-
7825(01)00323-1

49. Behnke D, Geiger MJ (2012) Test Instances for
the Flexible Job Shop Scheduling Problem with
Work Centers. https://doi.org/10.24405/436

50. Brandimarte P (1993) Routing and scheduling in
a flexible job shop by tabu search. Ann Oper Res
41:157–183. https://doi.org/10.1007/BF02023073

51. Dauzère-Pérès S, Paulli J (1997) An integrated
approach for modeling and solving the general
multiprocessor job-shop scheduling problem
using tabu search. Ann Oper Res 70:281–306.
https://doi.org/10.1023/A:1018930406487

52. Fattahi P, Saidi Mehrabad M, Jolai F (2007)
Mathematical modeling and heuristic approaches
to flexible job shop scheduling problems. J Intell
Manuf 18:331–342. https://doi.org/10.1007/s10845-
007-0026-8

26. Thürer M, Zhang H, Stevenson M, et al (2020)
Worker assignment in dual resource constrained
assembly job shops with worker heterogeneity:
an assessment by simulation. Int J Prod Res
58:6336–6349. https://doi.org/10.1080/00207543.
2019.1677963

27. Zheng X, Wang L (2016) A knowledge-guided
fruit fly optimization algorithm for dual resource
constrained flexible job-shop scheduling problem.
Int J Prod Res 54:5554–5566. https://doi.org/10.10
80/00207543.2016.1170226

28. Agnetis A, Murgia G, Sbrilli S (2014) A job shop
scheduling problem with human operators in
handicraft production. Int J Prod Res 52:3820–
3831. https://doi.org/10.1080/00207543.2013.8312
20

29. Kress D, Müller D, Nossack J (2019) A worker
constrained flexible job shop scheduling problem
with sequence-dependent setup times. Spectr
41:179–217. https://doi.org/10.1007/s00291-018-
0537-z

30. Qu S, Wang J, Govil S, Leckie JO (2016)
Optimized Adaptive Scheduling of a
Manufacturing Process System with Multi-skill
Workforce and Multiple Machine Types: An
Ontology-based, Multi-agent Reinforcement
Learning Approach. Procedia CIRP 57:55–60.
https://doi.org/10.1016/j.procir.2016.11.011

31. Müller D, Kress D (2021) Filter-and-fan
approaches for scheduling flexible job shops
under workforce constraints. Int J Prod Res 1–23.
https://doi.org/10.1080/00207543.2021.1937745

32. Denkena B, Dittrich MA, Winter F, Wagener C
(2016) Simulation-based planning and evaluation
of personnel scheduling in knowledge-intensive
production systems. Prod Eng 10:489–496.
https://doi.org/10.1007/s11740-016-0693-4

33. Altendorfer K, Schober A, Karder J, Beham A
(2021) Service level improvement due to worker
cross training with stochastic worker absence. Int
J Prod Res 59:4416–4433. https://doi.org/10.1080/
00207543.2020.1764126

34. Wikarek J, Sitek P (2021) Proactive and reactive
approach to employee competence configuration
problem in planning and scheduling processes.
Appl Intell. https://doi.org/10.1007/s10489-021-
02594-x

35. Egilmez G, Erenay B, Süer GA (2014) Stochastic
skill-based manpower allocation in a cellular
manufacturing system. J Manuf Syst 33:578–588.
https://doi.org/10.1016/j.jmsy.2014.05.005

36. Guyon O, Lemaire P, Pinson É, Rivreau D
(2014) Solving an integrated job-shop problem
with human resource constraints. Ann Oper Res
213:147–171. https://doi.org/10.1007/s10479-012-
1132-3

37. Frihat M, B.Hadj-Alouane A, Sadfi C (2022)
Optimization of the integrated problem of
employee timetabling and job shop scheduling.
Comput Oper Res 137:105332. https://doi.
org/10.1016/j.cor.2021.105332

